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Abstract: The aim of this study was to determine the effect of copper soil contamination on the
trace element content of sunflower aerial parts and in roots. Another aim was to assess whether the
introduction of selected neutralizing substances (molecular sieve, halloysite, sepiolite and expanded
clay) into the soil could reduce the impact of copper on the chemical composition of sunflower plants.
Copper soil contamination with 150 mg Cu2+ kg−1 of soil and 10 g of each adsorbent per kg of soil
were used. Soil contamination with copper caused a significant increase in the content of this element
in the aerial parts (by 37%) and roots (by 144%) of sunflower. Enriching the soil with the mineral
substances reduced the amount of copper in the aerial parts of sunflower. Halloysite had the greatest
effect (35%), while expanded clay had the smallest effect (10%). An opposite relationship was found
in the roots of this plant. In copper-contaminated objects, a decrease in the content of cadmium and
iron and an increase in the concentrations of nickel, lead and cobalt in the aerial parts and roots of
sunflower were observed. The applied materials reduced the content of the remaining trace elements
more strongly in the aerial organs than in the roots of sunflower. Molecular sieve had the greatest
reducing effect on the content of trace elements in sunflower aerial organs, followed by sepiolite,
while expanded clay had the least impact. The molecular sieve also reduced the content of iron,
nickel, cadmium, chromium, zinc and, especially, manganese, whereas sepiolite reduced the content
of zinc, iron, cobalt, manganese and chromium in sunflower aerial parts. Molecular sieve contributed
to a slight increase in the content of cobalt, while sepiolite had the same effect on the content of nickel,
lead and cadmium in the aerial parts of sunflower. All materials decreased the content of chromium
in sunflower roots, molecular sieve—zinc, halloysite—manganese, and sepiolite—manganese and
nickel. The materials used in the experiment, especially the molecular sieve and to a lesser extent
sepiolite, can be used effectively to reduce the content of copper and some other trace elements,
particularly in the aerial parts of sunflower.

Keywords: copper contamination; materials; Helianthus annuus L.; trace elements

1. Introduction

As a consequence of man’s agricultural and non-agricultural (industrial) activity,
the properties and fertility of soil can worsen [1,2]. Particularly hazardous forms of soil
degradation include those caused by the entry of foreign chemical substances to soil,
both organic (e.g., crude oil chemicals, pesticides) [3] and inorganic ones (e.g., wastewater,
municipal solid waste, deposited dust from the metallurgical industry) [2,4]. Trace elements
accumulate in the environment, migrate within soil profiles, and are contained in various
chemical compounds [2]. The development of industries and increasing mobility of human
populations magnify the accumulation of trace elements in soil. There, they have persistent
influence on both the soil dwelling organisms and the entire ecosystem because they do not
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undergo further transformations [5,6]. Soils used for food production that are contaminated
with trace elements are therefore pose a direct threat to food safety (lower crop yields,
poorer food/feed quality) [7,8] and to entire trophic chains [9]. Thus, it is necessary to
implement sustainable measures aiming at the restoration of proper soil characteristics so
that soils are able to perform their key economic and ecological functions [6].

Copper is an essential micronutrient in plants, where it plays an important role in
such biological and physiological processes as photosynthesis, biosynthesis of proteins,
transport of carbohydrates and mitochondrial respiration [10,11]. Copper is a co-factor
of many enzymes (e.g., peroxidase dismutase, phenolic oxidase, plastocyanin) [12,13]; it
also participates in conversions of nitrogen compounds and in plant tolerance mechanisms;
in addition, it enhances the activity of nitrate reductase [12,14]. Copper also affects the
permeability of cell membranes, metabolism of nucleic acids and the process of genera-
tive reproduction of plants (production of pollen and seeds) [15]. The copper content in
plants typically ranges between 5 to 30 mg kg−1 [16]. Excess of this element has a nega-
tive effect on seed germination [17,18] and such metabolic process as respiration, enzyme
activity [12,19] and photosynthesis (elevated photoinhibition, impaired structure of chloro-
plasts and composition of the membrane of thylakoids) [20]. Plants in which the physio-
logical norms have been exceeded are observed to experience the following symptoms:
distorted permeability of cell membranes [19], retarded growth, decreased mitotic activity
of root cells, decreased size of conductive tissues [13,21] and chlorosis of leaves [22]. The
toxic effect of copper, even towards tolerant plants, is observed when the soil content
of copper exceeds 60–125 mg kg−1 [11]. Copper excess is also harmful to animals and
people. It has been demonstrated that an excessively high concentration of copper can be
cytotoxic, causing a number of health problems, e.g., stomachache, liver insufficiency [23],
neurological disorders [24] and chronic anaemia [25].

Soil contamination with copper is a widespread problem in many countries [26], which
dates back to the early days of industrial revolution [27]. The content of copper in soil
continues to increase due to the application of copper-based fungicides and bactericides
in horticulture and agriculture [16] as well as other pesticides [27]. Another source of
metal-bearing contaminants is the disposal and recycling of waste, sewage sludge, copper-
enriched animal manure in soil [27,28], as well as soil fertilisation and transport [26,29]. It
has been demonstrated that in some areas occupied by special branches of agriculture, e.g.,
vineyards, the soil content of copper can exceed 500 mg kg−1 [18]. Excessive concentrations
of copper are also detected in soils locally contaminated by mining or smelting (waste such
as mine slag, slag from electric furnaces, solid waste from flue-gas desulfurization systems
or floatation waste) and copper-bearing alloy processing [28–30].

There is ongoing search for remediation technologies applicable to contaminated soils,
which would limit the negative impact of trace elements on a given biocenosis rather
than remove such contaminants from the soil completely [29,31,32]. Attempts are made
to achieve such an outcome through the immobilization of trace elements in soil by modi-
fying the soil’s properties, especially reaction, content of organic substance and sorption
properties [33,34], but also by growing certain plants or through the precipitation of trace
elements as insoluble salts [35]. The amendment of soil for the purpose of its remediation
with mineral materials, rich in aluminosilicates and clay minerals, or zeolites as contam-
inant adsorbents decreases amounts of phytoavailable forms of trace elements, leading
to the restoration of homeostasis in the soil [36,37]. Neutralizing substances applied as
soil amendments (including bentonite, molecular sieve, halloysite, sepiolite, biochar) bind
harmful trace elements into insoluble compounds or organic-mineral complexes [38,39],
which can remain immobilised in the soil for long periods under favourable conditions [40].
Moreover, these substances contribute to the enhanced microbiological and biochemical
activity of soil, supplement the soil’s organic matter resources, and in consequence im-
prove the soil’s condition and fertility [41–43]. Nanotechnology seems to have a special
role in combination with bioremediation, which is currently the most promising and eco-
nomical method of removing contaminants from the soil [32]. In situ stabilisation limits
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the plants uptake of trace elements from the soil [44–46] by reducing their solubility and
bioavailability [39,47]. In addition, this technique is inexpensive, does not destroy the soil’s
structure and biological activity [47], and prevents secondary contamination [48].

Effective, inexpensive and easily available soil amendments of natural origin are be-
ing sought, with view of using them broadly in in situ stabilisation of soils exposed to
pressure of trace elements. Such materials include halloysite, sepiolite, molecular sieve
and expanded clay. Sepiolite (Mg4Si6O15(OH)2 · 6H2O) is a natural hydrated magnesium
silicate clay mineral with the structure similar to that of type 2:1 tri-octahedral silicates [49].
Some corner atoms on the surface of sepiolite sheets are bound to hydroxyl groups
(Si-OH). These so-called silanol groups tend to be active sites accessible to ions or molecules,
thereby playing the role of adsorption centres [50]. Molecular sieves are nano-porous ma-
terials, selective towards substances with specific molecules, which adsorb molecules
with smaller dimensions [6]. The most common group of molecular sieves are zeolites,
which are characterised by the crystal-like, uniform pore structure of [51]. They are also
characterized by large specific surface, durability and the ability to regenerate [52]. Hal-
loysite is a dioctahedral clay mineral, a 1:1 layer aluminosilicate [53]. It is characterized
by high porosity (60–70%) and large specific area (56.2–58.0 m2 g−1), high ion-exchange
capacity and ease of chemical and mechanical processing [54]. As a natural mineral with
a nanotubular structure, halloysite has many technological applications, as a mineral ad-
sorbent (it adsorbs toxic substances and trace elements from water and wastewater) [55]
and as support for catalysts [56]. The cation-exchange capacity of halloysite varies from
2 to 60 cmol(+) kg−1 [57]. Expanded clay is produced from natural materials processed in
rotary kilns heated up to 1100–1200 ◦C. Expanded clay particles are nearly round, with
high total porosity (up to 80%) [58,59]. Moreover, it is non-flammable, chemically stable,
non-absorbent (up to 20%) and resistant to mould, fungi or rodents [58,60]. Expanded
clay is broadly used in environmental engineering, civil engineering, geotechnology and
horticulture [61]. The application of nanomaterials improves soil properties and plays an
important role in stimulating plant growth and shaping their proper chemical composi-
tion [51]. In view of the significant areas of soil contaminated with trace elements, it is
therefore necessary to find materials with a high efficiency in sorbing or binding them in
immobilised forms that would not be taken up in excessive quantities by plants.

Therefore, we hypothesised that (1) copper contamination of the soil would increase
the content of this element and some other metals in the aerial parts and roots of sunflower,
(2) the application of materials such as molecular sieve, halloysite, sepiolite and expanded
clay to the soil would reduce the potential negative effects of copper contamination on the
chemical composition of sunflower plants.

2. Material and Methods
2.1. Methodology of the Plant Growing Trials

The experiment was conducted on soil collected from the humic topsoil. It was a
soil with a texture composition of sandy loam (60.63% of 0.0–2.0 mm fractions, 35.99% of
0.02–0.05 mm fractions and 3.38% of <0.002 mm fractions), classified as a Eutric
Cambisol [62]. It was a controlled plant growing experiment, set up in polyethylene
pots of 3.0 dm3 in capacity, conducted in the controlled environment of a greenhouse in
Olsztyn (NE Poland). The basic properties of the soil used in the experiment were as follows:
pHKCl—soil reaction in 1 mol KCl dm−3—6.00, hydrolytic acidity (HAC)—13.50 mmol (+)
kg−1 DM, sum of exchangeable base cations (EBC)—145.00 mmol (+) kg−1 DM, cation ex-
change capacity (CEC)—158.50 mmol (+) kg−1 DM, base saturation (BS)—91.49%, content of:
total nitrogen (Ntot)—1.07 g kg−1 dry matter (DM), organic carbon (Corg)—14.69 g kg−1 DM,
phosphorus (P)—166.72 mg kg−1 DM, potassium (K)—171.31 mg kg−1 DM, magnesium
(Mg)—443.21 mg kg−1 DM, copper (Cu)—4.20 mg kg−1 DM.

It was a typical, two-factorial experiment. The first factor was the copper soil contami-
nation (without Cu—0 and with Cu—150 mg Cu2+ kg−1 of soil) used as CuSO4 · 5H2O,
and the second factor was the application of different materials (adsorbents) used to reduce
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the negative effect of copper on plants. Molecular sieve, halloysite, sepiolite, and expanded
clay were used, all at a dose of 10 g kg−1 DM of soil.

The product called Silosiv A3, which contains molecular sieve, was tested. It is a
crystalline aluminium silicate with mircopores of the size 0.3 nm (Grace, Enriching Lives,
Everywhere, USA). Halloysite (Al2Si2O5(OH)4) is a mineral of high ion exchange capacity
owing to its large specific surface and porosity (diameter of pores between 10–20 nm),
most often used as a mineral adsorbent (Halosorb, Intermark, Poland) [63]. Sepiolite
(Mg4[Si6O15(OH)2]6H2O), or specifically the product named Sepiolite 60/100 (Sepiolsa
Minersa Group, Spain) is hydrated magnesium silicate, with considerable adsorption
properties, fibrous texture and the pore diameter of 8–1.6 mm [64,65]. Expanded clay is
produced by baking loamy clay at a high temperature (1150–1200 ◦C). Same as molecular
sieve, expanded clay is characterized by high porosity (GardenGURU, Poland) [66].

Additionally, in order to secure the nutritional requirements of the plants, each
pot was supplied with fertilisers containing basic nutrients: nitrogen—110 mg N as
CO(NH2)2, phosphorus—45 mg P as KH2PO4, potassium—110 mg K as KH2PO4 and
KCl, and magnesium—20 mg as MgSO4 · 7H2O. Prior to mixing with copper, adsorbents
and mineral fertilisers, soil was passed through a 5 mm mesh net sieve. Next (3 June),
it was transferred to polyethylene pots and seeds of the plant were sown. Sunflower
(Helianthus annuus L.) was chosen to be the test phytoremediation plant, as it is highly toler-
ant to soil contamination with heavy metals [67] and simultaneously plays an important
role in the global food economy. In terms of the size of area cultivated for oilseed crops, the
sunflower occupies the fourth place [68,69], and its biggest producers are Ukraine, Russia
and Argentina [68]. This is due to the relatively low translocation of trace elements from
the roots to the aerial parts of sunflower, despite the significant content of their soluble
forms in the soil rizosphere. The translocation coefficient for sunflower may even be <1 [67].
Sunflower biomass can also be used as a renewable energy resource [70]. The pots were
watered with distilled water, maintaining the soil moisture content at 60% of maximum
water capacity throughout the entire plant growing period. The pot experiment was con-
ducted in triplicate. During the harvest of sunflower plants at BBCH 35 stage (Biologische
Bundesanstalt, Bundessortenamt and Chemical Scale)—43 days after sowing (14 July),
plant samples were taken for laboratory analysis.

2.2. Physicochemical and Chemical Analyses of Soil and Plants

Before the experiment, the basic parameters of the soil used in the experiment were
determined: the grain-size distribution using a Malvern Mastersizer 2000 Laser Diffraction
(Malvern, Worcestershire, UK) [71], soil’s pHKCl using a HI 2221 pH-meter (Hanna Instru-
ments, Washington, UK) [72], hydrolytic acidity (HAC) and exchangeable base cations
(EBC) using the Kappen method [73], total nitrogen content (Ntot) using Buchi B-324 a
distillation apparatus (Buchi, Flawil, Switzerland) [74], organic carbon (Corg) on a Genesis
6 spectrophotometer (Thermo Electron Corporation, Switzerland, USA) [75], available
phosphorus on a SQ118 spectrophotometer [76], potassium on a Jenway 6705 UV/VIS spec-
trophotometer (Jenway LTD, Staffordshire, UK) [76], magnesium on an atomic absorption
spectrophotometer GBC 932AA (GBC Scientific Equipment, Braeside, Australia) [77], and
copper by flame and electrothermal absorption spectrometry after extraction in aqua regia
according to ISO 11047:1998 [78]. HAC and EBC values were used to calculate the soil’s
cation exchange capacity (CEC) and base saturation (BS) [73].

Samples of aerial parts and roots of sunflower plants were cut, dried at a con-
stant temperature of 60 ◦C and ground to a flour-like texture. Then, the plant material
was digested in concentrated 65% nitric acid (HNO3 analytically pure, of the density of
1.40 g cm−3) according to US-EPA3051 [79] in a microwave oven MARS 6—CEM Corpo-
ration, Matthews, NC, USA. Concentrations of trace elements (copper, cadmium, lead,
chromium, nickel, zinc, manganese, iron and cobalt) in digested plant samples were
determined by atomic absorption spectrometry (ASA) using a SpectrAA 240FS spectropho-
tometer (Varian Inc., Mulgrave, VIC, Australia) [80]. While performing these analyses,
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reference materials by Fluka were used (Cu 38996, Cd 51994, Pb 16595, Cr 02733, Ni 42242,
Zn 188227, Mn 63534, Fe 16596, Co 119785.0100), and the quality of the analyses was
monitored using the certified reference material NCS ZC 73030 (Chinese National Analysis
Center for Iron and Steel, Beijing, China).

2.3. Statistical Analysis

The research results were statistically processed in Statistica 13.3 [81], using a
two-factorial analysis of variance and the Tukey’s test (HSD) to distinguish homogeneous
groups at p = 0.01, and principal component analysis (PCA) and % of observed variation in
order to determine the relationships between the content of trace elements in the aerial parts
and roots of sunflower (dependent variables) versus the studied factors (soil contamination
with copper and adsorbents—independent variables).

3. Results

Plant growth and development and the content of trace elements in sunflower de-
pended on both the contamination of soil with copper and the application of adsorbents
(Tables 1–3, Figure 1). The materials used in copper-contaminated sites (mainly sepiolite
and then halloysite) had a beneficial effect on plant growth and development (Figure 1). In
non-copper-contaminated objects, their effect was relatively small.

Table 1. Content of copper, cadmium and lead in sunflower—Helianthus annuus L. (mg kg−1 DM).

Object
Aerial Parts Roots

Without Cu With Cu % Change with
Cu/without Cu Without Cu With Cu % Change with

Cu/without Cu

Copper content (mg kg−1 DM)

Control 1.628 ± 0.017 bc 2.234 ± 0.124 e 37.2 4.388 ± 0.016 c 10.720 ± 0.044 d 144.3
Molecular sieve 1.486 ± 0.028 ab 1.936 ± 0.116 d 30.3 2.484 ± 0.024 a 15.570 ± 0.078 e 526.8

Halloysite 1.282 ± 0.010 a 1.449 ± 0.028 ab 13.0 3.611 ± 0.045 b 27.737 ± 0.026 g 668.1
Sepiolite 1.430 ± 0.003 ab 1.792 ± 0.025 cd 25.3 3.533 ± 0.070 b 19.576 ± 0.062 f 454.1

Expanded clay 1.501 ± 0.043 ab 2.012 ± 0.076 de 34.0 2.651 ± 0.074 a 29.419 ± 0.041 h 1009.7

Average 1.465 A 1.885 B 28.6 3.333 A 20.604 B 518.1

Cadmium content (mg kg−1 DM)

Control 0.013 ± 0.002 cd 0.011 ± 0.001 bc −15.4 0.014 ± 0.001 b 0.006 ± 0.001 a −57.1
Molecular sieve 0.009 ± 0.001 ab 0.009 ± 0.001 ab 0.0 0.007 ± 0.001 a 0.007 ± 0.001 a 0.0

Halloysite 0.006 ± 0.001 a 0.009 ± 0.001 ab 50.0 0.005 ± 0.001 a 0.032 ± 0.001 d 540.0
Sepiolite 0.016 ± 0.001 d 0.022 ± 0.001 e 37.5 0.006 ± 0.001 a 0.018 ± 0.001 c 200.0

Expanded clay 0.014 ± 0.001 cd 0.017 ± 0.001 d 21.4 0.012 ± 0.001 b 0.017 ± 0.001 c 41.7

Average 0.012 A 0.014 B 17.2 0.009 A 0.016 B 81.8

Lead content (mg kg−1 DM)

Control 0.174 ± 0.005 a 0.214 ± 0.030 a 23.0 0.128 ± 0.006 b 0.346 ± 0.001 c 170.3
Molecular sieve 0.197 ± 0.002 a 0.211 ± 0.018 a 7.1 0.099 ± 0.011 a 0.351 ± 0.002 c 254.5

Halloysite 0.388 ± 0.011 d 0.477 ± 0.007 e 22.9 0.408 ± 0.002 d 0.749 ± 0.003 g 83.6
Sepiolite 0.337 ± 0.009 c 0.316 ± 0.004 c −6.2 0.439 ± 0.008 e 0.765 ± 0.010 g 74.3

Expanded clay 0.261 ± 0.001 b 0.264 ± 0.005 b 1.1 0.337 ± 0.008 c 0.697 ± 0.010 f 106.8

Average 0.271 A 0.296 B 9.2 0.282 A 0.582 B 106.1

Values are average ± standard deviation. Homogeneous groups indicated by different letters (A,B for Cu contami-
nation, a–h for interaction between Cu contamination and substance type) were calculated separately for each
trace element. There are significant differences at p ≤ 0.01 (Anova, Tukey’s HSD test).
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Table 2. Content of chromium, nickel and zinc in sunflower—Helianthus annuus L. (mg kg−1 DM).

Object
Aerial Parts Roots

Without Cu With Cu % Change with
Cu/without Cu Without Cu With Cu % Change with

Cu/without Cu

Chromium content (mg kg−1 DM)

Control 2.271 ± 0.090 d 1.844 ± 0.023 c −18.8 1.825 ± 0.069 a 4.670 ± 0.081 d 155.9
Molecular sieve 3.491 ± 0.052 g 1.435 ± 0.012 b −58.9 3.913 ± 0.070 c 3.992 ± 0.014 cd 2.0

Halloysite 2.799 ± 0.081 e 1.049 ± 0.001 a −62.5 6.187 ± 0.064 e 2.996 ± 0.074 b −51.6
Sepiolite 3.118 ± 0.069 f 0.877 ± 0.038 a −71.9 2.503 ± 0.056 ab 3.052 ± 0.028 b 21.9

Expanded clay 1.715 ± 0.040 c 1.027 ± 0.056 a −40.1 6.292 ± 0.023 e 3.137 ± 0.090 b −50.1

Average 2.679 B 1.246 A −53.5 4.144 B 3.569 A −13.9

Nickel content (mg kg−1 DM)

Control 2.877 ± 0.041 b 3.130 ± 0.024 c 8.8 2.600 ± 0.063 ab 3.035 ± 0.081 b 16.7
Molecular sieve 2.485 ± 0.042 a 2.878 ± 0.045 b 15.8 2.377 ± 0.028 a 2.998 ± 0.080 b 26.1

Halloysite 2.343 ± 0.025 a 3.290 ± 0.077 cd 40.4 3.729 ± 0.054 c 2.821 ± 0.070 ab −24.3
Sepiolite 3.415 ± 0.020 d 4.102 ± 0.078 f 20.1 2.610 ± 0.077 ab 2.752 ± 0.049 ab 5.4

Expanded clay 3.380 ± 0.041 d 3.727 ± 0.076 e 10.3 3.618 ± 0.088 c 4.463 ± 0.082 d 23.4

Average 2.900 A 3.425 B 18.1 2.987 A 3.214 B 7.6

Zinc content (mg kg−1 DM)

Control 28.32 ± 0.26 d 32.25 ± 0.14 e 13.9 110.77 ± 1.96 g 48.09 ± 0.31 c −56.6
Molecular sieve 23.18 ± 0.05 a 25.11 ± 0.36 bc 8.3 38.31 ± 1.67 b 46.18 ± 1.04 c 20.5

Halloysite 28.22 ± 0.08 d 24.80 ± 0.10 b −12.1 71.40 ± 0.05 f 61.51 ± 0.10 e −13.9
Sepiolite 25.64 ± 0.30 bc 28.53 ± 0.22 d 11.3 29.18 ± 0.18 a 56.50 ± 0.05 d 93.6

Expanded clay 26.38 ± 0.06 c 32.25 ± 0.28 e 22.3 33.41 ± 0.47 a 70.30 ± 0.74 f 110.4

Average 26.35 A 28.59 B 8.5 56.61 A 56.52 A −0.2

Values are average ± standard deviation. Homogeneous groups indicated by different letters (A,B for Cu contami-
nation, a–g for interaction between Cu contamination and substance type) were calculated separately for each
trace element. There are significant differences at p ≤ 0.01 (Anova, Tukey’s HSD test).

The copper soil contamination (150 mg Cu2+ kg−1 of soil) caused a significant in-
crease in the content of this element in aerial parts (by 37%) and in roots (by 144%) of
sunflower grown in the control series, without the adsorbents application, relative to the
uncontaminated pots (Table 1). The amendment of soil with the tested adsorbents had
a positive effect by reducing the copper content in aerial parts of sunflower. Halloysite
had the strongest effect while expanded clay produced the weakest influence, reducing
the content of copper in sunflower’s aerial parts by 35% and 10%, respectively, in compar-
ison to the control. Molecular sieve and sepiolite had a smaller but also reducing effect
(13% and 20%, respectively) on the content of copper in aerial parts of the sunflower. Con-
trary effects were observed in the roots of this plant. Molecular sieve, sepiolite, halloysite
and expanded clay caused an increase by 45%, 83%, 159% and 174%, respectively, in the
copper content in sunflower’s roots relative to the pots where these substances were not
added to soil. The increase in copper content in sunflower roots (as opposed to aerial parts)
may be due to the positive effects of molecular sieve, sepiolite, halloysite and expanded
clay on the physiological barrier, limiting excessive translocation of some elements from
plant roots to aerial parts.
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Table 3. Content of manganese, iron and cobalt in sunflower—Helianthus annuus L. (mg kg−1 DM).

Object
Aerial Parts Roots

Without Cu With Cu % Change with
Cu/without Cu Without Cu With Cu % Change with

Cu/without Cu

Manganese content (mg kg−1 DM)

Control 29.49 ± 0.14 f 32.11 ± 0.43 g 8.9 55.19 ± 0.61 d 22.61 ± 0.07 a −59.0
Molecular sieve 15.74 ± 0.06 a 18.06 ± 0.09 b 14.7 33.79 ± 0.19 c 22.95 ± 0.73 a −32.1

Halloysite 20.76 ± 0.09 d 23.86 ± 0.10 e 14.9 134.68 ± 0.77 g 99.66 ± 0.67 f −26.0
Sepiolite 16.37 ± 0.26 a 19.29 ± 0.10 c 17.8 25.88 ± 0.07 b 21.85 ± 0.18 a −15.6

Expanded clay 21.22 ± 0.04 d 32.85 ± 0.07 g 54.8 26.52 ± 0.08 b 67.41 ± 0.63 e 154.2

Average 20.72 A 25.23 B 21.8 55.21 B 46.90 A −15.1

Iron content (mg kg−1 DM)

Control 24.94 ± 0.01 f 20.34 ± 0.37 c −18.4 1911.71 ± 4.43 g 458.62 ± 7.31 a −76.0
Molecular sieve 18.84 ± 0.09 b 19.31 ± 0.20 b 2.5 1444.87 ± 7.60 e 810.06 ± 7.41 cd −43.9

Halloysite 23.50 ± 0.16 e 17.41 ± 0.02 a −25.9 3195.57 ± 6.25 h 1437.98 ± 2.69 e −55.0
Sepiolite 20.20 ± 0.04 c 17.48 ± 0.07 a −13.5 672.19 ± 4.03 b 752.27 ± 6.58 c 11.9

Expanded clay 20.06 ± 0.05 c 21.76 ± 0.01 d 8.5 827.13 ± 8.16 d 1704.58 ± 10.39 f 106.1

Average 21.51 B 19.26 A −10.5 1610.29 B 1032.70 A −35.9

Cobalt content (mg kg−1 DM)

Control 0.037 ± 0.001 a 0.089 ± 0.004 e 140.5 0.111 ± 0.009 a 0.186 ± 0.002 c 67.6
Molecular sieve 0.040 ± 0.001 ab 0.093 ± 0.002 e 132.5 0.104 ± 0.001 a 0.215 ± 0.0052 d 106.7

Halloysite 0.093 ± 0.002 e 0.113 ± 0.002 f 21.5 0.155 ± 0.003 b 0.264 ± 0.012 e 70.3
Sepiolite 0.046 ± 0.004 bc 0.073 ± 0.002 d 58.7 0.154 ± 0.002 b 0.256 ± 0.007 e 66.2

Expanded clay 0.050 ± 0.001 c 0.090 ± 0.003 e 80.0 0.168 ± 0.005 bc 0.216 ± 0.003 d 28.6

Average 0.053 A 0.092 B 72.2 0.138 A 0.227 B 64.3

Values are average ± standard deviation. Homogeneous groups indicated by different letters (A,B for Cu contami-
nation, a–h for interaction between Cu contamination and substance type) were calculated separately for each
trace element. There are significant differences at p ≤ 0.01 (Anova, Tukey’s HSD test).

Aerial parts of sunflower plants grown in pots with copper-contaminated soil not
enriched with any of the tested substances were found to have increased concentrations
of nickel and manganese by 9%, zinc by 14%, lead by 23% and cobalt by 141%, while
the content of cadmium, iron and chromium was lower by 15%, 18% and 19%, respec-
tively, in comparison with uncontaminated objects (Tables 1–3). The materials added to
soil had a much larger reducing effect on the content of trace elements in aerial parts
than in roots of sunflower plants. The strongest reducing effect on the content of trace
elements in sunflower’s aerial organs was produced by molecular sieve. In the series with
copper-contaminated soil, molecular sieve reduced the content of iron by 5%, nickel by 8%,
cadmium by 18%, chromium and zinc by 22% and manganese by as much as 44% in sun-
flower’s aerial parts relative to the object where no adsorbent was applied. The application
of this material led to a slight increase, by 4%, in the content of cobalt in sunflower’s aerial
parts. Halloysite, in turn, decreased the content of iron by 14%, cadmium by 18%, zinc by
23%, manganese by 26% and chromium by 43% while increasing the content of nickel by 5%,
cobalt by 27% and lead by 123% in aerial parts of this plant grown in copper-contaminated
soil. Sepiolite contributed to the reduction in the content of zinc by 12%, iron by 14%, cobalt
by 18%, manganese by 40% and chromium by 52%, and to the elevation in the content
of nickel by 31%, lead by 48% and cadmium by 100%. Expanded clay had the weakest
positive and reducing effect on the content of trace elements in sunflower’s aerial organs.
Expanded clay only decreased the content of chromium, by 44%, while causing an increase
in the content of iron by 7%, nickel by 19%, lead by 23% and cadmium by 55% in aerial
parts of sunflower plants harvested from the pots with copper-contaminated soil relative to
those obtained from soil not enriched with this material.
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In the series where no absorbents were applied, the copper soil contamination caused
a decline in the content of cadmium and zinc by 57%, manganese by 59%, and iron by 76%,
while leading to a higher content of nickel (by 17%), cobalt (by 68%), chromium (by as
much as 156%) and lead (by 170%) in sunflower’s roots relative to the uncontaminated
object (Tables 1–3). All the tested materials reduced the content of chromium in sunflower’s
roots by 15% (molecular sieve) up to 33–36% (the other substances), while molecular sieve
also reduced the root content of zinc by 4%, halloysite—the root content of manganese by
3%, and sepiolite—the root content of manganese and nickel by 3 and 9%, respectively, all
relative to the objects without the application of these materials. In the remaining cases, the
applied substances contributed to an increase or else had no effect on the trace elements
content in sunflower’s roots.

The PCA performed showed that the contribution of all analysed factors accounted
for 64.29% of the total correlation of the set of data (Figure 2). Vectors of the content of
chromium, nickel, zinc, manganese and iron in sunflower aerial parts were similar in length,
meaning that they produced comparable effects, whereas the vectors corresponding to the
content of cobalt, cadmium and lead were shorter, indicating that their effect was weaker.
The content of zinc in sunflower’s aerial parts was positively correlated with the content
of manganese and copper, the content of nickel was positively correlated with cadmium
and cobalt, that of copper with manganese, and cadmium with cobalt. Weaker positive
correlations were determined between the content of chromium and iron, as well as nickel
and lead in sunflower aerial parts. Negative correlations were detected between the content
of chromium and nickel, and iron and lead, while weaker negative correlations occurred
between cadmium and cobalt, and lead and manganese or zinc in a sunflower’s aerial parts.
Sepiolite expanded clay and molecular sieve had a stronger effect on the content of trace
elements in sunflower’s aerial parts than halloysite (Figure 3).
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The aggregated share of the analysed factors in the total correlation of the data sets
was 67.54% (Figure 4). Quite large variation was demonstrated in the length of vectors
representing the content of particular trace elements in sunflower roots. The zinc, nickel and
especially chromium vectors were much shorter than those of the other elements, indicating
that these three elements were less important. The content of copper and lead in sunflower’s
roots was positively correlated with cobalt and cadmium, the root content of cobalt was
positively correlated with cadmium, that of manganese with iron and, less strongly, with
zinc and nickel, and the root content of iron was correlated positively with zinc and nickel.
Weak negative correlations were also determined between the content of chromium and
iron versus concentrations of cobalt, copper, lead and cadmium in sunflower’s roots. The
scattering of points in Figure 5 suggests that the content of trace elements in the roots of
sunflower grown in copper-contaminated soil was most strongly influenced by sepiolite
and molecular sieve.
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Figure 6 illustrates the percentage of observed variation, showing the cumulative
impact of the analysed factors (soil contamination with copper and the application of
different materials into soil) on the content of trace elements in sunflower’s aerial organs
and roots. Soil contamination with copper had a stronger effect only on the content of
copper (50.5%), chromium (66.2%) and cobalt (55,7%) in sunflower’s aerial parts, and on
the content of copper (74.5%) and cobalt (72.1%) in sunflower’s roots than the applied
adsorbents did (39.8%, 15.8% and 37.0% in aerial parts and 11.7% and 21.7% in roots,
respectively). The adsorbents applied to soil had a stronger impact than copper on the
content of lead (92.7%), cadmium (84.4%), manganese (77.3%), nickel (66.9%), zinc (55.4%)
and iron (35.4%) in aerial parts, and on the concentration of manganese (85.0%), nickel
(69.5%), lead (54.4%), iron (47.1%), zinc (40.0%), chromium (28.0%) and cadmium (24.2%)
in roots of sunflower plants. The soil contamination with copper had a considerable effect
on the content of nickel (26.1%) and iron (23.6%) in aerial parts, and on the concentration
of lead (44.1%) and cadmium (22.2%) in roots. It is worth emphasizing that the applied
materials in the interaction with the soil contamination with copper had the strongest effect
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on the iron content in the aerial parts and on the concentrations of chromium, zinc and
cadmium in roots of sunflower.
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Figure 5. The influence of the materials on the trace elements content in the sunflo-
wer—Helianthus annuus L. roots presented by a PCA analysis. Key: points indicate the samples
with trace elements (uncontaminated: control—without materials, molecular sieve, halloysite, ex-
panded clay; contaminated with copper: control + Cu—without materials, molecular sieve + Cu,
halloysite + Cu, expanded clay + Cu).
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4. Discussion

In this study, the contamination of soil with copper in a dose of 150 mg kg−1 was
conducive to the accumulation of most trace elements in both aerial parts and roots of
sunflower. The biggest changes were recorded for copper, whose content increased 1.4-fold
in aerial biomass and 2.4-fold in roots of the test plant. A similar tendency was observed in
their experiment by Wyszkowski and Brodowska [82]. These authors demonstrated that
the soil contamination with copper in an amount of 200 mg kg−1 led to a 27-fold increase
in the content of this element in aerial parts of maize as well as the greater accumulation of
cobalt (by 75%), manganese (by 49%) and iron (by 30%) relative to the control. Copper may
have had an antagonistic effect of on the translocation of iron and zinc from the stem to
leaves of plants, e.g., rapeseed [83]. In the above experiment, the lowest applied dose of
copper (50 mg Cu kg−1) favoured the accumulation of manganese, iron and zinc increasing
their content by 13%, 5% and 8%, respectively, compared to the control. This relationship
was not observed in this experiment. These differences were most probably due to the
different levels of copper contamination (here 150 mg kg−1 of soil) and the different plant
species tested.

Copper contamination of soil influences soil physical properties, thereby modifying
the translocation of trace elements in the soil–plant system [26]. As reported by Żołnowski
and Wyszkowski [40], the copper contamination of soil resulted in a decreased soil pH
and increased hydrolytic acidity (HAC). It also led to a decrease in total exchangeable
bases (TEB), which resulted in the decreased cation exchange capacity (CEC) and base
saturation (BS). Similar observations were reported by Guo et al. [84]. The decreased pH
of soil exposed to copper pressure is most probably due to the replacement of H+ by Cu2+

ions, and desorption of H+ ions to the soil solution [26]. A decrease in the soil reaction
to slightly acidic or acidic increased the solubility of chemical bonds of trace elements,
thereby raising their mobility and content of phytoavailable forms [85]. In these conditions,
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trace elements migrate to the soil solution and become potentially available to plants. This
may explain the higher content of copper, nickel, zinc, manganese and cobalt in the aerial
parts and that of copper, lead, chromium and cobalt in the roots of sunflower found in
this experiment.

Copper, same as other trace elements, does not undergo degradation [86], and due to
the poor ability of soil for self-purification, copper can accumulate in the topsoil for many
years, posing a local threat to groundwater, plants and animals [23]. As the actual uptake
of trace elements by crops depends on the phytoavailability rather than concentration of
these elements [49], chemical stabilisation of contaminants is an economically viable and
environmentally reasonable solution. As reported by Wyszkowski and Brodowska [82],
mineral amendments such as bentonite and zeolite change the soil pH and immobilize
trace elements more effectively than organic soil amendments.

Nanomaterials application to soil plays an important role in limiting the contaminants
uptake by plants [51]. In our experiment, all of the soil amendments tested, exception
of expanded clay, were effective in reducing the negative effects of soil contamination
with copper. The adsorbents introduced to soil decreased the bioavailability of copper,
chromium, zinc, manganese and iron, limiting their translocation to aerial parts of sun-
flower. Sepiolite and molecular sieve proved to be most effective in the restoration of soil’s
homeostasis. The application of zeolite to soil has a beneficial effect on soils with low pH
by raising their reaction [87,88], hence making it possible to immobilize contaminants effec-
tively. As the soil pH raises, the solubility of chemical bonds of trace elements decreases
while their adsorption on soil colloids increases, which leads to a decline in amounts of
mobile and bioavailable forms of these elements [88]. High effectiveness of molecular
sieves in the immobilization of cadmium and lead in contaminated soil has been confirmed
by Huang-Ping and Shu-Hao [89]. Farooqi et al. [90] also demonstrated the usefulness
of zeolite for the in situ stabilisation of agricultural soil fertilised for many years with
wastewater. When this mineral material was applied to soil in an amount of 2% (w/w), the
researchers noted reduced accumulation of copper (by 43%), cadmium (by 97%), nickel (by
70%) and lead (by 100%) in fruits of Solanum melongena. Under the same conditions, the
content of copper, cadmium, nickel and lead in soil decreased by 55%, 47%, 55% and 58%,
respectively, in comparison with the control series (without zeolite). Similar conclusions
were reported by Chen et al. [91], who observed a decreased content of cadmium and lead
in wheat following the application of zeolite to soil.

In our experiment, sepiolite statistically significantly reduced the content of copper,
chromium, zinc, manganese, iron and cobalt in the aerial biomass and chromium in the
root of sunflower. This effect can be attributed to the large specific surface area of se-
piolite (230–320 m2 g−1) [92], cation exchange capacity and soil pH regulation [49,93].
This is confirmed by other authors [94–96]. Liang et al. [95] proved that combined ap-
plication of sepiolite and phosphorus fertiliser resulted in a decrease in the content of
cadmium and lead in Lactuca sativa L. by 52% and 55%, respectively, relative to the con-
trol. The usefulness of sepiolite for in situ stabilisation of soil polluted with contaminants
from the mining industry was also demonstrated by Lin et al. [94]. These researchers
used a 4% addition of this mineral product, which enabled the reduction in the water-
soluble fractions of cadmium and zinc by 57% and 41%, and their extractable fractions by
43% and 25%, respectively. The mobility of elements in the soil analysed also decreased
by 69% (for cadmium) and by 52% (for zinc). The reduced translocation of cadmium
and lead from soil to roots and shoots of spinach following the soil application of sepi-
olite was also shown by Sun et al. [97]. When this material was added to contaminated
soil in a dose of 5%, the content of cadmium and lead in spinach roots decreased by
51% and 46%, respectively, while their concentration in spinach shoots was lower by
46% and 66%, respectively, in comparison with the control (without any addition of the
neutralizing substance). These authors also determined that increasing doses of sepiolite
resulted in the soil pH rising from 7.72 to 8.03.



Materials 2023, 16, 1827 14 of 18

An important property of the clay materials applied in our experiment is their abil-
ity to interact with inorganic substances. As a result of such interactions, the soil-borne,
bioavailable forms of trace elements can transform into less readily available forms. This
occurs through the adsorption on the surface of mineral grains, cation exchange or inter-
calation [98]. Once a mineral supplement is introduced to the contaminated soil, certain
isomorphic substitutions occur in the tetrahedral network layers of the mineral, which leads
to the formation of negatively charged adsorption sites. Such sites are then occupied by
exchangeable cations, which compensate negative charges [93,99] and become immobilized.
Soil amendments in the form of minerals, by inducing the immobilization of trace elements,
can be therefore useful for the remediation of copper contaminated soils.

From the discussion of the research results obtained, it is difficult to find research on
this topic with sunflower and many other plant species. The promising results obtained
with these sorbents indicate that there is a need to continue research on the topic addressed
in this paper. Possible future research should focus on plant species other than sunflower.
These should mainly be energy crops whose biomass can be used for energy production.
It would be advisable to carry out research under environmental conditions on a larger
scale and with more trace elements. It would also be interesting to perform studies on the
possibility of neutralising heavy metals in various interactions.

5. Conclusions

Soil contamination with copper caused a significant increase in the content of this
element in the aerial parts (by 37%) and roots (by 144%) of sunflower. The enrichment
of soil with the mineral substances reduced the amount of copper in the aerial parts of
sunflower. The strongest 35% effect was achieved by halloysite, while the weakest 10%
was obtained with expanded clay. Reverse relationships were found in the roots of this
crop. In copper-contaminated objects in the series without adsorbents, a decrease in the
content of cadmium and iron and an increase in the concentrations of nickel, lead and
cobalt in aerial parts and roots of sunflower were observed. Concerning the content of
the other analysed elements, either a reverse direction of change or no significant change
was observed in both aerial parts and roots of sunflower. The applied materials reduced
the content of the remaining trace elements more strongly in the aerial organs than in the
roots of sunflowers. The molecular sieve had the highest reducing effect on the content of
trace elements in sunflower aerial parts, followed by sepiolite, while expanded clay had
the least effect. The molecular sieve also reduced the content of iron, nickel, cadmium,
chromium, zinc and, especially, manganese, whereas sepiolite reduced the content of zinc,
iron, cobalt, manganese and chromium in the aerial parts of the sunflower. The molecular
sieve contributed to a slight increase in the content of cobalt, while sepiolite had the same
effect on the content of nickel, lead and cadmium in aerial parts of sunflower. All materials
decreased the content of chromium in the roots of the sunflower, molecular sieve—zinc,
halloysite—manganese, and sepiolite—manganese and nickel. The tested materials either
contributed to an increase or had no effect on the content of the other trace elements in
sunflower roots.
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