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Abstract: Brittle fracture is a typical mechanical characteristic of high-strength self-compacting con-
crete, and the research on its toughening modification remains the highlight in the engineering field.
To understand the effect of toughening materials (including polymer latex powders, rubber particles,
and polyethylene fibers) on the mechanical behavior of C80 high-strength self-compacting concrete
under static loading, the failure mode, mechanical strength, strain field, and crack opening displace-
ment (COD) of prepared high-strength self-compacting concrete under compressive, splitting, and
flexural loads were studied based on digital image technology (DIC). The corresponding mechanism
is also discussed. The results show that the hybrid of polymer latex powders, rubber particles,
and polyethylene fibers can increase the crack path and inhibit the development of macrocracks in
concrete, thus turning the fracture behavior of concrete from brittle to ductile. The addition of tough-
ening materials reduced the compressive and flexural strengths of high-strength self-compacting
concrete, but it increased the splitting strength. DIC showed that the incorporation of toughening
materials promoted the redistribution of strain and reduced the degree of strain concentration in
high-strength self-compacting concrete. The evolution of COD in high-strength self-compacting
concrete can be divided into two stages, including the linear growth stage and the plastic yield stage.
The linear growth stage can be extended by incorporating toughening materials. The COD and
energy absorption capacity of concrete were enhanced with the addition of toughening materials,
and the best enhancement was observed with the hybrid of polymer latex powders, rubber particles,
and polyethylene fibers. Overall, this research provides a reference for exploring effective technical
measures to improve the toughness of high-strength self-compacting concrete.

Keywords: high-strength self-compacting concrete; toughening materials; strength; crack; digital
image correlation (DIC)

1. Introduction

Concrete is currently the most widely used engineering material. It has the advantages
of easy access to raw materials and excellent mechanical properties, but it also exhibits
the disadvantages of low tensile strength, high brittleness, and easy cracking. In the field
of transportation engineering, the problem of durability in concrete structures has been
the focus of attention due to the high brittleness and easy cracking of concrete [1–3]. In
order to reduce the brittleness and cracking of concrete, a variety of toughening materials,
such as fibers, polymers, and rubbers, have been used to prepare concrete. From the
aspect of the particle sizes of materials, polyethylene fiber and rubber particles were macro
toughening materials and polymer latex powder was a kind of micro toughening material.
C.X. Qian et al. [4] studied the influence of the fiber size and fiber content on the mechanical
properties of concrete and found that the different sizes of steel fibers contributed to
different impacts on the mechanical properties of concrete. M.C. Nataraja et al. [5] and H.
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Zhou et al. [6] investigated the mechanical properties of fiber-reinforced concrete and found
that the toughness and crack resistance of concrete had been improved. Y.P. Liu et al. [7]
used a liquid epoxy resin–asphalt composite emulsion to pretreat aggregates and then
prepared a polymer-modified concrete. The results showed that increasing the polymer
film thickness on the aggregate surface could significantly increase the energy consumption
of concrete during the fracture process. K.L Ma et al. [8] developed a self-compacting
concrete with excellent workability by adding rubber particles, and the developed concrete
exhibited a higher capability of resistance to chloride ion permeability compared to concrete
without rubber particles. The above investigations have shown that incorporating the
above-mentioned toughening materials can improve the toughness, crack resistance, and
durability of concrete to varying degrees.

As we all know, concrete is a multi-phase composite material, and the incorporation of
a single toughening material can only improve the performance of concrete in one aspect.
If the toughness of concrete is to be enhanced comprehensively, the use of multi-scale
toughness materials needs to be considered. For instance, some scholars [9–11] have studied
hybrid fibers incorporated into concrete for strengthening and toughening, and some other
scholars [12,13] have considered mixing fibers and polymer latex powders into concrete for
performance improvement. There have also been investigations into using a hybrid of fibers
and rubber particles in concrete [14,15] to enhance the mechanical properties and durability.
The above studies utilized different toughening materials with different advantages for
the comprehensive synergistic toughening of concrete. However, the effects of hybrid
toughening materials (i.e., three toughening materials) on the properties of concrete has
rarely been studied.

Moreover, concrete for transportation roads is also undergoing continuous technologi-
cal updating with the rapid development of the transportation industry. As an example,
high-strength self-compacting concrete is easy to construct and exhibits excellent perfor-
mance. Thus, it is increasingly used in civil engineering [16,17]. However, the disadvantage
of brittleness is prominent in high-strength self-compacting concrete [18,19]. The tough-
ening of high-strength self-compacting concrete is imminent. In addition, digital image
correlation (DIC) technology has been widely used in the observation and quantitative
assessment of crack expansion and strain in concrete. DIC provides the advantages of
full-field, non-contact measurements and high accuracy [20,21], and the brittle behavior of
concrete is closely related to the evolution of cracks and deformations under load. Thus,
DIC is suitable for the characterization of crack expansion in high-strength self-compacting
concrete. According to the above description, scholars have clearly confirmed the effec-
tiveness of toughening materials in improving the performance of concrete. However,
there is still a need for further study of the mechanical performance in high-strength
self-compacting concrete reinforced with hybrid toughening materials.

Given the above, the aim of this research was to explore the effective way to enhance
the toughness of high-strength self-compacting concrete and to investigate the toughening
effect of hybrid toughening materials on the performance of high-strength self-compacting
concrete. For this objective, a series of tests, including compressive, splitting, and three-
point bending tests, were carried out on the high-strength self-compacting concrete con-
taining macro and micro toughening materials. Accordingly, the mechanical behaviors and
deformation characteristics of high-strength self-compacting concrete containing hybrid
toughening materials were quantitatively evaluated and analyzed based on DIC tech-
nology. Overall, this work can provide new ideas and references for the preparation of
high-toughness and high-strength concrete for transportation engineering.
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2. Experimental Programs
2.1. Raw Materials and Mix Proportions

In this experiment, Portland cement (PC, P·O 42.5), fly ash (FA), and silica fume (SF)
were used as the binder materials, and the chemical composition and physical properties of
the binder materials are shown in Table 1. River sand (S) was used as a fine aggregate with
a fineness modulus of 2.62. Continuously graded crushed stone (G) was used as coarse
aggregate with a particle size of 5–20 mm. A polycarboxylate-based superplasticizer (SP)
was added as an additive with a water-reducing rate of around 33 %. Tap water (W) was
used for mixing. Moreover, three toughening materials, including polyethylene fibers (F),
rubber particles (R), and polymer latex powders (A), were used. In particular, polyethylene
fibers (F) with diameters of 7–150 µm, lengths of 24 mm, an elastic modulus value of
100 GPa, and a tensile strength of 3000 MPa were used. Rubber particles (R) with particle
sizes of 2.36–4 mm, an apparent density of 1090 kg/m3, and an elastic modulus value of
3.4 MPa were used. A polymer latex powder (A) with the particle size of 80 µm and an
apparent density of 950 kg/m3 was used, and its main component was a copolymer of
ethylene vinyl acetate. The mix proportions and fresh properties of the concrete are listed
in Table 2. The particle size distributions of S and R are shown in Figure 1.
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Table 1. Chemical compositions and physical properties of binder materials.

Mass Fraction (%)
LOI

Density
(kg/m3)

Specific
Surface Area

(m2/kg)SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O

PC 20.84 3.95 3.19 59.62 3.56 3.36 0.82 0.18 1.76 3120 365

FA 40.72 20.94 5.24 5.52 1.36 1.59 1.58 1.09 2.1 2150 405

SF 96.21 0.31 1.50 1.50 0.26 1.26 0.33 0.93 3.9 2100 25,100
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Table 2. Mix proportions and fresh properties of concrete.

Serials
Mix Proportion (kg/m3) Fresh Properties

PC FA SF W SP S G A R F Extensibility
(mm) T500 (s)

C0 365 139.5 15.5 149.7 7.8 870.4 805 - - - 630 4.0
CAR 328.5 125.6 14.0 152 7.8 783.3 805 38 32 - 615 4.5

CARF 328.5 125.6 14.0 152 8.1 783.3 805 38 32 3 580 5.5

2.2. Preparation and Curing of Specimens

The concrete strength grade of 80 MPa was designed in this work. The recommended
dosage of toughening materials (R, A, and F) referred to the previous experimental re-
search [8,22,23]. In particular, 10% of the volume of rubber particles was replaced by an
equal volume of sand, and 10% of the volume of the polymer latex powder was replaced
by an equal volume of binder materials (i.e., PC, FA, and SF). The volume content of
polyethylene fiber was 0.3%. Moreover, the preparation process was as follows: First,
all solid materials, including PC, FA, SF, S, G, A (if any), R (if any), and F (if any), were
dry-mixed for 1 min. Then, the premixed solution, including W and SP, was slowly
added, and mixing was continued for 2 min. After that, the workability (i.e., extensibility
and T500) of the fresh mixture was tested, and the fresh mixture was poured into molds.
Then, 100 mm × 100 mm × 100 mm specimens were formed for compressive and splitting
strength tests, and 100 mm × 100 mm × 400 mm specimens were formed for a three-point
bending test. Three specimens were prepared for each test. The specimens were stored at
room temperature and covered with plastic films to prevent the evaporation of the free
water in the mixtures. After 24 h, the specimens were demolded and then subjected to
standard curing (20 ± 1 °C and >95 % RH) for 56 d.

2.3. Experimental Methods
2.3.1. Mechanical Properties Test

The compressive strength and splitting strength tests were stress-controlled, and the
loading speed of the compressive strength test was 0.5 MPa/s, while that of the splitting
strength test was 0.1 MPa/s. The three-point bending test was displacement-controlled,
with a loading speed of 0.1 mm/min. The span of the three-point bending specimen was
300 mm. The test device for the above-mentioned tests is shown in Figure 2.

2.3.2. DIC Test

DIC technology is a non-destructive measurement method that can obtain the full-field
strain information of a specimen surface. In DIC analysis, a reference image is divided into
many small blocks (as seen in Figure 2). These blocks are extracted and compared with the
previous image to obtain the information of full-field strain [24]. It is worth noting that to
use the DIC technology, scattered spot preparation was required on one of the surfaces of
each specimen before testing. The process of scattered spot preparation was as follows:
First, the surfaces of the specimens were sprayed with a white color. Then, the specimens
were stored at room temperature for 10–15 min to dry completely. After that, black spots
were randomly sprayed on the surfaces of the specimens. Finally, the black spots were
completely dry. Then, the specimens could be tested. During the test, a camera with a
frequency of 5 Hz and a resolution of 1920 × 1080 was used to photograph the surface of a
specimen with scattered spots during loading. After the test was completed, the images
obtained from the camera were imported into the analysis software (VIC-2D) to process the
full-field strain distribution during the loading of the specimen.
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3. Results and Analysis
3.1. Failure Pattern

Figure 3 shows the failure patterns of the specimens under different loading modes.
It can be observed in Figure 3a,b that reference specimen C0 exhibited brittle damage
with a loud cracking sound under the compressive and splitting loads. In particular, the
damage pattern of specimen C0 showed a typical “8” shape under the compressive load,
and specimen C0 was divided into two parts under the splitting load. Moreover, although
the specimen (CAR) incorporating rubber particles and polymer latex powders showed
multiple macroscopic cracks on the surface, the specimen remained whole. In addition,
the surface of the specimen (CARF) containing rubber particles, polymer latex powders,
and polyethylene fibers had no evident macroscopic cracks, but many fine cracks could
be found in the surface of the specimen. Moreover, specimen CARF maintained good
integrity. As shown in Figure 3c, all specimens cracked form the middle of the bottom
under the three-point bending load, and further observation revealed that the crack path of
specimen C0 was the shortest, which was followed by specimens CAR and CARF. The most
tortuous damage path was found in specimen CARF. Overall, the incorporation of rubber
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particles and polymer latex powders could improve the brittle fracture characteristics of
concrete and increase the fracture path, and the further addition of polyethylene fibers
could significantly inhibit the expansion of macroscopic cracks in concrete and made this
fracture path the most tortuous.
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bending actions.

3.2. Mechanical Properties
3.2.1. Strength

Figure 4 shows the compressive strength, splitting strength, and flexural strength of
the specimens incorporating toughening materials. It was found that the incorporation
of toughening materials reduced the compressive strength and flexural strength of the
specimens, but it enhanced the splitting strength of the specimens. Specifically, compared
with specimen C0, the compressive and flexural strengths of specimen CAR decreased
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by 34.6% and 16.4%, respectively. Moreover, the splitting strength values of specimens
CAR and CARF increased by 6.7% and 13.3%, respectively, compared to specimen C0. This
indicates that the introduction of toughening materials could improve the splitting strength
of high-strength self-compacting concrete.
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The influence rates of toughening materials on the strength of concrete in the existing
research is summarized in Figure 5. R [25–27], A [28,29], and F [22,30] represent the
specimens containing only rubber particles, polymer latex powders, and polyethylene
fibers, respectively. The dosages of the toughening materials were the same as in this study.
It was found that the influence rates of compressive strength, flexural strength, and splitting
strength of specimen R were lower than 0, but those of specimens A and F were higher
than 0. This demonstrates that, in general, the addition of rubber particles exhibited a
negative effect on the mechanical properties of cement-based materials. However, improved
mechanical properties could be obtained by incorporating polymer latex powders and
polyethylene fibers. Overall, the mechanical properties of concrete were at an intermediate
level after adding multiple toughening materials. The toughening effect of triple-doping
was better than that of double-doping, which means that the toughening effect increased
with the increase in toughening material types.
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3.2.2. The Ratio of Flexural Strength to Compressive Strength (f f/f c)

The ratio of flexural strength to compressive strength (f f/f c) is a common measurement
for evaluating the toughness of concrete materials [6,31,32]. The higher the f f/f c, the better
the toughness of the concrete. Figure 6 gives the ratios of flexural strength to compressive
strength (f f/f c) of specimens incorporating toughening materials. It can be observed that
the f f/f c values of specimens CAR and CARF increased with the addition of toughening
materials compared with specimen C0. In particular, the f f/f c of specimen C0 was around
0.087, and the f f/f c values of specimens CAR and CARF were both greater than 0.100. This
suggests that the incorporation of toughening materials could enhance the toughness of
high-strength self-compacting concrete.

3.3. Strain and Displacement Evolution
3.3.1. Strain Field

Strain fields under compressive, splitting, and flexural loads of specimens incorporat-
ing toughening materials are presented in Figures 7–9, respectively. The distribution and
development of cracks in the specimens could be clearly seen in the strain fields. As shown
in Figure 7, the cracks on the surface of specimen C0 were single compared with specimens
CAR and CARF, and an obvious strain concentration could be observed. Moreover, with the
introduction of the toughening materials (i.e., rubber particles and polymer latex powders),
the cracks in specimen CAR became tortuous and the green cloud points in the strain
field increased. This implies that the strain was distributed to more areas of the specimen.
Furthermore, the addition of polyethylene fibers resulted in a more tortuous crack path
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in specimen CARF, and more green cloud points could be observed in the strain field. It
can also be seen that the main crack width of specimen CARF was narrower compared to
specimen CAR. The above phenomena further illustrated that the strain distribution was
the widest in specimen CARF and that the hybrid of multiple toughening materials played
a role in inhibiting the development of macroscopic cracks.
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As demonstrated in Figure 8, the cracks in specimen C0 developed rapidly under the
splitting load, resulting in the specimen splitting into two parts. Specimen CAR exhibited
the phenomenon of crack aggregation and expansion at the loading end, which indicated
that the rubber particles and the polymer latex powders inside the specimen played a
role in retarding crack expansion. Moreover, in specimen CARF, the cracks were gathered
on the damaged surface, and the cracks were connected under the splitting load. This
indicated that with the further addition of polyethylene fibers, the strain expansion path
was deflected and the strain was redistributed on the damaged surface under the splitting
load and that the toughening materials performed well in crack resistance.

As shown in Figure 9, it can be observed that there was one tensile crack in the
middle of specimen C0, and the crack development was in the vertical direction, which was
consistent with the reference of [33]. The color of the crack tip of specimen C0 was lighter
than those of the specimens CAR and CARF, implying that specimen C0 had the smallest
ultimate strain compared to specimens CAR and CARF. Concurrently, specimen CARF
exhibited the maximum ultimate strain. This was attributed to the fact that the ability to
accumulate deformation of specimen C0 was worse than those the specimens CAR and
CARF, thus demonstrating that the addition of the toughening materials enhanced the
ability to accumulate deformation of high-strength self-compacting concrete.

3.3.2. Crack Opening Displacement (COD)

From the previous analysis, it was known that the stresses in the specimens were
concentrated at their bottoms under the flexural load and that crack formation and con-
nection led to the damage of the specimens with the increase in the load. Incorporating
toughening materials brought about changes in both the crack morphology and the crack
opening displacement (COD) of concrete. In order to quantitatively evaluate the influ-
ences of different toughening materials on the toughness of high-strength self-compacting
concrete, we used DIC technology to analyze the displacement field under a flexural load
and then obtained the influences of different toughening materials on the toughness of
high-strength self-compacting concrete by quantitatively calculating COD. The specific
process of calculating COD was as follows: First, the main crack was found in the strain
field, and the first virtual extensometer (L0) was set across the main crack and at a distance
of about 5 mm from the bottom of the specimen. After that, the virtual extensometer was
arranged every 20 mm along the main crack to the top of the specimen, with a total of five
virtual extensometers. A schematic diagram of the virtual extensometers of a specimen is
presented in Figure 10. The COD could be obtained by calculating the displacement of the
above virtual extensometer under different loads, and the load (P) was divided by Pmax
to carry out a normalization treatment (i.e., P/Pmax). The relationship between COD and
P/Pmax is shown in Figure 11.
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As illustrated in Figure 11, the COD evolution of all specimens could be classified into
two stages; specifically, the first was the linear growth stage (I) and the second was the
plastic yielding stage (II). In stage I, it was found that the linear growth stage of specimen
C0 was before 0.35 Pmax, and that of specimens CAR and CARF was before 0.8 Pmax and
0.9 Pmax, respectively. This indicates that the linear growth stage of crack expansion in the
concrete was elongated with the introduction of toughening materials; in other words, the
toughening effect of the toughening materials (i.e., polyethylene fibers, rubber particles, and
polymer latex powders) on the high-strength self-compacting concrete matrix resulted in an
enhancement in the deformability of the concrete matrix. In addition, the COD of specimen
C0 increased suddenly after reaching stage II, and specimen C0 failed. Although the COD of
specimens CAR and CARF also increased after reaching stage II, specimens CAR and CARF
still had load-bearing capacity. This demonstrates that the toughening materials provided
a good energy absorption effect in high-strength self-compacting concrete, allowing the
damaged energy inside the concrete to be released slowly and smoothly.

Figure 12 shows the load–COD curves of specimens with different toughening ma-
terials. It can be observed that the load–COD curves of specimens CAR and CARF were
higher overall than that of specimen C0. The characteristic parameters of the specimens
obtained from Figure 12 are shown in Table 3. The energy absorption capacity was the
area enclosed by the load–COD curve and the x-axis [34]. It can be found in Table 3 that
the COD of specimen CARF was the largest, which was followed by specimens CAR and
C0. It is noteworthy that adding toughening materials reduced the peak load of the speci-
men to a certain extent, which was consistent with the previous research of our team [35].
Moreover, compared with specimen C0, the energy absorption capacities (S) of specimens
CAR and CARF were enhanced by 30.2% and 78.5%, respectively. In particular, the energy
absorption capacity of specimen CARF, which was mixed with polyethylene fibers, was
higher than 0.5. This suggests that the incorporation of polyethylene fibers had the best
effect on improving the toughness of the specimens compared with rubber particles and
polymer latex powders. In terms of the toughening mechanism, the polymer latex powder
could not only form a polymer film to improve the interface transition zone (ITZ) between
the aggregate and the cement matrix but also enhanced the energy absorption capacity of
hydration products at the micro-scale [36,37]. Rubber particles that had larger deformation
and energy absorption could act as a “flexible skeleton” and effectively alleviate the stress
concentration at the crack tip of the concrete [38,39]. Additionally, the good bridging effect
of the polyethylene fibers enhanced the ability of the concrete to absorb external energy [40].
Overall, each material exhibited its advantages. The synergistic effect of three types of
toughening materials (including polymer latex powders, rubber particles, and polyethylene
fibers) contributed to good deformation characteristics and high toughness of high-strength
self-compacting concrete.
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Table 3. Characteristic parameters of specimens.

Specimens COD (mm) Peak Load (KN) Energy Absorption Capacity (S)
(N·m−1)

C0 0.0440 16.5 29.47
CAR 0.0487 12.9 38.37

CARF 0.0535 15.3 52.61

4. Conclusions

Based on the results of this study, the following conclusions can be drawn:

1. DIC technology could successfully assess the crack expansion path and strain field of
high-strength self-compacting concrete under an external load. The incorporation of
rubber particles, polymer latex powders, and polyethylene fibers could increase the
fracture path and inhibit the macrocrack expansion of high-strength self-compacting
concrete. Moreover, the fracture mode of concrete with toughening materials changed
from brittleness to ductility.

2. The addition of toughening materials, i.e., rubber particles, polymer latex powders,
and polyethylene fibers, reduced the compressive and flexural strengths of high-
strength self-compacting concrete but enhanced its splitting strength.

3. Incorporating toughening materials led to the redistribution of internal strains and the
diminishment of stress concentration in high-strength self-compacting concrete under
compressive and splitting loads, thus exhibiting a significant effect of inhibiting crack
expansion. Meanwhile, the addition of toughening materials increased the ultimate
strain under a flexural load, which improved the deformation capacity of the concrete.

4. The evolution of crack opening displacement (COD) in high-strength self-compacting
concrete could be divided into two stages, including the linear growth stage and the
plastic yielding stage. Adding toughening materials could extend the linear growth
stage and provide a good energy absorption effect in the plastic yielding stage of
high-strength self-compacting concrete.

5. The COD and energy absorption capacity of high-strength self-compacting concrete
were improved by incorporating toughening materials. The best improvement was ob-
served with the hybrid of rubber particles, polymer latex powders, and polyethylene
fibers. This indicates that multiple types of toughening materials could effectively
enhance the toughness of high-strength self-compacting concrete.
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