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Abstract: As part of extensive research on the properties of nickel-aluminum alloys, corrosion tests of
sintered materials produced by the innovative HPHT/SPS (high pressure, high temperature/spark
plasma sintering) method were performed in 0.1 molar H2SO4 acid. The hybrid, unique device used
for this purpose (one of only two such devices operating in the world) is equipped with a Bridgman
chamber, which allows heating with high-frequency pulsed current and sintering of powders under
high pressure in the range of 4–8 GPa and at temperatures up to 2400 ◦C. Using this device for
the production of materials contributes to the generation of new phases not obtainable by classical
methods. In this article, the first test results obtained for the nickel-aluminum alloys never before
produced by this method are discussed. Alloys containing 25 at.% Al, 37 at.% Al and 50 at.% Al
were produced. The alloys were obtained by the combined effect of the pressure of 7 GPa and the
temperature of 1200 ◦C generated by the pulsed current. The time of the sintering process was
60 s. The electrochemical tests, such as OCP (open circuit potential), polarization tests and EIS
(electrochemical impedance spectroscopy), were carried out for the newly produced sinters and the
results were compared with the reference materials, i.e., nickel and aluminum. The corrosion tests
showed good corrosion resistance of the produced sinters, with corrosion rates of 0.091, 0.073 and
0.127 mm per year, respectively. It leaves no doubt that the good resistance of materials synthesized
by powder metallurgy is due to the proper selection of the manufacturing process parameters,
ensuring a high degree of material consolidation. This was further confirmed by the examinations of
microstructure (optical microscopy and scanning electron microscopy) and the results of density tests
(hydrostatic method). It has been shown that the obtained sinters were characterized by a compact,
homogeneous and pore-free structure, though at the same time differentiated and multi-phase, while
the densities of individual alloys reached a level close to the theoretical values. The Vickers hardness
of the alloys was 334, 399 and 486 HV10, respectively.

Keywords: corrosion; HP SPS; sintering; innovative high-pressure processes; Ni-Al

1. Introduction

For many years, Ni-Al alloys have been perceived as interesting construction mate-
rials to be used for machine and device components, mainly in the manufacturing [1,2],
energy [3,4], automotive [5,6] and aerospace [7,8] industries. The popularity of these
materials is due to their relatively low density and high strength [1,2,9], especially at
high temperatures [7,10,11]. An essential advantage of Ni-Al alloys that promotes their
wide application is their good corrosion resistance [1,9,12]. The inherent brittleness at
ambient temperature can be counteracted by the use of some alloy additives, to mention
as examples boron [13,14], boron and zirconium [15], titanium [16] and iron, which is
an impurity generated by the steel grinding media and is the source of serious disor-
ders in the microstructure of NiAl [17], copper [18], or carbon [19], and also by the use
of appropriate manufacturing methods. Special attention in the manufacture of Ni-Al
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alloys deserves the technology of powder metallurgy as an important tool that allows
abating the adverse effect of brittleness [2] through the use of various manufacturing
methods [20,21], microstructure optimization [22,23] or ultra-fine grain refinement [24].
Numerous variations of the sintering process have been used to meet this goal, starting
with free sintering [25,26], through the techniques that use both high sintering tempera-
tures (HP—hot pressing, HIP—hot isostatic pressing) [22,27,28] and high sintering pressure
(HPHT—high pressure high temperature) [29,30], and ending in the methods where ther-
mal effects are obtained by the use of direct current, alternating current or pulsed current
(SPS—spark plasma sintering) [31–33]. Currently, scientists are particularly interested in
the SPS method. After numerous modifications [34], this method is considered a relatively
modern production tool that contributes to the manufacture of materials characterized by
low porosity and is achieved at lower parameters of the sintering process (mainly temper-
ature) than the parameters used in other more traditional methods [35]. High-pressure
spark plasma sintering (HP (HT)/SPS) is an innovative variant of this method. Using
this and other new methods based on SPS, it is possible to synthesize virtually all ma-
terials, including those with metastable or intermetallic phases and composites, such as
HfB2/SiC and HfB2/HfC/SiC [36], MoSi2@ZrO2 [37], NiAl/Ni3Al/TiB2 [38], TiB2-B4C
with hBN [39] and Ti-6Ni-xTiCN [40]. The HP/SPS method belongs to the new generation
of SPS processes and has already been successfully used for the sintering of polycrystalline
diamond [41], nanocrystalline γ-Al2O3 [42], β-SiC [43], ZrC-based composites [44] and
Ti–Al–Si alloys [45].

It has been shown that the use of high pressure [46,47] and high temperature in
the sintering process produces microstructures that cannot be obtained by traditional
sintering methods [48,49]. The application of high pressure (up to 12 GPa [50]) or the use of
special chambers ensuring the required distribution of pressure and temperature, combined
with different techniques of heat supply and discharge, contribute to the formation of
different microstructures and, consequently, different properties of otherwise identical
alloys. It has to be remembered that in the manufacturing process of Ni-Al alloys, at a
certain temperature, a sudden explosive exothermic transformation (heat release) occurs,
accompanied by a rapid increase in temperature. As a result of this phenomenon, the final
composition of the manufactured alloy is difficult to control, but this type of reaction of
synthesis is often used to reduce production costs and shorten the duration of the entire
process [51,52], reducing also in this way the risk of grain growth [53]. Additionally, it can
be expected that, by extending the range of plastic deformation, the high pressure used in
the process will confer on the initially brittle materials’ (intermetallic compounds) better
mechanical properties after the process.

As part of the conducted research, Ni-Al intermetallics with a composition close to
25 at.% Al, 37 at.% Al and 50 at.% Al were produced. Sintering with the simultaneous
effect of pressure and temperature was carried out in a globally unique HPHT/SPS hybrid
device equipped with a Bridgman chamber. The principle of operation of this device has
recently been described by Guignard et al. [41] in a study where the applied method was
called ultra-high-pressure (UHP)-SPS.

When planning the research, it was assumed that the use of high pressure (7 GPa) in the
manufacture of the above-mentioned alloys, the use of appropriate chambers ensuring the
required distribution of pressure and temperature, the use of pulsed current as a means of
heat supply and, finally, the violent exothermic reaction (temperature increase) taking place
at the nickel/aluminum interface at a temperature of approx. 575 ◦C [33] would contribute
to the manufacture of material characterized by a high degree of consolidation (almost
pore-free). This, in turn, as indicated by Went et al. who claimed that “Microstructure
has an inseparable relationship with corrosion resistance” [54], should contribute to better
corrosion resistance of the alloys. Osorio et al. [55] also noticed this relationship in their
research. They linked the microstructure to the electrochemical corrosion resistance of
Ni-Al alloys that solidified directionally and showed that the dendritic system and the
distribution of NiAl3 intermetallic particles are of great importance for both the pitting
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potential and the overall corrosion resistance of Al-Ni alloys. Compared to the fine-
grained dendritic microstructure after casting, the coarse-grained dendritic microstructure
promotes overall corrosion/oxidation resistance, though Zhang et al. [56] suggested that
the more homogeneous and fine α-Al/Al3Ni microstructure plays an important role in the
improvement of corrosion resistance of the Al-5.4 wt.% Ni alloy.

In [57,58], a comparison was made between the corrosion resistance of Ni-Al coatings
and composite Ni-Al-Al2O3 coatings in an environment of 0.01 M H2SO4 and 3.5% NaCl.
The evaluation based on polarization and impedance spectroscopy measurements showed
that the examined coatings were more resistant to the 3.5% NaCl environment than to the
0.01 M H2SO4 environment. As a consequence of this report, it was decided to base the
assessment of the corrosion resistance of the alloys described in this article on tests carried
out in a more aggressive environment of H2SO4 acid.

2. Materials and Methods
2.1. Selection of Starting Powders

Commercial carbonyl nickel powder (Vale prod., Clydach, UK) (Figure 1a) and gas-
atomized aluminum powder (Benda-Lutz prod., Skawina, Poland) (Figure 1b) with a purity
of 99.8% and particle sizes of 3–7 µm and 32 µm, respectively, were used to produce the
sintered material. It is easy to observe that the morphology of the nickel powder is close to
a spherical shape and that the particles are characterized by high repeatability of both size
and shape. On the other hand, aluminum powder particles are more diverse in both size
and shape, though they tend to occur in the form of elongated rods. To hinder oxidation,
the aluminum powder particles were larger in size than the nickel powder particles. This
type of relationship in the size of Ni and Al particles was indicated by Philpot et al. [59]
and Biswas et al. [60], who studied the temperature of the explosive reaction and its effect
on the formation of a single-phase microstructure.
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Figure 1. SEM micrographs of (a) nickel and (b) aluminum powders.

2.2. Preparation of Powder Mixtures

To produce the required alloys, designated according to the aluminum content ex-
pressed in atomic percent as NiAl25, NiAl37 and NiAl50, nickel and aluminum powders
were weighed in appropriate proportions using a balance with an accuracy of 0.0001 g,
model AS 220/C/2, created by Radwag (Radom, Poland). To obtain reasonably homoge-
neous mixtures, mixing was carried out for 24 h in a Turbula WAB Type T2F mixer (Willy
A. Bachofen AG, Muttenz, Switzerland) using AISI52100 steel balls in a 2:1 weight ratio in
relation to the powders.

2.3. Fabrication of Test Materials
2.3.1. Description of the High-Pressure HPHT/SPS Sintering Process

Individual mixtures in appropriate amounts (determined by their specific volume)
were placed in a special container (Figure 2). A photo of the container (before final assembly
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of the outer ceramic part 1 and inner ceramic part 2) is shown in Figure 2a, while Figure 2b
shows a schematic diagram of the container. According to Klimczyk [61], proper design
of containers contributes to the uniform distribution of compressive stresses as a result
of plastic deformation of the gaskets (1–3) and to uniform heat distribution (graphite
resistance heater 4), thus allowing for the imitation of quasihydrostatic process conditions
in the sintered material (6).

Materials 2023, 16, x FOR PEER REVIEW 4 of 23 
 

 

2.3. Fabrication of Test Materials 
2.3.1. Description of the High-Pressure HPHT/SPS Sintering Process 

Individual mixtures in appropriate amounts (determined by their specific volume) 
were placed in a special container (Figure 2). A photo of the container (before final 
assembly of the outer ceramic part 1 and inner ceramic part 2) is shown in Figure 2a, while 
Figure 2b shows a schematic diagram of the container. According to Klimczyk [61], proper 
design of containers contributes to the uniform distribution of compressive stresses as a 
result of plastic deformation of the gaskets (1–3) and to uniform heat distribution (graphite 
resistance heater 4), thus allowing for the imitation of quasihydrostatic process conditions 
in the sintered material (6). 

 
Figure 2. High Pressure HPHT/SPS Process: (a) view of the container: ceramic gasket 1—outer part, 
2—inner central part, 3—ceramic disk, 4—graphite resistance heater, (b) cross—section of the 
container and the method of fixing the container between the anvils of the device, (c) view of the 
anvils and the container after sintering the sample—5—anvils, 6—the powder mixture placed in a 
toroidal chamber, 7—pulsed electrical generator. 

Gaskets are composed of special metamorphic rocks (catlinite, pyrophyllite and 
lithographic stone) [62]. The volume of the toroidal chamber (0.3–1 cm3) enables 
generating both high pressure (up to 12 GPa) and high temperature (up to approx. 2500 
°C). This system is most often used for the production of synthetic diamonds [63], PCD 
(composites based on polycrystalline diamonds) [64,65], cBN (regular boron nitride) and 
PcBN (polycrystalline cubic boron nitride) [61]. As a result of the simultaneous effects of 
pressure and temperature, the sintering process is much faster than in the case of free 
sintering. The typical duration of the HPHT sintering process is approximately 0.5–2 min, 
while free sintering requires longer times, from several dozen minutes to several hours 
[50]. The short duration of the process contributes to the reduction in grain growth, which 
is important when the sintering of nanopowders is carried out. Materials obtained by the 
high-pressure method are characterized by a nearly 100% densification degree, isotropic 
properties and, in some cases, because of the different thermodynamic conditions of the 
production process, a phase composition completely different from the phase composition 
of the same material subjected to free sintering [30,46,50]. 

  

Figure 2. High Pressure HPHT/SPS Process: (a) view of the container: ceramic gasket 1—outer
part, 2—inner central part, 3—ceramic disk, 4—graphite resistance heater, (b) cross—section of the
container and the method of fixing the container between the anvils of the device, (c) view of the
anvils and the container after sintering the sample—5—anvils, 6—the powder mixture placed in a
toroidal chamber, 7—pulsed electrical generator.

Gaskets are composed of special metamorphic rocks (catlinite, pyrophyllite and litho-
graphic stone) [62]. The volume of the toroidal chamber (0.3–1 cm3) enables generating
both high pressure (up to 12 GPa) and high temperature (up to approx. 2500 ◦C). This
system is most often used for the production of synthetic diamonds [63], PCD (composites
based on polycrystalline diamonds) [64,65], cBN (regular boron nitride) and PcBN (poly-
crystalline cubic boron nitride) [61]. As a result of the simultaneous effects of pressure
and temperature, the sintering process is much faster than in the case of free sintering.
The typical duration of the HPHT sintering process is approximately 0.5–2 min, while free
sintering requires longer times, from several dozen minutes to several hours [50]. The short
duration of the process contributes to the reduction in grain growth, which is important
when the sintering of nanopowders is carried out. Materials obtained by the high-pressure
method are characterized by a nearly 100% densification degree, isotropic properties and, in
some cases, because of the different thermodynamic conditions of the production process,
a phase composition completely different from the phase composition of the same material
subjected to free sintering [30,46,50].

2.3.2. Process Parameters

The test material was produced by high-pressure spark plasma sintering. For this
purpose, a modified HPHT/SPS apparatus (Łukasiewicz Research Network—Krakow
Institute of Technology, Krakow, Poland) was used. It included a hydraulic press equipped
with a Bridgman-type anvil and a pulsed DC generator. The containers were placed
between the anvils (Figure 2c). The Bridgman-type anvil has a toroidal shape, which
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produces a quasi-isostatic pressure applied to the material as a result of plastic deformation
of the gasket with sinter. Heating is generated by a 1 kHz pulsed current that flows
directly through the graphite heater (4) in the gasket and the conductive sintered material.
Compared to conventional sintering methods, this method of heating (pulsed current) offers
some significant advantages [66,67], to mention only the possibility of using lower sintering
temperatures and generating new phases as a consequence of the very high heating/cooling
rates and surface activation of powders by the plasma cleaning method [34,68,69].

The following test parameters were applied: pressure P = 7 GPa, temperature T = 1200 ◦C,
heating—5 s, proper sintering—60 s and cooling—5 s. As in the case of the research on
the manufacture of Ti-Al-Si alloys [45], the temperature was set by proper calibration for a
pulse length of 40 ms and a pulse interval of 20 ms. It changed with the changing degree
of pulse duty. The duty cycle is a programmable parameter of the HPHT/SPS device
that describes the duty cycle of a programmed 40 ms 1kHz pulsed DC pulse with 1ms
initial pulses. Temperature calibration is necessary since there is no possibility to measure
temperature directly during the sintering process.

2.4. Research Methods

The test materials, in the form of disks with a diameter of 15 mm and a height of 5 mm,
were machined (grinded) to size and then cleaned and degreased for testing. The initial
visual assessment and the density measurements enabled estimating and determining
the quality of workmanship and the degree of sintering, including the level of porosity.
Density tests were carried out by the hydrostatic method, using the above-mentioned
balance equipped with an appropriate adapter for the determination of the density of
solids. Hardness measurements were carried out under a load of 98.1 N using a NEXUS
4000 hardness tester (INNOVATEST EUROPE BV, Maastricht, The Netherlands). The
microstructure of the produced sinters was examined with an Olympus GX51 (Tokyo, Japan)
optical microscope and a JEOL JSM 6610LV (Tokyo, Japan) scanning electron microscope
with an EDS-Oxford analyzer.

The electrochemical characterization was conducted in a 0.1 M H2SO4 solution using
an AUTOLAB PGSTAST 302n potentiostat with an FRA2 module (AUTOLAB, Utrecht,
The Netherlands). A conventional three-electrode electrochemical cell with an Ag/AgCl
reference electrode and a platinum sheet counter electrode was applied. The specimens
were mounted in epoxy resin with an electrical connection on one side. An 8-mm PTFE
gasket was used to delimit the working area of each sample (area = 0.5026 cm2). Before each
experiment, the upper surface was ground with an 800-grit abrasive paper and cleaned
in an ultrasonic bath with water. To compare the corrosion properties, commercially pure
nickel (Alloy 200, Bibus Metal, Dąbrowa, Polska) and aluminum (Alloy 1050, BimoTech,
Wrocław, Polska) were also tested.

Before polarization tests, each sample was conditioned for 120 s in a 0.1-M H2SO4
solution to get an open circuit potential (OCP). The potentiodynamic polarization scan
was performed from −0.25 V vs. OCP to a potential where the current density reached
10 mA/cm2 at a rate of 1 mV/s. The Tafel slopes were calculated from the active regions
of the corresponding anodic and cathodic curves. The experiments were repeated at least
three times to check the reproducibility of the results.

Electrochemical impedance spectroscopy (EIS) and OCP measurements were con-
ducted concurrently. The EIS spectra were obtained after immersing for 5 min, 1 h, 2 h,
4 h, 8 h, 16 h and 24 h with a frequency range from 100 kHz to 1 Hz and a sinusoidal
voltage of 10 mV amplitude. Between EIS measurements, the cell was switched off and
OCP measurements were continued. All measurements were carried out at 25 ± 2 ◦C in a
naturally aerated solution. The obtained EIS spectra were fitted to the chosen equivalent
circuit model with Z-view software.
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3. Results and Discussion
3.1. Microstructural Analysis

Microstructural examinations carried out by optical microscopy and SEM allowed for
determining the degree of material sintering (consolidation). No pores or discontinuities
were found on the surface of the produced materials. The examinations revealed a homoge-
neous, multiphase structure of the manufactured alloys. However, this was not consistent
with the phase structure under equilibrium conditions in the Ni-Al phase diagram, which
shows that a single Ni3Al phase can be obtained with n(Ni):n(Al) = 3:1 [70], and likewise a
single NiAl phase can be obtained with n(Ni):n(Al) = 1:1 [54,71]. Similar microstructures
were obtained by Cui et al. [72].

Examples of images taken by optical microscopy and SEM are shown in Figure 3a
(NiAl25), Figure 4a (NiAl37), Figure 5a (NiAl50) and in Figures 3b, 4b and 5b, respectively.
The EDS analysis (area, point, line and map) enabled the identification of the examined
areas, which were characterized by large variations in the aluminum content. The probable
cause of these variations is the use of high pressure during sintering. Combined with an
explosive reaction (mentioned by other authors in [52,73–75], where various mechanisms
of the phase formation in an Ni-Al system were discussed), the effect of high pressure may,
depending on the occurrence of some specific parameters, contribute to the formation of a
multiphase microstructure. These processes were also described by A. Biswas et al. [60,70],
who emphasized the fact that the size of nickel particles and the rate of heating are to be
included among the most essential solid-state processing parameters that play a major role
in the thermal explosion of NiAl.

To confirm the impact of high pressure on the microstructure obtained in the HPHT/SPS
process, the results of parallel studies were analyzed. Using the same mixtures, sintering
was performed by the traditional FAST/SPS method (FCT HP5 device), where the explosive
reaction also occurs during sintering (RSPS-reactive SPS). The following test parameters
were applied: a pressure of 48 MPa and a temperature of 1200 ◦C. As a result of this process,
materials with a single-phase microstructure were obtained (Ni3Al for the Ni75Al25 alloy
and NiAl for the Ni50Al50 alloy). The alloy with 37% Al had a two-phase Ni3Al/NiAl
microstructure. Yet another type of microstructure was revealed by the research described
in [76]. Numerous studies and tests show that whenever high sintering parameters (pres-
sure and temperature) are used in the sintering process and, additionally, an explosive
reaction occurs, it is difficult to control the composition and microstructure of the obtained
material, since too many factors are involved in the process [52]. This was pointed out by
Thompson et al. [77], who described the effect of alloy addition on the microstructure evo-
lution in Ni-Al alloys. The same was also observed by the author in his own research [33],
where the introduced ceramic particles were found to have an effect on the composite
microstructure formed as a result of combustion synthesis (CS). Ozdemir [78] obtained an
almost identical microstructure of the two-phase NiAl-Ni3Al alloy with a molar ratio of Ni
and Al equal to 13:7.

A general conclusion from the research findings is that the microstructure of the
NiAl25 alloy is fairly homogeneous (Figure 3a) and consists of a minimum of three phases
(Figure 3b), including, as indicated by the EDS analysis, an aluminum-rich phase, an
intermediate phase and a nickel-rich phase with unreacted nickel.
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Figure 5. Microstructure of NiAl50 alloy: (a) optical microscope, Nomarski contrast; (b) SEI—secondary
electron image—(left) and BEC—backscattered electron composition—(right) SEM micrograph, point-
and-map analysis of the distribution of individual microstructural constituents.
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The microstructure of the NiAl37 alloy is homogeneous (Figure 4a) and similar to
a two-phase microstructure (Figure 4b), where phases rich and poor in aluminum exist
together. As shown by previous [33] and parallel studies (FAST/SPS), these are most likely
the NiAl and Ni3Al phases, respectively.

The microstructure of the NiAl50 alloy is also homogeneous (Figure 5a) and is similar
to a single-phase microstructure (Figure 5b). According to the equilibrium diagram, this is
the NiAl phase, although occasionally areas rich in nickel (with traces of aluminum) are
also present.

3.2. Density and Hardness Measurements

The results of the density measurements carried out on the obtained sinters are pre-
sented in Table 1.

Table 1. The results of the density and HV10 hardness measurements.

Alloy Designation
(According to at.% Al) Density ρ (g/cm3)

Measurement Error
(g/cm3) Hardness HV10 Measurement Error

HV10

NiAl25 7.38

±0.02 (0.3%)

336 ±2.1 (0.6%)

NiAl37 6.67 399 ±5.5 (1.4%)

NiAl50 5.8 486 ±2.8 (0.6%)

The results confirm that the conclusions drawn from the microstructural examinations
of the test materials, indicating a high degree of consolidation obtained in the produced
sinters (the density being close to the theoretical values), are correct. The factors responsible
are the high parameters of the sintering process, i.e., the temperature of 1200 ◦C and
pressure of 7 GPa, as indicated by [29] and the authors’ own research [79]. Comparing the
results of the density measurements with the results given in [80], where the test material
was created by casting, free sintering [81], mechanical alloying (MA), HP [82] and SPS [83],
it has been found that the HPHT/SPS device used for the manufacture of Ni-Al alloys
produces materials with a much higher degree of consolidation. Additionally, despite
the fact that the obtained materials had different microstructures, no differences were
observed in the mechanical properties, as indicated by the results of the HV10 hardness
measurements. The largest scatter of results (and thus the heterogeneity of properties) was
observed in the two-phase NiAl37 alloy, but even in this case, the values were relatively
small (1.4%). Additionally, the results of hardness measurements gave values different from
the values stated by, e.g., Cymerman et al. [76]. For Ni3Al and NiAl, they obtained 305 HV10
and 290 HV10, respectively, and both values were achieved at a sintering temperature
of 1000 ◦C. At higher temperatures, the results were even lower. As indicated by the
examinations of microstructure, the high values of hardness obtained in the research may
be due to the synergy effect caused by the occurrence/precipitation of individual phases in
some specific areas and/or the strengthening effect associated with high sintering pressure.
However, since the highest hardness values were obtained for the last single-phase alloy
(NiAl50), it seems that the latter effect associated with the use of high pressure in the
manufacturing process is of major significance here.

3.3. Analysis of Corrosion Behavior

To determine the corrosion resistance of Ni-Al alloys produced by the HPHT/SPS
method, electrochemical tests were performed in a 0.1-M H2SO4 solution. The change in
the open circuit potential (OCP) during the immersion of samples in the solution for 24 h is
shown in Figure 6. For comparative purposes, the tests were also carried out on pure nickel
and aluminum. The OCP values recorded for a selected group of materials are very similar
and their change over time is insignificant. A small increase in potential is observed at the
beginning of the measurement, and it is caused by an oxide layer formed on the surface.
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The value of the potential stabilizes after 8 h. Comparing the obtained values, it has
been noted that they are very close to the values recorded for pure nickel. The aluminum
content in the alloy reduces, but the OCP value reduces only slightly. The comparison
of NiAl25, NiAl37 and NiAl50 samples shows that the last sample has a lower corrosion
potential, probably due to the higher aluminum content. The high OCP values recorded for
all materials may result from the dissolution of a less noble metal (Al) and the following
enrichment of the surface layer in a more noble metal (Ni) [84]. The surface of the nickel-
rich material is then passivated in a solution of sulfuric acid and a tight oxide layer is
formed. The high stability of the recorded OCP indicates the high durability of the passive
layer. The slightly lower potential of sintered samples compared to pure nickel may result
from both sample composition and microstructure. Despite the density values being
close to the theoretical values, the microstructure of sintered materials is different from
the microstructure of materials obtained by conventional methods. The material is more
fragmented, which can also trigger the appearance of additional effects. An example
may be found in the research where it has been demonstrated that sintered materials are
characterized by a thicker passive layer formed on their surface [85,86].

To determine the mechanism and kinetics of the corrosion process taking place in the
tested materials, potentiodynamic measurements were carried out and polarization curves
were plotted (Figure 7). All samples were passivated in sulfuric acid solutions. However,
with the aluminum content increasing in the samples, the shape of the polarization curves
changed in the range of passive layer formation. The most significant changes were
observed in the range of potentials responsible for forming a passive layer.

In the case of the NiAl25 sample (Figure 7a), the shape of the polarization curve was
the same as for pure nickel (Figure 7d). The passive layer began to form after exceeding
the corrosion potential. The presence of two peaks on the polarization curve indicates a
complex mechanism of the material passivation process resulting from the formation of
several corrosion products. Nickel oxides NiO and Ni3O4 [87,88], as well as hydroxides
Ni(OH)2 [89,90], can appear on the surface of nickel during corrosion in sulfuric acid
solution. The content of 25 at.% Al does not significantly alter the mechanism of passive
layer formation, but its importance is visible in the area of transpassivation. The current
value recorded in the range of potentials where nickel transpassivation takes place is lower
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than in the case of pure nickel. The presence of aluminum in the alloy inhibits further
oxidation of nickel in the transpassive region.
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Aluminum content increasing in the samples visibly affects the corrosion mecha-
nism. In the samples containing 37 at.% and 50 at.% Al, oscillations occur in the range
of active dissolution and this effect may be due to the oxidation of aluminum (sample
NiAl37—Figure 7b, sample NiAl50—Figure 7c). For comparison, pure aluminum is oxi-
dized in sulfuric acid solution, and the characteristic active state/passive state transition
in the form of a peak (Figure 7e) does not appear on the polarization curve, as is the
case with pure nickel (Figure 7d). During the polarization of a pure aluminum electrode,
the thickness of the oxide layer increases with time [91]. Therefore, in the range of more
positive potentials, where passivation of the remaining samples is observed, the value
of the recorded current is higher for the electrode composed of pure aluminum. When
the aluminum content in the sample is 25 at.%, passivation occurs very quickly, and the
oxidation process is similar to that of pure nickel. Aluminum and nickel have different elec-
trochemical potentials. Consequently, corrosion microcells are formed between individual
phases. Due to its lower electrochemical potential, aluminum is the first to dissolve under
the effect of the applied voltage. The process advances until the surface layer is enriched
in nickel and then covered with a tight passive layer [84]. Increasing aluminum content
prolongs this process, and its course is signaled by the appearance of oscillations. Despite
the aluminum content increasing up to 50 at.%, each of the alloys was transformed into a
passive state. Only when the aluminum content of the material was 50 at.% Al, the process
of the passive layer formation lasted longer and the passivation current was higher than in
other alloys. Additionally, when the aluminum content in the alloy was 37 at.% and 50 at.%,
a characteristic effect of the disappearance of the transpassive region occurred. Based on the
polarization curves, the corrosion potential and corrosion current values were determined
(Figure 8). The corrosion current systematically increased with the aluminum content, and
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the corrosion potential decreased with the aluminum content. The results indicate that,
among the tested alloys, the NiAl25 (25 at.% Al) sample was characterized by the highest
corrosion resistance in the sulfuric acid environment. The value of the corrosion current
also indicates that the corrosion resistance of the NiAl25 sample was slightly superior to
the resistance of pure nickel.
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The microstructure of materials obtained by powder metallurgy differs from the
microstructure of materials obtained by conventional metallurgical methods, which also
impacts the corrosion behavior of the tested alloys [85,92–94]. The selected synthesis
method of Ni-Al alloys can induce the formation of pores in the material, which may
act as a site of crevice corrosion [94]. Therefore, polarization curves were plotted 24 h
after immersing the samples in a sulfuric acid solution. In none of the cases, significant
differences in the shape of the polarization curves obtained immediately after immersion
and plotted after the lapse of 24 h were observed. The shape of the polarization curves
suggests a shifting of the process of active oxidation of the tested material towards more
positive potentials. Since plotting the polarization curves starting from the potential of
−0.25 V vs. OCP, part of the passive layer has already been reduced. When the corrosion
potential was exceeded, the passive layer formation started once again, but the first peak on
the polarization curves obtained for the alloy samples in the range of active oxidation was
missing. This confirms the assumption that the passive layer was not completely reduced.

The corrosion potential is slightly shifted towards more positive values, which is due
to the presence of a passive layer formed after 24 h. The values of the corrosion current are
much lower than the values determined from the polarization curves obtained immediately
after immersion of the samples in the solution. It indicates that the passive layer already
existed on the surface of the alloy and very effectively inhibited the alloy dissolution
process. Some attention is given due to the fact that the values of the corrosion current are
very close to the values obtained for pure nickel, though they are lower than the values
obtained for pure aluminum. The results of the corrosion rate (CR) calculations based on
corrosion current are presented in Table 2.
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Table 2. Corrosion current, EW, density and corrosion rate obtained from polarization curves.

Sample NiAl25 NiAl37 NiAl50 Al Ni
0 h 24 h 0 h 24 h 0 h 24 h 0 h 24 h 0 h 24 h

icorr
[uA/cm2] 25.97 9.10 35.05 7.52 52.40 13.15 15.92 18.11 30.64 6.14

ρ [g/cm3] 7.380 6.670 5.800 2.700 8.908
EW [g] 22.56 19.74 17.14 8.99 29.35

CR [mm
per year] 0.260 0.091 0.339 0.073 0.506 0.127 0.173 0.197 0.330 0.066

The calculations were based on Equation (1) according to the ASTM G59-97 Standard.

CR = 3.27× 10−3 × icorr × EW
ρ

[mm per year] (1)

where icorr is the corrosion current in uA/cm2, ρ is the density in g/cm3 and EW is the
equivalent weight of the examined sample in grams.

The calculated corrosion rates confirm previous conclusions based on polarization
curves and corrosion currents. The results were obtained despite significant differences in
sample densities (e.g., Ni—8.91 g/cm3 and Al 2.70 g/cm3). For sintered samples, after 24 h
of exposure to the electrolyte, the corrosion rate decreased from 2.5 to 4.5 times compared
to the rate after immersion. For the nickel sample after passivation, the corrosion rate
decreased approximately five times. In the case of the aluminum sample, taking into
account the accuracy of electrochemical methods, the change in the corrosion rate was
insignificant. Based on the PN-H-04608:1978 Polish Standard describing the corrosion
resistance scale, the corrosion durability of the obtained alloys can be estimated at one to
ten years.

The corrosion resistance of the tested alloys was also monitored by EIS. To confirm
the high resistance and electrochemical stability of the passive layer formed on the tested
sintered materials, measurements were taken at the following time intervals: 5 min, 1 h,
2 h, 4 h, 8 h, 16 h and 24 h. The results of the impedance tests are shown in the form of
Nyquist plots (Figure 9). The results are arranged in characteristic flattened semicircles,
suggesting charge transfer control, which means uniform corrosion on a homogeneous
surface. The discussed case can be described with an equivalent circuit shown in Figure 10,
where Rs is the resistance of the electrolyte (including the resistance of wires, etc.), Rp is the
polarization resistance and ZCPE is related to the capacitance of the double layer.
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Figure 10. Equivalent circuit for the described corrosion system.

The simple capacitance was replaced with a constant-phase element to allow for
the phenomena occurring at the interface and resulting either from the heterogeneity of
structure or from the diversity of local chemical composition [95]. The impedance of the
constant-phase element is given by Equation (2):

ZCPE =
1

Y0(jω)n (2)

where ω is the circular frequency, n is the exponent showing the degree of surface het-
erogeneity (the closer n is to 1, the more homogeneous the surface is), Y0 can be directly
identified with capacitance when the value of n measured in corrosion tests is between 0.9
and 1 [96], and this parameter has been discussed in the present study.

The Bode representation of the impedance data, gathered in Figure 11, shows a single
time constant for all the samples (one peak in phase shift curves). Using a single-layer
model makes it possible to describe the tested system [97]. Moreover, this means that the
electrolyte has reached the barrier layer, no diffusion processes occur and the porosity of
the sintered samples is close to zero. The phase shift value tends to increase throughout
the whole corrosion test. After 24 h, the phase shift is almost angular (−80◦). This shows
that the constant phase element behaves similarly to a pure capacitor (n = 1, Rp→∞, and
the phase shift equals −90◦). It indicates that the process of passivation is underway. The
modulus is much less sensitive and accurate for estimating model parameters. However,
a simple increase in the value of |Z| at low frequencies can be equated with an increase
in resistance to corrosion processes. The values |Z| for all tested samples showed an
increasing trend during the experiment.
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Table 3 provides the fitted values of the equivalent circuit parameters for the tested
samples. The diameters of the semicircles increasing over time indicate an increase in the
polarization resistance Rp and thus in the corrosion resistance of the tested alloys, which
may indicate that the passive layer is systematically growing on the alloy surface [98].
This behavior justifies the increase in the value of parameter n, especially in the case
of reference samples composed of pure metals. It explains the constant OCP potential
(Figure 6) and confirms the potentiodynamic results and the calculated values of corrosion
current (Figure 8). Ni-Al alloys undergo passivation in the presence of sulfuric acid, and
the resulting passive layer is stable and effectively inhibits the corrosion process. Despite
the presence of two chemical elements with a fairly large difference in electrochemical
potentials, it can be noticed that the passivation mechanism occurs even in the case of
samples containing 50 at.% Al. There was no drastic decrease in the corrosion resistance of
the sintered material after 24 h of exposure to the electrolyte, and no diffusion effect [99].
Undoubtedly, the reason for the high resistance of Ni-Al alloys synthesized by powder
metallurgy is the selection of process parameters that ensure a high degree of material
consolidation. Owing to the properly selected parameters of the synthesis process, there
is no risk of crevice corrosion in the tested materials, which is very common in materials
synthesized by powder metallurgy methods [94].

Table 3. Parameters obtained in fitting the EIS diagrams shown in Figure 9.

Sample Time [min] Rs [Ω·cm2] Rp [Ω·cm2]2 C [µF·cm −2] n Chi-sqr × 10−3

Ni Al25

5 11.04 482 46.3 0.9108 3.03
60 11.31 1074 36.9 0.9215 1.58

120 11.32 1097 36.1 0.9240 1.68
240 11.20 1238 35.1 0.9261 1.96
480 10.96 1586 30.3 0.9363 1.23
960 10.56 1362 37.1 0.9302 1.02

1440 10.36 1330 44.6 0.9255 0.98
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Table 3. Cont.

Sample Time [min] Rs [Ω·cm2] Rp [Ω·cm2]2 C [µF·cm −2] n Chi-sqr × 10−3

Ni Al37

5 12.46 737 40.2 0.9351 0.93
60 12.65 1560 29.0 0.9437 0.62

120 12.67 1764 25.3 0.9491 1.74
240 12.53 2619 21.3 0.9545 1.34
480 12.31 2762 19.7 0.9590 1.13
960 12.08 3016 26.4 0.9480 1.03

1440 11.85 2231 30.1 0.9463 1.03

Ni Al50

5 11.3 752 35.7 0.9518 1.79
60 11.44 1296 28.1 0.9470 0.99

120 11.52 1514 25.7 0.9513 1.82
240 11.49 1791 24.8 0.9522 2.16
480 11.36 2022 23.6 0.9594 3.61
960 11.17 1713 27.3 0.9645 3.78

1440 10.99 1743 33.7 0.9622 4.03

Ni

5 16.74 712 63.9 0.8976 0.45
60 16.88 1339 41.7 0.9150 0.18

120 16.89 1189 39.0 0.9150 0.26
240 16.8 1273 37.7 0.9142 0.28
480 16.73 2965 27.0 0.9452 0.49
960 16.69 2065 32.4 0.9427 0.53

1440 16.36 2777 44.4 0.9363 0.90

Al

5 17.66 1420 52.6 0.8784 0.74
60 18.06 617 60.0 0.9152 0.31

120 18.46 700 57.8 0.9199 0.27
240 18.44 714 57.1 0.9208 0.28
480 18.9 933 44.8 0.9277 0.25
960 18.46 1756 16.0 0.9428 0.24

1440 18.16 1926 14.3 0.9457 0.20

4. Conclusions

Using a modified hybrid HPHT/SPS sintering device, it is possible to manufacture
nickel-aluminum alloys from the starting powders with a variable Ni/Al ratio (75/25,
63/37 or 50/50 at.%). The obtained materials are characterized by a diverse, multiphase
microstructure, which is due to the effects of high pressure (7 GPa) and pulsed heating
(1200 ◦C) applied in the sintering process. The high pressure and pulsed heating, addi-
tionally supported by the exothermic reaction that occurs during sintering, allow for the
generation of a material whose microstructure differs from the microstructure determined
by the Ni-Al equilibrium system. The test parameters also contribute to manufacturing
homogeneous and pore-free materials, which impacts their high overall density (close to
the theoretical density), high HV10 hardness and good corrosion resistance. All sintered
samples reached the passive state after 24 h of exposure. After 24 h of exposure, the sintered
sample of NiAl37 showed the lowest corrosion rate. The obtained value was 0.073 mm
per year and was close to the values obtained for pure nickel, i.e., 0.066 mm per year. The
densities were 7.38, 6.67 and 5.8 g/cm3, respectively, and the Vickers hardness was 334,
399 and 486 HV10, respectively.

Research on the HPHT/SPS production of nickel-aluminum alloys will continue. In
particular, the effect of sintering parameters (mainly high pressure) on the formation of
specific phases and their quantitative ratio in the alloy will be determined.
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