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Abstract: Nowadays, antioxidants and antibacterial activity play an increasingly vital role in biosys-
tems due to the biochemical and biological reactions that involve free radicals and pathogen growth,
which occur in many systems. For this purpose, continuous efforts are being made to minimize these
reactions, including the use of nanomaterials as antioxidants and bactericidal agents. Despite such
advances, iron oxide nanoparticles still lack knowledge regarding their antioxidant and bactericidal
capacities. This includes the investigation of biochemical reactions and their effects on nanoparticle
functionality. In green synthesis, active phytochemicals give nanoparticles their maximum functional
capacity and should not be destroyed during synthesis. Therefore, research is required to establish a
correlation between the synthesis process and the nanoparticle properties. In this sense, the main
objective of this work was to evaluate the most influential process stage: calcination. Thus, different
calcination temperatures (200, 300, and 500 ◦C) and times (2, 4, and 5 h) were studied in the synthesis
of iron oxide nanoparticles using either Phoenix dactylifera L. (PDL) extract (green method) or sodium
hydroxide (chemical method) as the reducing agent. The results show that calcination temperatures
and times had a significant influence on the degradation of the active substance (polyphenols) and
the final structure of iron oxide nanoparticles. It was found that, at low calcination temperatures and
times, the nanoparticles exhibited small sizes, fewer polycrystalline structures, and better antioxi-
dant activities. In conclusion, this work highlights the importance of green synthesis of iron oxide
nanoparticles due to their excellent antioxidant and antimicrobial activities.

Keywords: Phoenix dactylifera L.; nanoparticles; green synthesis; chemical synthesis; iron oxide;
calcination temperature

1. Introduction

The eco-friendly green synthesis of iron oxide has increased in popularity in recent
years due to its effectiveness, low cost, non-toxicity, and environmentally friendly nature.
Furthermore, these methods can produce nanoparticles with high crystallinity in a variety of
sizes, morphologies, and high magnetic properties [1–8]. These approaches are based on an
active substance (phenolic compounds) present in plants, which acts as a reducing agent on
metal salts to obtain metal oxide nanoparticles [9–11]. This led to the improved production
of nanoparticles with unique, specific, and magnetic properties [12–15]. Nevertheless,
nanoparticles based on phenolic compounds need further investigation to evaluate factors
such as extraction methods, reactant concentrations, pH solution, metal salt, and reaction
and calcination temperature and time [16,17]. In this way, the control of nanoparticle size
and functionality is still a challenge in green methods.

During synthesis, the mixing of reducing agents with precursors results in rapid
nucleation of the nanoparticles, followed by their aggregation. Therefore, it is evident that
the rapid nucleation at the nanoparticle formation results in larger nanoparticle aggregates,
heterogeneous crystal phases, and lower efficiency. This effect could be resolved by apply-
ing a post-processing technique, such as thermal treatment [18,19]. The thermal treatment
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can eliminate impurities, control the chemical phase of the capping agent, and determine
the final phase, purity, and functionality of the final product. In this sense, homogenous or
heterogeneous crystal phases could be modified by the final calcination treatment [18–20].
Nevertheless, this treatment has different effects on green and chemical synthesis. Thus,
it can degrade the functional groups provided by green synthesis, reducing nanoparticle
functionality [20]. Conversely, the chemical methods require a high calcination temperature
to remove any excessive or secondary agents formed during the synthesis [18]. Thus, it is
necessary to specify the calcination temperature and time to achieve the desired properties.

Natural and synthetic iron oxide nanoparticles are available in various forms and
quantities, including iron oxides, hydroxides, and/or oxide-hydroxides complexes. Their
atomic composition contains the same elements (Fe, O, and OH), although their crystal
structures and iron valence may be different. However, the most important iron oxide
nanoparticles (FexOy-NPs) are based on magnetite (Fe3O4-NPs), hematite (Fe2O3-NPs),
and maghemite (γ-Fe2O3-NPs) [21–29], since they have a significant impact on the physico-
chemical and functional properties [30]. Iron oxide nanoparticles range in diameter from
1–100 nm and display a high surface-area-to-volume ratio, providing them with a signifi-
cantly enhanced binding capacity and high dispersibility in solutions. Moreover, iron oxide
nanoparticles < 20 nm in size display superparamagnetic properties [31]. These properties,
in addition to their biocompatibility and nontoxicity, favor their potential application in
biomedicine, environmental remediation, defense and aerospace, electronics, construction,
healthcare, automotive textiles, agriculture, and the food industry [32,33].

Smaller iron oxide nanoparticles exhibit excellent antioxidant and antibacterial ac-
tivities. Thus, they have a high inhibitory ability against foodborne pathogen growth,
including Escherichia coli and Staphylococcus aureus [34]. This capacity to kill bacteria is
due to the production of reactive oxygen species (•OH, •O2

−), which damage DNA and
the bacteria protein, causing mitochondrial dysfunction [31,35,36]. Magnetic iron oxide
nanoparticles have also been used to isolate and identify the DNA of pathogens in dairy
products [37].

In biosystems, antioxidants and antibacterial activity play a crucial role. The bio-
chemical and biological reactions inside living cells generate lethal free radicals, which
are found in a variety of biological systems. However, little information is available re-
garding the study of magnetic iron oxide nanoparticles as antioxidants and antibacterial
agents. Therefore, the effects of iron oxide nanoparticles on biochemical reactions should
be investigated, as it is necessary to understand their antioxidant and antibacterial activity.
They have been reported in previous works, concluding that several factors (e.g., particle
size and magnetic behavior) could alter these properties [38]. Nevertheless, no study has
extensively examined the effect of photochemical degradation on the efficiency and func-
tionality of nanoparticles, especially those prepared from Phoenix dactylifera L. extract. The
active photochemical responsible for donating the nanoparticle to its maximum functional
capacity should not be degraded or destroyed during the synthesis. Therefore, the main
objective of this work was to provide a novel comparison between the green and chemical
synthesis of iron oxide nanoparticles and to demonstrate the impact of the calcination stage
on their properties and functionality. In this way, Phoenix dactylifera L. (PDL) was used
for its polyphenol content, as reported in previous works [39,40]. Factors like calcination
temperatures and times, which may influence iron oxide nanoparticles’ properties, were
investigated. Thus, iron oxide nanoparticles were synthesized by colloidal precipitation
using two reducing agents: polyphenols extracted from PDL (green method, GS-NPs) and
sodium hydroxide (chemical method, CS-NPs). Nanoparticles of both approaches were
investigated under different calcination temperatures (200, 300, 500 ◦C) and times (2, 3, 5 h)
and were further characterized by XRD, FTIR, SEM, and TEM. Furthermore, the obtained
iron oxide nanoparticles were tested for their antioxidant activity towards DPPH and their
antibacterial activity towards Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).
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2. Materials and Methodology
2.1. Materials

In this study, the following chemicals: iron chloride hexahydrate (FeCl3·6H2O 98%),
sodium hydroxide (NaOH), ethanol (CH3CH2OH 99.9%), methanol (CH3OH 99.9%), gallic
acid (C7H6O5), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and dimethyl sulfoxide anhydrous
(DMSO) (C2H6SO 99.9%) were all supplied by Sigma Aldrich (Darmstadt, Germany)
and used. The experiments were performed employing only analytical-grade chemicals
and reagents.

Polyphenols were extracted from PDL, which was collected from Seville (Spain),
following a previous protocol [41,42]. Briefly, leaves were dried for 44 days at 22 ± 3 ◦C
and 35% RH. Polyphenols were extracted by the Soxhlet method with distilled water
(water: leaf powder ratio 10:1) for 8 h. The extract had a total polyphenol content (TPC) of
39 ± 2 mg GAE/g extract.

2.2. Nanoparticle Synthesis

Iron oxide nanoparticles were produced in two ways: greenly (GS-NPs) by adding
20 mL of PDL extract dropwise into 20 mL of iron chloride (FeCl3·6H2O) 1 M solution, and
chemically (CS-NPs) by adding 20 mL of NaOH into 20 mL of FeCl3·6H2O 1 M solution.
NaOH 5 M was added to adjust the pH of the reaction to 7.5. The resulting solutions were
heated on a hot plate at 50 ◦C under stirring for 2 h. Thereafter, the mixture was filtrated
using Whatman nº 1 filter paper, and then, a series of washings with distilled water was
conducted to eliminate contaminants and foreign particles. The precipitates were subjected
to pre-treatment at 100 ◦C for 8 h in an oven. Then, they were calcined. This last step
was evaluated using different calcination temperatures (200, 300, and 500 ◦C) for different
times (2, 4, and 5 h). A more detailed description of this synthesis is provided in previous
works [41–43].

2.3. Nanoparticle Characterization
2.3.1. X-ray Diffraction (XRD)

The XRD patterns were acquired using a Brand diffractometer (Bruker model D8
advance A25 diffractometer with Cu anode, Bruker) for the confirmation of the crystalline
phase. The nanoparticle diffractograms were performed between 2θ◦ = 15 and 70◦. The
X-ray with a beam power of 40 kV and a current of 30 mA made contact with the samples at
0.015◦ (pitch angle) and 0.1 s (passing time), while the samples were rotating at 30 rpm [44].
As described in previous studies [41,42], the size and crystallinity of the magnetic iron
oxide nanoparticles were calculated using the Debye-Scherrer formula.

2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)

A DTGS-KBr sensor was used in transmittance mode to perform FTIR spectroscopy
on a Hyperion 100 Spectrometer (Bruker, Billerica, MA, USA). The iron oxide nanoparticles
were characterized from 4000 to 400 cm−1 to gather their structural information. Fe-O
bonds in FexOy can be identified in the fingerprint region (800–400 cm−1) [41,42].

2.3.3. Scanning Electron Microscopy (SEM)

An SEM study was performed for the purpose of gathering information on the iron
oxide nanoparticles’ morphology and size. It was carried out using a scanning electron
microscope (Zeiss EVO, Dublin, CA, USA) at 10 kV. As part of this comparison, the samples
were photographed at different magnifications and evaluated using the freeware Image-J
v1.53q (NIH, Bethesda, MD, USA) [42].

2.3.4. Transmission Electron Microscopy (TEM)

A TEM study was conducted to examine the crystalline characteristics of the size
of nanoparticles. The observations were made at 200 kV through a TEM (Talos S200
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microscope, FEI, Hillsboro, OR, USA). Images of GS-NPs and CS-NPs were evaluated
through Image-J 1.53q free software [42].

2.4. Functional Properties
2.4.1. Antioxidant Activity

Iron oxide nanoparticles in this study were tested for their antioxidant activity using
the DPPH method (free radical DPPH). This method involves the scavenging of free
radicals through DPPH. Thus, the DPPH test can determine the number of free radicals
trapped by an antioxidant. It was conducted following the protocol described in previous
work [42]. Briefly, 2 mL of nanoparticle dispersion (4, 2, 1, 0.5, 0.25, 0.125 mg/mL in DMSO)
was mix-agitated with 2 mL of DPPH. Then, their absorbances were recorded at 517 nm
after incubation for 0.5 h. An equal volume of DPPH solution and DMSO was used as a
control solution.

The necessary anti-radical that could cause 50% inhibition of DPPH (IC50) was deter-
mined by measuring the inhibition percentage (IC) for each concentration using GraphPad
Prism 9 software (GraphPad Prism for Windows version 9.0.0, San Diego, CA, USA).

2.4.2. Antimicrobial Activity

The GS-NPs were tested for their antimicrobial activity on agar plates according to
Behera et al. (2012) with a few modifications [45]. The antibacterial properties of GS-
NPs were tested against two pathogen types: Staphylococcus aureus (S. aureus gram+) and
Escherichia coli (E. coli gram−) inoculated on agar gels. To this end, 20 µL of dispersion
(50 mg/mL) of each selected GS-NPs (the nanoparticles were dispersed in distilled water
by ultrasound for 1/3 h) was dropped in holes of 7 mm diameter, which were made using
a cone-shaped pipette as a perforator. A standard was prepared by filling wells of 2 mm in
diameter with 10 µL of Gentamicin antibiotic (50 µg/mL).

Diameters of inhibition zones surrounding the GS-NPs solutions were measured
after 24–48 h of incubation time at 37 ◦C by Image-J 1.53q (Free software) to assess the
antibacterial activity of the different samples [43].

2.5. Statistical Analysis

At least three replicates were performed to achieve a reliable comparison. Standard
deviations and significant differences were calculated for the statistical analysis using
GraphPad Prism9 and IBM SPSS Statistics (version 26.0.0 software). One-way ANOVA was
used to signify the differences between observations. These significances were obtained
through HSD Tukey statistical analysis, with p < 0.05 (95% confidence interval).

3. Results and Discussion
3.1. Nanoparticle Characterization
3.1.1. XRD

The X-ray diffractograms are shown in Figure 1 (2θ and planes in red indicate the
magnetite phase and 2θ and planes in black indicate the hematite phase). Further investi-
gations were conducted on the effects of calcination time and temperature on crystallinity,
crystallite size, and phase composition. Regarding the green synthesis (Figure 1a), the
diffraction peaks of the GS-NPs calcined at 200 ◦C for 2 h could be attributed to 98.3% of
polycrystalline structures of magnetite (36.2% monoclinic, 32.6% trigonal with hexagonal
axis, and 29.3% cubic structures) and 1.7% of cubic hematite (Tables 1 and 2). These propor-
tions were extracted from (JCPDS nº. 00-153-2800, 00-152-8611, 00-900-7706, 00-900-2673,
and 00-210-1535 standard iron oxide powder diffraction pattern) [46–50].

At 4 h of calcination, the diffraction peaks were attributed to 95.3% of polycrystalline
magnetite (9.2% monoclinic, 50.0% trigonal with hexagonal axis, and 36.1% cubic structure)
and 4.7% of cubic hematite (Tables 1 and 2) (JCPDS nº. 00-153-2800, 00-152-8611, 00-152-
6955 and 00-900-9768 standard iron oxide powder diffraction pattern) [46,50–52]. A higher
increase in calcination time (5 h) resulted in the formation of 100% magnetite with crystal
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systems (44.9% monoclinic and 55.1% trigonal with hexagonal axis) (Tables 1 and 2) (JCPDS
nº. 00-153-2800, and 00-152-6955 standard iron oxide powder diffraction pattern) [46,51].
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Figure 1. XRD patterns of the nanoparticles (JCPDS standard) calcined at different temperatures (200,
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CS-NPs profile using NaOH.
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Table 1. Results obtained for different parameters of GS-NPs using PDL extract and CS-NPs using the chemical method at different temperatures (200, 300, and
500 ◦C) and times (2, 4, and 5 h): average size in nm (from XRD measurements and SEM images), crystallinity percentage (Crl, %), composition (proportion of Fe2O3

and Fe3O4), and antioxidant activity (DPPH IC50 in µg/mL).

GS-NPs

T ◦C 200 ◦C 300 ◦C 500 ◦C

Time XRD (nm) SEM (nm) Crl
(%)

Fe2O3
(%)

Fe3O4
(%) IC50 (µg/mL) XRD (nm) SEM (nm) Crl

(%)
Fe2O3
(%)

Fe3O4
(%) IC50 (µg/mL) XRD (nm) SEM (nm) Crl

(%)
Fe2O3
(%)

Fe3O4
(%) IC50 (µg/mL)

2 h 10.2 ± 0.4 f 11.7 ± 0.2 f 98.5 a 1.7 98.3 86 ± 6 e 7.6 ± 0.5 f 5.8 ± 0.1 e 98.4 a 55.0 45.0 8 ± 2 f 22.0 ± 0.3 e 21.8 ± 0.6 c 96.6 b 25.4 74.6 1488 ± 449 f

4 h 11.8 ± 0.6 e 14.2 ± 0.3 e 96.7 b 4.7 95.3 55 ± 2 f 16.3 ± 0.2 e 19.3 ± 0.2 d 98.6 a 57.1 42.9 39 ± 3 e 24.6 ± 0.8 d 26.0 ± 1.7 b 97.0 a 91.3 8.7 4586 ± 343 c

5 h 18.5 ± 1.2 d 16.8 ± 3.6 d 87.6 f - 100 403 ± 41 d 27.7 ± 0.3 d 23.5 ± 1.8 c 94.6 c 86.6 13.4 109 ± 3 d 23.5 ± 0.6 d 20.8 ± 0.1 d 91.1 d 62.4 37.6 2100 ± 10 e

CS-NPs

2 h 29.8 ± 0.8 b 24.2 ± 0.4 b 93.4 c 91.1 8.9 4213 ± 990 c 32.1 ± 1.1 b 25.3 ± 0.9 b 93.6 d 88.6 11.4 4810 ± 165 c 32.3 ± 0.6 a 36.0 ± 1.0 a 91.7 d 96.9 3.1 97,778 ± 2320 a

4 h 31.9 ± 0.3 a 26.3 ± 0.4 a 90.5 e 92.9 7.7 12,602 ± 779 b 39.0 ± 1.7 a 31.8 ± 0.9 a 95.0 b 93.5 6.5 19,280 ± 1249 a 31.3 ± 0.1 b 37.0 ± 1.0 a 94.9 c 100.0 - 3735 ± 1650 d

5 h 22.2 ± 0.7 c 19.2 ± 0.1 c 92.4 d 95.5 4.5 23,442 ± 1362 a 29.5 ± 0.9 c 23.0 ± 1.0 c 91.0 e 98.1 1.9 16,550 ± 1208 b 29.6 ± 0.9 c 27.5 ± 0.5 b 85.6 e 98.7 1.3 7100 ± 400 b

Note: Different superscript letters (a–f) within a row indicate significant differences among mean observations (p < 0.05).

Table 2. Results obtained for different parameters of GS-NPs using PDL extract and the CS-NPs using the chemical method at different temperatures (200, 300, and
500 ◦C) and times (2, 4, and 5 h): Crystal systems attributed to hematite (Fe2O3) and magnetite (Fe3O4) proportions; Mo: Monoclinic; Tri (hex): Trigonal (hexagonal
axis); Tri (rohm): trigonal (rhombohedral axis); Cu: Cubic; Te: tetrahedral.

GS-NPs

T ◦C 300 ◦C 300 ◦C 500 ◦C

Time Phase MO Tri (Hex) Tri (rohm) Cu Te Total MO Tri (Hex) Tri (rohm) Cu Te Total MO Tri (Hex) Tri (rohm) Cu Te Total

2 h
Fe2O3 1.7 1.7 0.7 0.6 47.9 5.8 55.0 25.4 25.4
Fe3O4 36.2 32.6 29.4 98.3 35.3 6.6 3.1 45.0 74.6 74.6

4 h
Fe2O3 4.7 4.7 7.2 49.9 57.1 91.3 91.3
Fe3O4 9.2 50.0 36.1 95.3 42.9 42.9 1.8 1.4 5.5 8.7

5 h
Fe2O3 0.5 86.1 86.6 62.4 62.4
Fe3O4 44.9 55.1 100 7.9 2.5 3.0 13.4 19.0 1.0 17 0.6 37.6

CS-NPs

2 h
Fe2O3 1.5 89.6 91.1 88.6 88.6 3.4 46.7 46.8 96.9
Fe3O4 6.3 2.6 8.9 11.4 11.4 2.1 1.0 3.1

4 h
Fe2O3 2.9 2.5 87.5 92.9 0.7 92.8 93.5 2.2 2.8 95.0 100
Fe3O4 2.9 4.2 7.1 5.7 0.8 6.5

5 h
Fe2O3 6.1 89.4 95.5 1.5 96.6 98.1 60.3 36.1 2.3 98.7
Fe3O4 4.5 4.5 1.1 0.8 1.9 1.3 1.3
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On the other hand, the increase in calcination temperature caused a pronounced
change in the FexOy-NP type, which resulted in a greater proportion of hematite. For exam-
ple, the diffraction peaks of GS-NPs calcined at 300 ◦C for 2, 4, and 5 h were attributed to
55.0, 57.1, and 86.6% of polycrystalline hematite, respectively (Table 2) [46,47,50,51,53,54],
while the diffraction peaks of the GS-NPs calcined at 500 ◦C for 2, 4 and 5 h were as-
signed to 25.4, 91.3, and 62.4% of monoclinic, cubic, and trigonal with hexagonal axis
hematite [46,47,49–52,55–60].

The chemically synthesized nanoparticles were mostly hematite (Tables 1 and 2). The
diffraction peaks of the CS-NPs calcined at 200 ◦ C for 2, 4, and 5 h were attributed to
91.1, 92.9, and 95.5% of the polycrystalline structure of hematite, respectively (Figure 1b
and Table 2) [46,56,61–63]. A temperature increment to 300 ◦C generated a change in
nanoparticles, finding 88.6, 93.5, and 98.1% of the polycrystalline structure of hematite
for the calcination times 2, 4, and 5 h, respectively (Figure 1b and Table 2) [46,51,56,61,64].
The further calcination at higher temperatures (500 ◦C) resulted in nearly pure hematite.
Thus, the diffraction peaks were attributed to 96.9, 100, and 98.7% of the polycrystalline
structure of hematite for the calcination times 2, 4, and 5 h, respectively (Figure 1b and
Table 2) [46,51,56,62,64].

These results are in good accordance with those that have been documented in the
literature. Among them, Jafari et al. noted a transition phase of iron oxide nanoparticles
from Fe3O4 to Fe2O3 when the particles were annealed in the range of 250–550 ◦C [65].
Shangguan et al. observed an increase in Fe2O3 proportion by increasing the calcination
time (0.5–2.5 h) and calcination temperature in the range of 450–500 ◦C [66]. Rusul et al.
also obtained polycrystalline α-Fe2O3 nanoparticles at elevated annealing temperatures
(500 and 700 ◦C) [67]. In this way, it seems that the mechanism for the production of iron
oxide nanoparticles is due to the reduction of iron ions by phenolic compounds (green) or
OH (chemical). Thereafter, two oxidation-reduction reactions were suggested: 1-Reduction
and precipitation of iron ions Fe+3 of iron chloride (FeCl3·6H2O) in the presence of phenolic
compound (-OH), where the reduction of iron ions to magnetite will normally take place at
low calcination temperature and time, according to Equation (1) [65]:

3Fe+3
(aq) + 8OH− → Fe3O4 ↓ + 4H2O (1)

Additionally, and/or the reduction of Fe2O3 nanoparticles with hydrogen to precipi-
tate Fe3O4 nanoparticles, according to Equation (2) [68]:

3Fe2O3 + H2 
 2Fe3O4 ↓ + H2O (2)

2-Oxidation of iron germs growing in an aqueous solution (resulted in Fe2O3) through
replacement and armoring process with the increase in calcination temperature and time in
the presence of oxygen atoms, according to Equation (3) [65]:

4Fe3O4 + O2 → 6Fe2O3 (3)

In this way, magnetite fractions, Fe3O4-NPs, were more abundant in the GS-NPs, due
to the great capacity of phenolic compounds to reduce more Fe+3 ions to Fe+2 (Fe3O4-NPs).
The absence of phenolic compounds (CS-NPs) generated the oxidation of Fe+2 (Fe3O4) ions
into Fe+3 (Fe2O3) [69]. Several studies have reported similar results [70,71].

Regarding the size and crystallinity of GS-NPs and CS-NPs, a summary of these
parameters, as well as the proportions of FexOy-NPs, is presented in Table 1. It was
observed that the increase in calcination temperature and time increased the size of the
nanoparticles (case GS-NPs). The crystallinity degree was higher when the nanoparticles’
size was smaller (Table 1) [72,73]. The decrease in nanoparticle size at low calcination
temperature was attributed to oxygen vacancies created on the surface. On the other hand,
the increase in calcination temperature up to 300 ◦C led to an increase in the particle size
due to the Ostwald Ripening mechanism (i.e., the particles with larger sizes grow at the
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expense of the smaller ones) [74,75]. The formation of relatively smaller nanoparticles
happens during the calcination rather than the loss of water in the particles [76].

A decrease in size was also reported by Mornani et al., who investigated the effect of
calcination temperatures on the magnetic iron oxide nanoparticles using a chemical method
in the range of 400–650 ◦C [18]. An increase in nanoparticle sizes was also observed by
Koupaei et al. when the calcination time increased [77–79].

Nevertheless, the decrease in size after increasing the calcination time to 5 h at 500 ◦C
(GS-NPs) and at 200, 300, and 500 ◦C (CS-NPs) (Table 1) is probably due to the oxidation of
magnetite at the grain surface to form smaller hematite (Fe2O3) [79,80].

3.1.2. FTIR

Figure 2a,b shows the general FTIR spectra of GS-NPs and CS-NPs, respectively.
The bonds between 3500 and 3420 cm−1 are a result of the vibrational stretching of the
OH-phenolic compound present in the extract (GS-NPs) and OH of NaOH (CS-NPs) [81].
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The sharp peaks at 2912–2838 cm−1 are associated with the C-H extension. The band
around 1630 cm−1 indicates C=C stretching vibration or aromatic ring deformation. Around
1733 cm−1, the bands could be related to the C=O of ketones, aldehydes, and esters. Ester
groups show also one band around 1380 cm−1 [69,82]. The asymmetric stretching vibrations
of C-O-C and C-O, corresponding to polyphenolic compounds, could be observed between
1038 and 1071 cm−1 and between 1201 and 1248 cm−1, respectively [69]. Furthermore, the
bonds between 1159 and 1104 cm−1 belong to C–O–H in polyphenolic compounds [69].
The reduction of the precursor (FeCl3·6H2O) by phenolic groups (–OH) results in the
segmentation of the band around 1642 cm−1 into three peaks around 1652, 1632, and
1622 cm−1. Figure 3a,b shows especially the fingerprint of FTIR spectra of GS-NPs and
CS-NPs, respectively.
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Magnetic Fe-O bands could be observed in the range of 800–400 cm−1, where they
can be interpreted as magnetite (Fe3O4) and γ-Fe2O3/α-Fe2O3. In this range, compared
with maghemite, magnetite (Fe3O4) bands could be localized between 640 and 570 cm−1,
obtaining shoulders around 698 cm−1 and 447 cm−1, corresponding to octahedral and
tetrahedral positions of the Fe-O bond, respectively [15,41,83–85]. As for the bands at
590–570 cm−1, they may result from α-Fe2O3 reduction [86]. Nevertheless, Fe3O4 FTIR
spectra also revealed absorption bands at 1627 cm−1 and 1390 cm−1, as well as peaks
around 1286 and 1084 cm−1 [87]. It is noteworthy that the Fe3+ (Fe2O3) reduction to
Fe2+ (Fe3O4) is due to the presence of phenolic compounds in the extracts, where these
bands were strongly observed in GS-NPs FTIR spectra (Figure 3a) [69]. However, peculiar
bonds around 740–640 cm−1 may correspond to the maghemite phase (γ-Fe2O3) formed
by oxidizing magnetite during its synthesis [85,88,89]. On the other hand, bands around
562, 540, and 462 cm−1 may indicate the hematite phase (α-Fe2O3) [89,90]. Moreover, Fe-O
vibrations of crystalline α-Fe2O3 could be observed at 1136 cm−1 [70,91]. These bands were
clearer in the FTIR spectra of CS-NPs (Figure 2b).

3.1.3. SEM

The SEM images in Figure 4a,b illustrate the morphology and size distribution his-
tograms of the GS-NPs and CS-NPs, respectively.
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As can be seen, GS-NPs exhibited different surface morphology between spherical,
cubic, rhombohedral, and some hexagonal structures, with homogeneous size distributions.
According to visual observation, the GS-NPs calcined at lower temperatures (200–300 ◦C)
and times (2–4 h) tended to be slightly agglomerated or aggregated. This could be due
to the fact that remaining phenolic compounds may interact with nanoparticles’ surfaces,
or their presence on the particles’ surface could produce H-bonds in bioactive molecules,
giving the appearance of aggregates [1,69,92,93]. Meanwhile, the CS-NPs were more
agglomerated/aggregated due to the lack of stabilizing agents [21], and the strong interac-
tions between nanoparticles were caused by higher reactivity of the surface [94].

GS-NPs and CS-NPs were measured with respective average diameters from 5.8 to
26.0 ± 1.7 nm and 19.2 ± 0.1 to 37.0 ± 1.0 nm (Table 1). Both these results and the XRD
results were very good. Further confirmation of the results was provided by TEM analysis.

3.1.4. TEM

Figure 5 shows TEM images of the selected GS-NPs calcined at 200 and 300 ◦C for 2
and 4 h with clear morphology. In addition, the size distribution histograms were fitted
using a normal curve with their average diameters.
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As can be observed, the GS-NPs calcined at 200 and 300 ◦C for 2 h seemed to be
better dispersed and slightly aggregated ultrasmall cubic with some hexagonal structures.
In this way, the reducing agent (phenolic compound -OH−) remaining on the surface
of the nanoparticles produces a substantial increase in iron hydroxide seeds Fe(OH)2,3−

2,3 ,
leading to the formation of FexOy-NPs, which reduces the growth rate and the interparticle
reactions [95]. At 4 h of calcination, some nanoparticles seemed to be elongated at 200 ◦C.
On the other hand, the nanoparticles calcined at 300 ◦C for 4 h showed more agglomeration
or aggregation with quasi-spherical, cubic, and hexagonal structures. This may indicate a
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competitive relationship between the extract’s functional groups (phenolic compounds)
and iron ions on the Fe3O4-NPs surface; thus, the oxidation rate will also increase [96].
These results confirm the results obtained by SEM and XRD.

3.2. Functional Properties
3.2.1. Antioxidant Activity

GS-NPs and CS-NPs were examined in terms of their capacity to trap free radicals
within the body. The ability to scavenge DPPH was measured by IC50 (µg/mL), where a
lower IC50 represents better antioxidant activity. A summary of the IC50 values is provided
in Table 1. It can be noticed that the highest antioxidant activity was achieved by the green
synthesis (GS-NPs calcined at 200–300 ◦C for 2–4 h), whereas the most significant antiox-
idant activity was achieved by those calcined at 300 ◦C for 2 h with IC50 = 8 ± 2 µg/mL
(Table 1). These values were smaller than the IC50 value of gallic acid as a standard,
which was found to be 140 ± 60 µg/mL in this work. This higher antioxidant activity
of these nanoparticles may be the result of the simultaneous polyphenolic activity (as
antioxidants) and catalytic activity of GS-NPs [97]. Phytochemicals and iron ions may
serve as antioxidants by releasing oxygen or transferring single electrons and hydrogen
atoms [21,98,99]. In this sense, phytochemicals present in the matrix enhance the formation
of smaller nanoparticle seeds with higher antioxidant properties [100]. Therefore, small-
size nanoparticles may lead to higher antioxidant activity, as it was possible to observe
that this system (GS-NPs calcined at 200–300 ◦C for 2–4 h) had smaller nanoparticle sizes
(Table 1, Figure 5) [69]. This could also be due to the higher proportion of magnetite (Fe3O4)
and its crystallinity [97,101]. The increase in the calcination time to 5 h resulted in lower
antioxidant activity, which may be due to the same reason found with the increase in
calcination temperature to 500 ◦C. Thus, an increment in the calcination temperature results
in phytochemical degradation, which decreases their antioxidant ability [20], as well as
the stereoselective nature of the bioactive compound present on the FexOy-NPs surface
when they act as antioxidant agents [102]. On the other hand, the CS-NPs showed lower
antioxidant activity during the entire study, which reflects the inability of the stabilizing
agent and their larger size [21]. Similar antioxidant properties have been reported in the
literature [13].

3.2.2. Antimicrobial Activity

Table 3 presents the inhibition area of the tested GS-NPs as a function of their sig-
nificant parameter (diameter, mm). These results were similar to those obtained with
Gentamicin (50 µg/mL). As is shown in Figure 6, all tested GS-NPs demonstrated moderate
bacterial inhibition for both pathogenic S. aureus gram+ and E. coli gram-bacteria.

Table 3. The inhibition diameters produced by selected GS-NPs nanoparticles calcinated at tempera-
tures (200 and 300 ◦C) and times (2 and 4 h) against Staphylococcus aureus (S. aureus) and Escherichia coli
(E. coli) over 48 h.

Test Time (h) Sample S. aureus E. coli

24

Gentamicin 28.3 ± 0.3 a 30.4 ± 0.7 A

GS-NPs 200◦C 2h 23.3 ± 0.7 b 24.9 ± 0.4 B

GS-NPs 200◦C 4h 19.2 ± 0.2 d 20.8 ± 0.1 D

GS-NPs 300◦C 2h 21.8 ± 0.7 c 24.2 ± 0.3 BC

GS-NPs 300◦C 4h 18.4 ± 0.9 d 23.5 ± 1.0 C

48

Gentamicin 26.6 ± 0.1 a 28.1 ± 0.4 A

GS-NPs 200◦C 2h 23.6 ± 0.6 b 25.1 ± 0.3 B

GS-NPs 200◦C 4h 17.1 ± 0.2 d 20.2 ± 0.2 D

GS-NPs 300◦C 2h 20.8 ± 0.3 c 21.4 ± 0.0 C

GS-NPs 300◦C 4h 15.7 ± 0.7 e 21.2 ± 0.5 C

Note: Different superscript letters (a–e and A–D) within a column in a time raw illustrate a significant difference
between mean observations (p < 0.05).
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Figure 6. The inhibition zones (diameters) produced by selected GS-NPs Fe22. GS-NPs calcinated at
200 ◦C for 2 h, Fe24. GS-NPs calcinated at 200 ◦C for 4 h, Fe32. GS-NPs calcinated at 300 ◦C for 2 h and
Fe34. GS-NPs calcinated at 300 ◦C for 4 h against Staphylococcus aureus (S. aureus) and Escherichia coli
(E. coli) over 48 h.

As a result of their smaller size (DDRD≈ 8–16 nm, DSEM ≈ 6–19 nm, and DTEM ≈ 5–13 nm),
GS-NPs were capable of inhibiting the replication of bacterial DNA effectively. In this way,
small zero-valent iron oxide nanoparticles could penetrate and inactivate the bacterial mem-
brane by oxidizing the intercellular matrix, which results in oxidative stress (OS), damaging
the bacterial cell membrane [103,104]. Oxidative stress (OS) is generated by many reactive
oxygen species (ROS), such as hydroxyl radicals (–OH), superoxide radicals (O2−), singlet
oxygen (1O2), and hydrogen peroxide (H2O2), which has the potential to damage both pro-
teins and DNA. Thus, bacteria are especially vulnerable to ROS [31,105]. However, the high
antibacterial properties of GS-NPs may also be related to their high crystallinity (98.6%),
which enables the released iron ions (Fe+2 and Fe+3) to collide with negatively charged bac-
terial membranes, leading to the destruction of their protein structures [106,107]. GS-NPs
inhibited both S. aureus and E. coli, which could be potential sources of reactive oxygen
species. Similar results have also been cited in the literature [108–110]. Several other
mechanisms may contribute to the antibacterial activity of metal oxide nanoparticles. In
addition to the previously mentioned (ROS generation), bacteria could be damaged by
the diffusion of isolated nanoparticles in the bacterial cell membrane and the electrostatic
interactions between nanoparticles and bacteria surface [111]. Nevertheless, it was noted
that the GS-NPs calcined at a lower temperature (GS-NPs 200◦C 2h) exhibited more antibac-
terial activity than those calcined at a higher calcination temperature (GS-NPs 300◦C 2h). In
this way, the GS-NPs calcined at higher calcination temperatures were slightly agglomer-
ated; therefore, these agglomerations do not allow them to diffuse into the cells and cause
damage from within.

4. Conclusions

In this study, the use of Phoenix dactylifera L. (PDL) extract allowed for the obtaining
of suitable GS-NPs. The results corroborated the importance of the calcination stage (cal-
cination temperature and time). Consequently, low calcination temperatures and short
calcination times prevent the degradation of active agents. This leads to the formation
of nanoparticles of smaller sizes, fewer polycrystalline structures, and better functional
properties. Alternatively, the increase in calcination temperature or time may result in
larger grains, heterogeneous crystal phases, and phytochemical degradation due to the
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stereoselective nature of the bioactive compound present on the nanoparticles’ surface
when they act as functional agents. The impact of this process stage allows for determining
the final phase, purity, and functionality of the final product. Nevertheless, impurities can
be removed through the washing process. Iron oxide nanoparticles developed through
green synthesis using PDL extract exhibited excellent antioxidant and antibacterial proper-
ties, making it a promising alternative as an antibacterial drug that can replace the current
antibiotics. It is our knowledge that no study has reported an IC50 value < 100 µg/mL
for the green synthesized iron oxide nanoparticles using Phoenix dactylifera L., which may
suggest their potential applications without being toxic or hazardous. Therefore, the GS-
NPs can potentially substitute chemical nanomaterials due to their numerous advantages,
including easy preparation, cost-effectiveness, environmental friendliness, and high suit-
ability for the implementation of metallic nanomaterials in many applications. However,
further investigation is needed concerning nanoparticle cytotoxicity and migration in
biomedical and food applications. Furthermore, future studies will examine the in vivo
magnetic response and stability of these nanoparticles, taking into account their expected
environmental friendliness.
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