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Abstract: Image-based methods have been applied to support structural monitoring, product and
material testing, and quality control. Lately, deep learning for compute vision is the trend, requiring
large and labelled datasets for training and validation, which is often difficult to obtain. The use of
synthetic datasets is often applying for data augmentation in different fields. An architecture based
on computer vision was proposed to measure strain during prestressing in CFRP laminates. The
contact-free architecture was fed by synthetic image datasets and benchmarked for machine learning
and deep learning algorithms. The use of these data for monitoring real applications will contribute
towards spreading the new monitoring approach, increasing the quality control of the material and
application procedure, as well as structural safety. In this paper, the best architecture was validated
during experimental tests, to evaluate the performance in real applications from pre-trained synthetic
data. The results demonstrate that the architecture implemented enables estimating intermediate
strain values, i.e., within the range of training dataset values, but it does not allow for estimating
strain values outside those range. The architecture allowed for estimating the strain in real images
with an error ∼0.5%, higher than that obtained with synthetic images. Finally, it was not possible to
estimate the strain in real cases from the training performed with the synthetic dataset.

Keywords: machine learning; deep learning; computer vision; CFRP laminates; strengthening RC;
strain monitoring

1. Introduction

Image-based methods for civil engineering applications have been developed in
the last 20 years. Several methods were developed in the scope of Structural Health
Monitoring (SHM), product and material testing, and quality control. Applications based
on photogrammetry and image processing are used to support inspection and monitoring
of infrastructures, allowing for computing displacement and deformation fields [1–4],
curvatures and rotations [5], and mapping and characterizing anomalies [6,7]. Lately,
machine learning and deep learning for compute vision is the trend followed, taking
advantage of all the technology available [8–10]. Its application to damage analysis and
reliability assessment is promising and has several advantages [11–13].

The deep learning applications require large and labelled datasets for training and
validation. Furthermore, it is often not possible to generalize and apply outside the limits
of validation of the training dataset. The data augmentation using synthetic datasets is a
possible solution to add knowledge to the networks developed. One of the most applied
and successful artificial neural networks (ANNs) for structured regression problems is the
ResNet, a deep neural network with hundreds of layers and skip connections between
layers [14]. This Convolutional Neural Network (CNN) is broadly applied and trained
with synthetic data in several areas of knowledge. However, there is no consensus about
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the size of the dataset as well as the reliability of using synthetic images in training as data
augmentation. Ward et al. [15] use ResNet34 for ships classification, by training the neural
network with synthetic and real images, and compare the performance with classical object
recognition methods. The dataset of real images is composed of 200 images while the
synthetic dataset is composed of 200k images. To understand the effects of data dispersion
on different object recognition approaches, these authors tested five ratios for data splitting,
with 20% of the training dataset used for validation. Many developments have taken place
in the field of medicine. Lei et al. [16] use ResNet34 to diagnose congenital heart disease
in a fetus through the analysis of computed tomography images. The original dataset
is composed of 1729 images, in which 1371 images of normal hearts and 358 of hearts
with anomalies. To balance the dataset, the last group was duplicated twice, and the final
dataset is composed of 2445 images: 1371 images of normal hearts and 1074 of hearts with
anomalies. The test dataset is composed of 200 images of normal hearts and 200 of hearts
with anomalies. An accuracy of 80.7% was reached at the test stage.

Al-Moosawi and Khudeyer [17], among other methodologies, implement ResNet34
for the diagnosis of diabetic retinopathy. The dataset consists of 4075 images, and the distri-
bution of images is not uniform across the different stages of the disease. The percentages
of the training, validation, and test dataset are, respectively, 67.5%, 22.5% and 10%, and
an accuracy of 94.9% was calculated. Yadav et al. [18] use ResNet34 and ResNet50 for the
detection of patients infected with COVID-19 pneumonia from chest X-rays. The dataset
consists of 2481 images, with 80% of the images being used for training and 20% for testing.
The results reveal an accuracy of 94.4% for ResNet34, and 96.4% for ResNet50. Other fields,
such as Biology, are also using these type of approaches. Pavel et al. [19] use ResNet34
to identify diseases in plants from images of their leaves. The dataset is composed of
7600 images (200 images for each category). In this case, 6080 images (80%) were used for
training and 1520 images (20%) for validation. The model was trained in 15 epochs and
reach 97.0% of accuracy. Gao et al. [20] use ResNet34 combined with transfer learning
to detect defects in wood. Before data augmentation, the dataset consisted of 448 spruce
defects, split in a ratio of 6:2:2 for the training, validation and test datasets, respectively.
After increasing the data, the dataset stays with 3136 images, 1885 images for training,
636 images for validation and 615 images for testing. The model uses 300 epochs and hit
98.7% accuracy at the test stage.

The use of Carbon Fibre Reinforced Polymers (CFRP) has been successfully applied
in several areas including repair and rehabilitation of reinforced concrete (RC) struc-
tures [21,22]. The technique allows a significant improvement in the flexural and shear
strength of concrete members. One of the most used methods consists of externally bonded
reinforcement (EBR) of concrete members with CFRP laminates [23]. For large span ele-
ments, the application of prestressed CFRP laminates is an advantageous solution for both
ultimate and service limit states [24]. In these cases, the level of prestress applied can be
evaluated directly by measuring the strain in the laminates. This can be achieved using
strain gauges [25–30] or fiber optic sensors [31,32]. Both cases require instrumentation of the
structures, becoming time-consuming and laborious, and thus just applied in special cases.
A contact-free architecture for a vision-based system was proposed and benchmarked by
the authors [33]. The architecture was analysed with a dataset of synthetic images and
testing machine learning and deep learning algorithms. A data augmentation based on the
application of filters to mimic real scenarios was also performed. ResNet34 provided the
most accurate results, reaching a root mean square error (RMSE) of lower than 0.1% for
strain prediction.

In this paper, the developed architecture is validated through the application in an
experimental test. The main goal is to evaluate the application of the architecture in real
images of CFRP laminates during prestress application. Specifically, the aim is to assess
whether the architecture developed allows for estimating:

I. Intermediate strain values within the range of training dataset values;
II. Strain values greater than the range of training dataset values;
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III. Strain in real images with an accuracy identical to that obtained with synthetic images;
IV. Strain in real images from training synthetic images.

The analysis and responses to these specific objectives will allow for defining the limits
of validity of the proposed architecture for real applications. This represents an important
contribution to the dissemination of the new monitoring approach, which will increase
the number of conveniently monitored reinforcement applications, promoting quality of
execution and greater structural safety in the construction sector.

2. Methodology

The architecture based on computer vision for strain monitoring of CFRP laminates
was tested for machine learning and deep learning. The results indicate deep learning with
regression as the better solution for the problem [33]. The solution was implemented with
ResNet34 as a backbone network and tested with the synthetic images dataset (Figure 1).
ResNet is a deep neural network that considers over one hundred layers without vanishing
gradient problems for training [34,35] and uses the skip connection technique. The last
layer’s activation function is replaced by a linear activation function, taking into account
the mean square error loss and, for ResNet34, 34 layers. These characteristics lead to a more
flexible Convolutional Neural Network (CNN) structure. The main block of ResNet34,
presented in the center of Figure 1, is composed by:

• Convolutional layers, to extract features from the images;
• Batch normalizations (BNs), to accelerate training and provide regularization;
• Rectified linear unit (ReLU) activation function, to control the exponential growth in

computation; and
• Shortcut, for skip layers in the input of the next step.

The deep learning algorithms are integrated using open source platforms, namely
TensorFlow and Scikit-Learn [33].

Figure 1. Deep learning architecture implemented.

A pattern of three strips, each with 10 mm × 40 mm spaced 50 mm apart, was consid-
ered on the surface of the laminates for monitoring proposes. The architecture is fed by
images with different levels of strain, for training, validation and testing (Figure 2a). In the
case of synthetic images, aiming to mimic real case scenarios, a set of filters were applied,
and the dataset was built following the recommendation of [33]: (i) Gaussian noise, to sim-
ulate the effect of thermal noise on the sensor [36]; (ii) salt noise, to reproduce overexposed
bright pixels [37]; (iii) pepper noise, to underexposed dark pixels [37]; (iv) salt and pepper
noise, combining the last two [37]; (v) speckle noise, to mimic the interference phenomenon
due to surfaces roughness[38]; and (vi) Poisson noise, representing the electromagnetic
waves at infrared waves [39]. The pattern defined was laser printed in CFRP laminates for
measuring real cases (Figure 2b).
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(a) (b)

Figure 2. Pattern designed on CFRP laminates: (a) synthetic images and dimensions of the pattern;
(b) image of real laminates.

3. Experimental Validation
3.1. Set-Up and Material

This section presents the experimental test conducted to validate the architecture
implemented. Figure 3 shows an overview of the entire set-up mounted to apply and
monitor the application of prestress in the CFRP laminates that comprises the following:

1. CFRP laminate;
2. Anchor plates system;
3. Hydraulic jacks system;
4. Pressure manometer;
5. RealSense D435 Camera;
6. Control computer;
7. Millimeter ruler.

Figure 3. Experimental set-up overview.

The CFRP laminates are produced with unidirectional fiber reinforcement in the direc-
tion of the laminate and embedded in a polymer resin. The laminate tested is available in
150 m rolls, and is 50 mm wide and 1.4 mm thick. In terms of the mechanical characteristics,
the laminate has a modulus of elasticity of approximately 170 kN/mm2, and the prestress
usually applied leads to strains of between 6% and 8%. The laminates are anchored in a
steel reinforced table, and a hydraulic jack system is used to apply a unidirectional defor-
mation along the laminate axis, by a manual applied pressure (Figure 4). A millimeter ruler
placed in the center of the laminate also enables measuring the displacements during the
application of the prestress. For image acquisition, a RealSense D435 Camera, mounted
in a specific support box to capture images during prestress application at a predefined
distance and with the same light conditions, is used. All of the data acquisition, from the
camera to the manometer, is synchronized with the control computer hour (Figure 4c).
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(a) (b) (c)

Figure 4. Experimental test set-up: (a) hydraulic jack for prestress application; (b) manometer;
(c) control computer for strain monitoring.

3.2. Data Acquisition and Preparation

The strain on the laminate can be estimated from the pressure in the manometer by:

ε =
Am × P
Al × El

(1)

where Am, in mm2, is the area of the hydraulic jack piston (3882 mm2 for this jack); P, in
MPa, the pressure observed on the manometer; Al, in mm2, the area of the laminate (for
the present case study, 70 mm2); and El, in GPa, the modulus of elasticity of the laminate
(170 GPa for this laminate).

The camera has a sensor size of 1751 px × 1493 px and a focal length of 1.93 mm.
This leads to acquiring images with 330 mm of laminate, identical to the synthetic images
produced. Furthermore, the camera was programmed for an acquisition frequency of 2 Hz,
in order to create the dataset for offline testing.

The synthetic images were generated to have the same resolution as the real images
and be in accordance with Section 2. Figure 5a shows an acquired real image, with a field
of view (FOV) that leads to an image length of 24.5 cm or 1920 px. Then, the real images
are cropped to select only the regions of interest (Figure 5b), and the synthetic images are
computed to match this image (Figure 5c). This can be confirmed by overlapping both
images at stage 0, i.e, with no strain applied, as in Figure 5d. To optimize the computational
cost, the final images used in the datasets are cropped, taking into account that the central
stripe matches the image centre (Figure 5e,f).

(a)

(b) (c)

(d)
(e) (f)

Figure 5. Dataset preparation: (a) real image acquired; (b) real image cropped; (c) synthetic image;
(d) real and synthetic image overlap; (e) final real image; (f) final synthetic image.

3.3. Training, Validation and Testing

The datasets were built to answer the specific goals set in Section 1. Thus, three training
datasets and five testing datasets were defined, as in Figure 6. The level of strain imposed
is within the limits of the material for real case tests (6%), and above this limit in the case of
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simulation with synthetic images (10%). In the following sections, all the details of each of
those datasets are presented and described.

Figure 6. Schema of the analysed datasets.

3.3.1. Training and Validation Datasets

The three training datasets referred to in Figure 6 are described below.

• Training 1—the first training dataset is solely composed of synthetic images, with
a strain range from 0% to 10% with an incremental step of 1%. The dataset has
209 images:

– 11 synthetic images without noise (1 image for each strain value);
– 33 synthetic images with Gaussian noise (3 images for each strain value);
– 33 synthetic images with Pepper noise (3 images for each strain value);
– 33 synthetic images with Poisson noise (3 images for each strain value);
– 33 synthetic images with Salt noise (3 images for each strain value);
– 33 synthetic images with Salt and Pepper noise (3 images for each strain value);
– 33 synthetic images with Speckle noise (3 images for each strain value);

• Training 2—the second training dataset is also composed of synthetic images, with
a strain range from 0% to 10%. To make the dataset more realistic and decrease the
error for strain prediction, the step between strain was reduced from 1% to 0.1%. The
dataset consists of 1919 images:

– 101 synthetic images without noise (1 image for each strain value);
– 303 synthetic images with Gaussian noise (3 images for each strain value);
– 303 synthetic images with Pepper noise (3 images for each strain value);
– 303 synthetic images with Poisson noise (3 images for each strain value);
– 303 synthetic images with Salt noise (3 images for each strain value);
– 303 synthetic images with Salt and Pepper noise (3 images for each strain value);
– 303 synthetic images with Speckle noise (3 images for each strain value);

• Training 3—the dataset is only composed by real images acquired for strain values
between 0% and 6%. The images were acquired with a frequency of 2 Hz, and a
dataset with 3394 images was produced. It is also important to mention that the real
laminate behaved according to what was expected for the levels of strain imposed.
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Furthermore, it should be mentioned that 20% of the images from each training
dataset were used to build the validation dataset. This division of the datasets was
performed randomly.

3.3.2. Test Datasets

The five test datasets (Figure 6) were built as below.

• Test A—synthetic images deformed for a strain range between 0% and 10% with a
step of 1%. More specifically, 132 synthetic images:

– 22 synthetic images with Gaussian noise (2 images for each strain value);
– 22 synthetic images with Pepper noise (2 images for each strain value);
– 22 synthetic images with Poisson noise (2 images for each strain value);
– 22 synthetic images with Salt noise (2 images for each strain value);
– 22 synthetic images with Salt and Pepper noise (2 images for each strain value);
– 22 synthetic images with Speckle noise (2 images for each strain value);

• Test B—synthetic image without noise deformed for a strain between 0% and 10%
with a step of 0.1%, with 101 images, one for each strain value;

• Test C—synthetic image without noise deformed for a strain between 0% and 40%
with a step of 1%, in a total of 41 images;

• Test D—synthetic image with noise deformed for a strain between 0% and 10% with a
step of 0.1%, in a total of 1212 images, two images for each strain value and for each
type of noise;

• Test E—real images with strain values between 0% and 6%, in a total of 555 images.

4. Analysis of Results

For training validation, the loss function, in terms of RMSE and MAE (Mean Absolute
Error), evolution was evaluated in relation to the number of epochs performed for both the
training dataset and validation dataset (Figure 7). The RMSE values for the last 50 epochs
and for the last epoch are also computed and presented in Table 1 for all three of the training
datasets. The average value of the loss in the last 50 epochs was considered as a stopping
criterion of the training. For these case studies, this value was 0.1%. All training was
computed on Google Colab.

For Training 1, 500 epochs were performed, which took approximately 1 h 15. Figure 7a,b
show the loss for the training and validation dataset, and the variation of MAE metrics with
the number of epochs, respectively. The average value for the last 50 epochs was 0.0760%, with
0.0526% for the last epoch (Table 1). In the case of Training 2, 150 epochs were considered, and
the training time was approximately 3 h 30 min. Figure 7c,d show the loss and the MAE over
the epochs. The average of the last 50 epochs is 0.1092%, with 0.0872% being the last epoch
value. Training 3 requires 250 epochs, and the training time was approximately 9 h. Figure 7e,f
show the loss and the MAE over the epochs, with an average of 0.0877% for the last 50 epochs,
and 0.0600% in the last epoch. The results show that all three of the training datasets reached
metrics that allowed for concluding that the training was carried out successfully.

Table 1. Metrics for training validation.

Training RMSE (%) RMSE (%)
Dataset Average of Last 50 Epochs Last Epoch

Training 1 0.0760 0.0526
Training 2 0.1092 0.0872
Training 3 0.0877 0.0600
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Training datasets validation: (a) loss for Training 1; (b) MAE for Training 1; (c) loss for
Training 2; (d) MAE for Training 2; (e) loss for Training 3; (f) MAE for Training 3.

Table 2 presents the metrics of the analysis performed as defined in Figure 6, namely
the RMSE and the MAE values for each case.

Table 2. Metrics for test datasets (%).

Training Test A Test B Test C Test D Test E
Dataset RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Training 1 0.2941 0.2901 0.3273 0.2935 21.6852 16.6211 0.3496 0.3190 6.5900 6.3671
Training 2 – – – – 23.8490 18.2456 0.0554 0.0492 2.0126 1.7882
Training 3 – – – – – – 9.1181 8.6211 0.5702 0.3597

To analyse if the model developed is able to estimate strains with values between the
values trained, Training 1 (synthetic images between 0% and 10% with an increment of
1%) was tested with Test D (synthetic images between 0% and 10% with an increment of
0.1%). The metrics of Table 2 and Figure 8 clearly demonstrate that the model can estimate
intermediate strain values within the range of training dataset values, with an RMSE and
MAE of 0.3496% and 0.3190%, respectively.
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Figure 8. Imposed strain vs. estimated strain: Training 1 and Test D.

The analysis of the model ability to estimate strains with higher values than the dataset
trained was performed by testing Training 1 and Training 2 (synthetic images between 0%
and 10%) with Test C (synthetic images between 0% and 40%). The metrics presented in
Table 2 and Figure 9 clearly demonstrate that the model can not estimate strains higher
for which the model was trained. All the values estimated from 10% are completely
meaningless, as clearly perceptible in the graphics plotted in Figure 9.

(a) (b)

Figure 9. Imposed strain vs. estimated strain: (a) Training 1 and Test C; (b) Training 2 and Test C.

The model reaches higher accuracy values for synthetic images. For example, Training
1 and Training 2 have an accuracy lower than 0.35% for Test A, Test B, and Test D (Table 2).
However, the best values are always obtained with identical training and test images,
namely, Training 1 and Test A, with 0.2941% and 0.2901% for RMSE and MAE, respectively,
and for Training 2 and Test D, with 0.0554% and 0.0492% for RMSE and MAE, respectively.
For real scenario analysis, Training 3 was tested in Test E, and the values obtained were
0.5702% for RMSE and 0.3597% for MAE, i.e., error values circa 8 to 10 times higher than
the results with synthetic images with discretization of 0.1%. On the other hand, the order
of magnitude is the same when compared with the analysis with synthetic images with
discretization of 1%.

Finally, the capacity of the model trained with synthetic images to estimate the values
of the strain in real cases was tested. For these purposes, the Training 1 and Training 2
were tested with Test E. The results reveal errors between 2% and 6.5%, demonstrating that
it is not reliable to use a training dataset only composed of synthetic images to estimate
strains in real images. However, increasing the discretization level of the trained range
values substantially improved the results. This tendency may reveal that the step reduction
in the deformation of the training synthetic images may be important for using these
training datasets for measuring real cases. However, this requires a significant increase in
image resolution.

5. Conclusions

The methodology presented in this paper aims for an experimental validation of an
image-based architecture for monitoring prestress application in CFRP laminate. The archi-
tecture was previously evaluated using synthetic data to benchmark different computer
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vision algorithms. The best solution, based on the ResNet34 deep learning algorithm with
regression, was experimentally tested in a laboratory environment, and the following main
conclusions about the model were drawn:

• It allows for measuring intermediate strain levels within the training range. In that
sense, the model is able to measure values divisible by 10 between the training values;

• It is not capable of extrapolating for strain levels outside the training range. Thus, it is
essential to check the maximum strain to be imposed in real cases, and training the
models for higher strain levels;

• For real case scenarios, the error can reach values 10 times higher than using synthetic
datasets, i.e, for synthetic datasets, the RMSE value was 0.06% while, for real images,
the RMSE value was 0.6%;

• The pre-training with synthetic datasets performed is not able to correctly estimate
the strain in real application.
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