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Abstract: Cast austenitic chromium-nickel steel is commonly used for the manufacture of machine
parts and components, which are exposed to the attack of corrosive media and abrasive wear during
operation. The most commonly used grades include GX2CrNi18-9 and X10CrNi18-8 as well as
GX2CrNiMo17-12-2 and X6CrNiMoNb17-12-2. To improve the abrasion resistance of cast chromium-
nickel steel, primary niobium carbides were produced in the metallurgical process by increasing the
carbon content and adding Fe-Nb. The microstructure of the obtained test castings consisted of an
austenitic matrix and primary niobium carbides evenly distributed in this matrix. The measured
hardness of the samples after heat treatment ranged from 215 to 240 HV and was higher by about
60 units than the hardness of the reference cast GX10CrNi18-9 steel, which had a hardness of about
180 HV. Compared to the reference cast steel, the abrasive wear resistance of the tested cast chromium-
nickel steel (measured in Miller test) with contents of 4.4 and 5.4 wt% Nb increased only slightly, i.e.,
by 5% for the lower niobium content and 11% for the higher niobium content. Compared to ordinary
cast GX10CrNi18-9 steel, the addition of 9.2 wt% Nb reduced the abrasive wear by almost 2.5 times.

Keywords: cast chromium-nickel steel; microstructure; primary carbides; niobium carbides; heat
treatment; hardness; abrasive wear

1. Introduction

Austenitic steels and cast chromium-nickel steels are used for the manufacture of
machine parts and components operating under the conditions of corrosive attack and
abrasive wear. The most commonly used grades include GX2CrNi18-9 and X10CrNi18-8 as
well as GX2CrNiMo17-12-2 and X6CrNiMoNb17-12-2, all of them being designed for service
in numerous branches of the industry. These materials are used not only in the chemical,
cellulose, and paper industries or in food processing plants, but also in heavy industry,
including mining and materials processing sectors, where they operate as large-size castings
often exposed to the effect of abrasion in devices such as heat exchangers, tanks, feeders,
screws, and transmission pipelines. Castings made of these materials also operate in pumps
and distributors for pumping out suspensions of water and sand, sludge, and also brine.
Additionally, when operating as components of the drilling platform equipment, valves,
tees, or clamps, they are sometimes exposed to the effect of low temperature combined
with impact stresses [1–4].

Table 1 gives examples of the chemical composition of austenitic and austenitic-ferritic
corrosion-resistant steels. The chemical composition of cast steel grades corresponds to the
chemical composition of steel.

The addition of strong carbide-forming elements such as Ti or Nb to these alloys is
at the level of tenths of a percent (maximum up to 1%) and is dictated by the technolog-
ical process. For example, 0.2% Ti acts as a modifier and 0.5% Nb is added to improve
technological and functional properties such as weldability or corrosion resistance.

The microstructure of the cast steels presented in Table 1 should be austenitic (or
austenitic-ferritic) and free from chromium carbide precipitates at the grain boundaries, as

Materials 2023, 16, 1726. https://doi.org/10.3390/ma16041726 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16041726
https://doi.org/10.3390/ma16041726
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8075-6526
https://doi.org/10.3390/ma16041726
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16041726?type=check_update&version=1


Materials 2023, 16, 1726 2 of 14

their presence adversely affects the casting resistance to intergranular corrosion. This type
of structure is obtained by the application of heat treatment, namely solution treatment of
the alloy.

Table 1. Chemical composition of austenitic chromium-nickel steels [5].

Alloy Designation
Chemical Composition (wt%)

C Mn Si P S Cr Ni Mo Fe Other

X2CrNi18-9 <0.03 <2.00 <0.80 <0.045 <0.030 18.5 8.8 – Bal. N < 0.11
X5CrNi18-10 <0.07 <2.00 <0.80 <0.045 <0.030 18.5 9.3 – Bal. N < 0.11
X10CrNi18-8 <0.10 <2.00 <1.00 <0.045 <0.030 17.5 7.8 <0.8 Bal. N < 0.11
X6CrNiTi18-10 <0.08 <2.00 <0.80 <0.045 <0.030 18.0 10.5 – Bal. Ti = 5 × C−0.7

X2CrNiMo17-12-2 <0.03 <2.00 <1.00 <0.045 <0.030 17.5 11.5 2.3 Bal. N < 0.11
X6CrNiMoTi17-12-2 <0.08 <2.00 <1.00 <0.045 <0.030 17.5 12.0 2.3 Bal. Nb = 10 × C−1.0

Unlike steels that are usually austenitic, corrosion-resistant cast steels with the same
chemical composition contain small amounts of delta ferrite in their microstructure. Its
presence results from the slow cooling of castings and segregation processes occurring
during their solidification. In castings made of the austenitic Cr-Ni steel, 5–25% of evenly
distributed delta ferrite is often found in the alloy matrix. The amount of this constituent
depends on the thickness of the casting wall. The presence of delta ferrite is often desirable
owing to its beneficial effect on the weldability of castings and the ability to hinder the
spread of microcracks and improve the resistance to intergranular and stress corrosion (it
favors the precipitation of carbides inside its own grains and not at the ferrite-austenite
interface) [4]. In alloys with the addition of molybdenum, the volume fraction of delta ferrite
is even higher and distinctly visible. Figures 1 and 2 show the characteristic microstructure
of ferrite-containing cast austenitic steel after solution treatment. Different amounts of
delta ferrite are observed in the cast steel without and with the addition of molybdenum
(Figures 1 and 2, respectively).
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Figure 1. Microstructure of cast GX10CrNi18-9 steel after solution treatment; austenite with traces of
ferrite; bright color—austenite, dark color—ferrite, etched with Mi16Fe [author].

Similar results of microscopic examinations were obtained by the authors in stud-
ies [6–10]. For example, in study [6], in addition to the characteristics of the microstructure
of selected cast Cr-Ni steel grades, the results of hardness and impact strength measure-
ments at −40 ◦C and +20 ◦C were presented. On the other hand, [7] gave the results of
the modification of cast austenitic Cr-Ni 18-9 steel with mischmetal (Rare Earth Metals)
in the ladle and its impact on the microstructure. The tests were carried out on industrial
melts in which the delta ferrite structure was obtained with the carbon content of 0.1%.
The author’s own research on the wear behavior of various Cr-Ni alloys showed another
very important characteristic that gives castings a strong competitive advantage. The point
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is that castings operating under the conditions of sand abrasion offer a wear resistance
superior to that of steel (even twofold increase). Figure 3 compares the wear resistance of
heat-treated cast austenitic Cr-Ni steel containing 0.1% C, 18.4% Cr, 8.3% Ni, and 0.4% Mo
with the wear resistance of steel characterized by a similar chemical composition.
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A review of the literature discussing problems of the wear behavior of various materi-
als indicates that current research and development activities mainly focus on the study of
dual-phase and multi-phase alloys, including cast austenitic steel whose matrix is reinforced
with carbides and nitrides [11–14]. More and more often, precision castings for use as parts
of industrial machines exposed to rapid wear are expected to keep their dimensions within
narrow tolerances; otherwise, the efficiency of the entire device decreases and parts must
be replaced with new ones. Frequent downtimes and replacement of large-size castings
generate high costs, so new materials are sought that would meet the highest tribological
requirements. In the currently conducted research, a tendency evolves to keep the cast alloy
matrix ductile, while hardening only the surface of the casting. These design solutions can
be achieved in various ways, e.g., by the well-known method of explosive hardening of the
surface of high-manganese steel castings [15], or making castings with abrasion-resistant
composite zones by the SHS powder synthesis (Self-propagating High-temperature Synthe-
sis). In the latter case, in selected zones of the casting, carbides are formed in liquid alloy as
a result of the reaction proceeding under the effect of high temperature created in the alloy
and carbides synthesis from the mixture of powders [16,17].

In [18], the results of experimental studies are discussed, showing that changes in the
microstructure of cast austenitic 18%Cr-9%Ni steel as a result of the addition of about 1.4%
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boron and 1.4% boron with titanium increase the wear resistance of this steel grade. It was
demonstrated that the matrix of cast austenitic steel contained titanium nitride precipitates
and a eutectic rich in boron and chromium with a microhardness close to 1900 HV0.02.
The changes that took place in the microstructure increased the hardness of cast steel
matrix from 212 HV to 350 HV. In the 16 h Miller test (ASTM G75-07), which is used to
compare the wear resistance of different materials, an over 20% increase in wear resistance
was achieved.

The search for new techniques and technologies of tool production prompted the
author to develop a concept that would meet the assumption that tool steels and cast steels
may have satisfactory wear resistance, ductility, and crack resistance even at high or low
temperatures. These properties are due to the presence of MC and M2C carbides that occur
in an austenitic matrix of the alloy. An evident drawback is the presence of “coarse” (thick)
MC carbides in castings, significantly deteriorating the cast steel ductility [19–21].

Following the example of tool steels, the essence of the solution proposed by the
author consists in the use of a technology that allows the particles of primary carbides to be
formed during metallurgical process within the entire volume of steel melt and later in the
casting. In earlier research [21–24] on the properties of cast austenitic high-manganese steel
with the addition of vanadium, titanium, and niobium, the author and co-workers focused
on changes in the microstructure and abrasion resistance (determined in Miller test) of
cast high-manganese steel. The structure obtained in the tested cases after heat treatment
consisted of an austenitic or austenitic-martensitic matrix with primary carbides of the
introduced elements evenly distributed in this matrix. The abrasion resistance measured in
the Miller test was at least twice as high as in the reference cast Hadfield steel.

The idea of introducing carbide-forming elements, successfully applied in cast high-
manganese steel, and the satisfactory results of changes in microstructure and abrasion
resistance obtained in the Miller test prompted the author to conduct similar research on
cast chromium-nickel steel with the addition of titanium [25], where, in test castings, the
microstructure consisting of an austenitic Cr-Ni matrix with evenly distributed titanium
carbides was obtained. After casting and solution treatment, the hardness ranged from
300 to 330 HV0.02 and was higher by about 40–70 units than the hardness of the reference
cast GX2CrNi18-9 steel, which amounted to 258 HV0.02. The wear resistance of the tested
cast Cr-Ni steel measured in the Miller test increased by at least 20% with the content of
1.3 wt% Ti. Compared to ordinary cast GX2CrNi18-9 steel, increasing the titanium content
to 5.3 wt% and 6.9 wt% reduced the wear by 2.5 times.

The main topic discussed in the present study is the effect of niobium addition to cast
Cr-Ni steel on the above-mentioned properties of the obtained alloys.

2. Materials and Methods

Test melts were carried out in a Balzers VSG-02 laboratory induction vacuum furnace
(Balzers, Bergisch Gladbach, Germany) using a 1 kg capacity Al2O3 crucible. The charge
was 18-10 steel scrap and high-purity pig iron of known chemical composition used as a
carburizer. After melting the charge, to obtain the required chemical composition, alloy
additives such as the Fe-Mn65 and Fe-Si65 ferroalloys, metallic chromium, and electrolytic
nickel were successively introduced. After melting the alloy additives, stirring the melt,
and heating to 1600 ◦C, the metal was deoxidized with aluminum added in the amount
of 1 g/1 kg of steel [26]. In the final stage of melting, Fe-Nb60 ground to the size of
3–5 mm was added in portions to avoid the temperature drop in molten steel. Niobium
addition to the steel melt triggered the formation of primary niobium carbides. After
casting solidification, these carbides were evenly distributed in the alloy matrix. Thus,
processed melt was held in the furnace for 6 min, and shortly before pouring of molds, it
was deoxidized again with Fe-Ca-Si added in the amount of 1 g/1 kg of steel. The pouring
temperature was 1560–1570 ◦C and the steel was poured into ceramic molds made by the
lost-wax process. The inner layer was made of quartz flour and the outer layer of quartz
sand. Ethyl silicate and Ludox AM-30 silica gel were used alternately as a binder. The
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ceramic molds were fired in a chamber kiln at 950 ◦C to create bonds in the mold material
and increase the strength. Before pouring, the molds were heated to 200–250 ◦C. Figure 4
shows the ceramic molds ready for pouring with molten alloys, while Figure 5 shows the
“Y”-type test castings with a wall thickness of 25 mm, length of 70 mm, and a weight of
about 0.8–0.9 kg. A diagram of cutting out the specimens for subsequent heat treatment,
microstructure examinations, and wear tests is also included.
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Chemical analysis of the tested alloys was carried out under industrial conditions using
a Spectro Maxx LMF04 spectrometer (Spectro, Kieve, Germany) and was next completed
with laboratory examinations using a Spectro Midex energy-dispersive X-ray fluorescence
spectrometer (Spectro, Kieve, Germany). Table 2 shows the chemical composition of the
tested alloys.

Table 2. Chemical composition of the tested cast Cr-Ni-Nb steel.

Alloy Designation
Chemical Composition (wt%)

C Mn Si P S Cr Ni Mo Al Nb Fe

Nb2 0.8 1.3 0.9 0.04 0.01 16.8 11.6 1.5 0.03 9.2 Bal.
Nb22 0.5 1.3 0.7 0.04 0.02 17.6 10.3 1.3 0.04 5.4 Bal.
Nb23 0.3 1.8 0.6 0.03 0.01 18.0 8.6 0.3 0.03 4.4 Bal.

Chemical analysis of the composition of test samples showed that the content of the
main elements, i.e., Mn, Cr, and Ni, in the melted cast steel was comparable to the content
of these elements in the reference cast GX10CrNiMo18-9 steel. High silicon content (from
0.6 to 0.9%) was the result of double deoxidation with Fe-Ca-Si and aluminum, where the
content of the latter one at the level of 0.03–0.04% indicates correct deoxidation of the steel
melt. The content of niobium in the three tested specimens was 4.4%, 5.4%, and 9.2% and
increased with the increasing carbon content, which was 0.3%, 0.5%, and 0.8%, respectively.
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The Nb/C ratio was, in each case, above 10, which guarantees complete bonding of carbon
into carbides and the absence of cementite in the microstructure of the tested alloys. The
specimens cut out for testing were subjected to solution treatment, i.e., water cooling from
the temperature of 1050 ◦C and holding for 30 min.

Hardness was measured with a Vickers hardness tester (Werkstoffpruefmaschinen,
Leipzig, Germany) under a standard load of 30 kg, applied to both as-cast samples and
samples after solution treatment.

The microstructure of the tested alloys was examined under a Neophot 32 light
microscope (Carl Zeiss Jena, Hövelhof, Germany) equipped with a camera for digital image
recording. Chemical analysis of the composition of carbides present in the tested alloys and
of the alloy matrix was performed with a JEOL JSM 7100 F secondary electron (SE) field
emission scanning electron microscope (SEM) made in Tokyo, Japan, and with a scanning
electron microscope equipped with an EDS detector supplied by Oxford Instruments in
Abingdon, UK.

Phases present in the tested samples were identified with a Kristalloflex 4H X-ray
diffractometer from Siemens, Munich, Germany, using the characteristic Cu radiation
(Kα = 0.154 nm) with a step size of 0.052 theta/1 s.

The abrasive wear response was determined in the Miller test conforming to ASTM
G75, which is used to compare the abrasive wear behavior of various construction materials.
Figure 6 shows a diagram of the Miller tester.
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Figure 6. Diagram of the machine used in the Miller test. (a) 1: specimen, 2: weight, 3: specimen
holder, 4: holder arm, and 5: abrasive. (b) Dimensions of the specimen tested for abrasive wear.

The applied method of wear testing allows the author to compare the currently
obtained results with the results of their own experiments conducted previously, and with
the results obtained by other research teams [18,21,22,24–31]; however, the latter is possible
only when the tests are conducted under identical conditions of abrasion. In these studies,
in most cases, the conditions of the conducted experiments were not precisely specified, and
therefore, the author could compare the obtained results only with their previous research.

The test samples with dimensions of 25.4 × 12.7 mm and a thickness of 9 mm were
placed in the holders of the device under a constant load of 22.2 N and were next subjected
to abrasion in a mixture of water and silicon carbide in a 1:1 ratio. The counter-sample was
the rubber lining of the trough bottom where the abrasion process took place. Silicon carbide
with grain number 220 according to the FEPA standard and a grain size of 53–73 µm was
used. Two 16 h abrasion tests were performed in 4 cycles for each sample, calculating next
the mean. Every four hours, the samples were weighed with an accuracy of 0.001 g. Based
on the obtained values of weight losses, abrasive wear curves were plotted for the tested
samples. The values of wear obtained for the samples of the tested alloys were compared
with the values of wear obtained for the reference sample cast from the GX10CrNi18-9 steel
containing 0.1% C, 18.4% Cr, 8.3% Ni, and 0.4% Mo, subjected to standard heat treatment,
i.e., solution treatment in water from the temperature of 1050 ◦C, and characterized by the
hardness of 180 HV.

The surfaces of the samples after abrasive wear tests were macroscopically compared
with the surface of the reference sample cast from the GX10CrNi18-9 steel.

Detailed analyses of the wear mechanism operating in the tested cast steel and of the
surface condition of samples after the abrasion test require additional profilometric tests,
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which is a standard method used for the assessment of surface conditions after various
technological and tribological operations. Examinations of the surface condition after wear
test will be the subject of further studies carried out by the author.

3. Test Results and Discussion

In this study, various issues related to the microstructure characterization, hardness,
and wear resistance of cast austenitic Cr-Ni steels with primary niobium carbides produced
in the metallurgical process are discussed.

Examinations using light microscopy showed that the as-cast microstructure of the
tested alloys with the niobium content of 4.4–9.2% consisted of an austenitic matrix and
plate-like shaped primary niobium carbides evenly distributed in this matrix. The presence
of cementite was not traced in the examined microsections. Figures 7 and 8 show examples
of as-cast microstructures obtained in the test castings containing 5.4 and 9.2% Nb. The
as-cast hardness of the tested alloys amounted to about 210 HV and was independent of
the carbon content and niobium addition (Table 3).
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The tested samples were subjected to a heat treatment (solution treatment in water),
and then their hardness was measured. The heat treatment parameters and the measured
hardness values are given in Table 3.

Compared with as-cast samples, the solution treatment from the temperature of
1050 ◦C followed by cooling in water caused an increase in the obtained values of hardness,
which further increased with the increasing content of carbon and niobium. In samples
with the lowest content of carbon and niobium, the hardness after solution treatment
increased by about 5 HV units, while for the niobium content of 5.4%, the increase in
hardness amounted to about 15 HV units. The highest hardness was obtained in samples
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with the niobium content of 9.2%. Its value exceeded by 30 HV units the hardness obtained
in as-cast state. The small scatter of the measured hardness values proves the homogeneity
of the tested alloys and even distribution of carbide precipitates in the alloy matrix. This is
also the reason why the average hardness values are not given in Table 3. The results of
combined studies, including examinations by light microscopy at various magnifications
(Figure 9) and scanning microscopy (Figure 10), chemical analysis of carbides (Figure 11,
Table 4) and the alloy matrix (Figure 12, Table 4), and X-ray phase analysis (Figure 13) and
the surface distribution of elements such as Fe, Cr, Ni, Mn, Nb, and C in the area of the
visible carbides (Figure 14), demonstrated that the microstructure of all tested cast steels
after solution treatment consisted of an austenitic matrix and primary niobium carbides
evenly distributed in this matrix. Precipitates of cementite were not traced in the tested
samples. Carbides in the areas of primary grain boundaries showed the tendency to form
small clusters (Figure 9a,b).

Table 3. Heat treatment of the tested alloys and respective hardness values.

Alloy Designation Heat Treatment Hardness (HV)

Nb2
As-cast 210, 212, 213, 212

1050 ◦C/0.5 h/water 241, 241, 237, 239

Nb22
As-cast 213, 210, 213, 212

1050 ◦C/0.7 h/water 227, 218, 234, 226

Nb23
As-cast 213, 204, 201, 210

1050 ◦C/0.5 h/water 216, 214, 220, 216
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Figure 11. Sample EDS spectrum of niobium carbide precipitates obtained for the alloy containing
9.2% Nb shown in Figure 10.

Table 4. Chemical composition in the areas examined at points 7–11 in Figure 10.

Place of Analysis
(wt%)

C Si Ti Cr Mn Fe Ni Nb Total

Point 7 8.2 – 1.1 0.6 – 1.1 – 89.0 100.0
Point 8 10.1 – 1.0 0.5 – 1.0 – 87.4 100.0
Point 9 10.3 – 1.2 0.5 – 0.9 – 87.1 100.0

Point 10 – 0.7 – 17.6 0.9 66.8 10.5 3.5 100.0
Point 11 – 0.7 – 18.1 1.1 68.1 10.8 1.2 100.0
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Wear Resistance

The abrasion resistance was measured in a Miller test on samples after solution
treatment from the temperature of 1050 ◦C, as this type of heat treatment is recommended
as a standard procedure for cast Cr-Ni steel, and on the sample with the highest niobium
content, i.e., 9.2%, in the as-cast state. From the obtained partial weight losses of samples,
the total weight loss was calculated for each test cycle, and using these data, a graph
was plotted to show the cumulative weight loss of samples as a function of abrasion
time. Figure 15 shows the cumulative weight loss of test samples plotted against the
abrasion time.
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From the obtained results, it follows that the wear resistance of the tested cast
chromium-nickel steel increased with the increasing content of niobium addition, but
for the contents of 4.4 and 5.4%, this increase was insignificant. The value of wear de-
creased from 0.314 g/16 h for the reference cast steel to 0.296 g/16 h for the content of
5.4% Nb and to 0.279 g/16 h for the content of 4.4% Nb. Compared to the reference cast
GX10CrNiMo18-9 steel, the increase in niobium content to 9.2% reduced the wear almost
twice (even in as-cast state) and then its value amounted to 0.173 g/16 h. The lowest wear
of 0.132 g/16 h was obtained for samples of this alloy after solution treatment in water.

Figure 16 shows the macroscopic images of the surfaces of samples after the abrasion
test compared with the reference sample made of cast chromium-nickel steel. In the cast
GX10CrNiMo18-9 steel, deep scratches and grooves were visible on the sample surface,
which still preserved its glossy and smooth appearance (Figure 16a). This grade of cast
steel with a purely austenitic structure (similar to cast high-manganese steel) underwent
the abrasion wear process by furrowing. The addition of niobium in an amount of at least
4.4% made the wear of the samples more uniform—no cracks or furrows appeared and the
surface of the samples was even and slightly rough (Figure 16b,c), which proves that the
wear process in the tested samples took place through matrix losses. Further analysis of the
wear mechanism and surface condition requires additional profilometric tests, which will
be conducted as part of the next research program.
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4. Conclusions

The results of the studies discussed in this article lead to the conclusion that the intro-
duction of strongly carbide-forming elements, such as niobium, into the molten chromium-
nickel steel produced primary carbides in the alloy matrix, the presence of which increased,
sometimes even many times, the wear resistance of the steel. When properly satisfied, this
condition allows the tested alloy to be used for new material applications, mainly the tools
and components exposed to wear. As shown by the results of microstructural examinations,
in the majority of cases, the obtained niobium carbides were of a faceted type. They were
also characterized by a slight tendency to form clusters in the interdendritic spaces. This
distribution of carbides in the steel matrix may increase the risk of crack formation in the
resultant castings and reduce their impact strength. Therefore, the next stage of the research
on particle-reinforced cast steel should be devoted to the development of a method of
the steel melting and modification that will allow the changing of the size, shape, and
distribution of primary carbides in the matrix. The promising results obtained so far allow
the following conclusions to be drawn:

1. Primary niobium carbides produced in molten steel were evenly distributed in the
austenitic matrix, but in the interdendritic spaces, their tendency to form small clusters
was observed.

2. No precipitation of cementite was observed in the tested samples after heat treatment.
3. The measured as-cast hardness of the tested samples amounted to about 210 HV and

was independent of both carbon content and niobium addition.
4. After heat treatment, the hardness of the tested samples increased with the increase in

niobium content, ranging from 215 to 240 HV.
5. The formation of primary niobium carbides in the matrix of chromium-nickel cast

steel increased the abrasion resistance by even 2.5 times.
6. Carbides evenly distributed in the austenitic chromium-nickel matrix changed the

wear behavior of the tested samples. Owing to their presence, the surfaces of the
produced samples were free from any furrows and deep scratches.
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2. Blicharski, M. Inżynieria Materiałowa–Stal. (Materials Engineering-Steel); WNT: Warszawa, Poland, 2004. (In Polish)
3. Lamb, S.; Bringas, J.E. CASTI Handbook of Stainless Steels and Nickel Alloys; CASTI Publishing Inc.: Edmonton, AB, Canada, 2001.
4. ASM International. Metals Handbook, Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th ed.; ASM International:

Materials Park, OH, USA, 1990; Volume 1.
5. PN-EN 10088-1/2005(U); Stainless Steels-Part 1: List of Stainless Steels. CEN: Brussels, Belgium, 2005.
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