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Abstract: The rocket nozzle is one of the core components to ensure the safe flight of rockets.
To overcome the problems of multi-step forming, the occurrence of defects, and severe plastic
deformation in traditional technology, a novel forming method named tube upsetting-bulging
(TUBG) is put forward. With the support of internal pressure, a tube is deformed with an upsetting
and bulging process at the same time. The tube is thickened at the small end and thinned at the
large end. A nozzle with sharply varying diameters can be obtained. A theoretical model of TUBG
that considers wrinkles and rupture is built. The influence factors of internal pressure during TUBG
are discussed. Experiments and simulation works are conducted to analyze the plastic deformation
process of TUBG. Results show that mechanical properties and geometrical parameters have an
obvious influence on critical internal pressure. The proposed theoretical model can be used to predict
a forming zone without wrinkles, rupture, and severe strain values. A well-formed nozzle can be
obtained using the predicted forming zone, which verifies the correctness of the theoretical analysis.
It can be found that TUBG is a novel potential method to fabricate rocket nozzles with high efficiency
and quality without defects.

Keywords: rocket nozzle; tube upsetting-bulging; plastic deformation; critical pressure

1. Introduction

The rocket nozzle is the key device and power source of the rocket engine [1]. It
converts the chemical energy generated by a propellant into kinetic energy, which can
provide the driving force for the rocket. Therefore, the rocket nozzle is extremely important
to the safe flight of the rocket [2–4]. The rocket nozzle is subjected to 6–10 Mpa pressure
and high temperature (2800–3400 K) gas erosion when working [5–7].

In previous studies, the spinning process is widely used to make rocket nozzles [8,9].
Spinning is a method that uses the movement of a rotary wheel to press the blank rotating
with a mold. It causes continuous plastic deformation of metals and finally obtains the
hollow rotation parts [10]. However, with the requirements of lightweight and high
strength, spinning still has the following disadvantages: 1. Spinning requires multi-step
forming. When a rocket nozzle is manufactured, the spinning process needs to be carried
out two or more times [11]. 2. For parts with thin wall thickness, it is easy to wrinkle
and rupture at the same time. 3. The degree of plastic deformation is large. Due to
the reciprocating action of the rotary wheel, the microstructure of the rocket nozzle is
elongated. Therefore, the grain is easy to grow up abnormally after heating, which does
not meet the requirements under high temperatures and pressure [10]. With the increasing
difficulty of space exploration missions, the requirements for the rocket nozzle are becoming
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significantly stricter. The abovementioned disadvantages in the traditional methods have
limited the development of the rocket nozzles inevitably.

The light weight of aerospace and vehicle-carrying equipment has been attracting
attention [12,13]. For thin-wall hollow structural components, a common forming process
is high-pressure tube hydroforming (HPTH) [14–16]. In this method, internal pressure is
applied to force the tube to expand into the required shape in a closed die cavity −much
like blowing up a balloon [16]. A tube blank of the initial type selected for manufacture
must have less than the circumference of the lowest section of the product to use HPTH.
However, internal pressure is the main and only driving force in the HPTH. When the size
of tube deformation is large, pressures of hundreds of Mpa are needed [17]. In addition, due
to the influence of friction caused by high pressure, the material of the tube has difficultly
flowing, which can cause serious thickness thinning or even cracking [18,19]. As a result of
the limitation of the ultimate expansion coefficient of the tube, the maximum expansion
rate of the tube section is generally 20–33% [20].

Another method to make the thin-wall hollow structural components is the tube
upsetting [21,22]. It can reduce the diameter of the tube through the mold [23]. Obviously,
in order to manufacture the required parts by tube upsetting, the circumference of the
selected initial tube blank must be greater than the maximum section of the product.
Therefore, when the circumference of the tube decreases, wrinkles are always the main
defects in the tube upsetting [24,25]. In particular, for the thin wall hollow tube without
internal support, when a large degree of tube upsetting deformation occurred, it is more
likely to appear as dead wrinkles, which leads to the failure of forming.

The tube-forming methods mentioned above have certain limitations (wrinkles that
cannot be suppressed, bursting risks under the action of high pressure). Therefore, Chu
Guannan et al. proposed a new method called tube hydro-forging [26]. Under the support
of internal pressure, the stamping of the outer mold is used to shape the tube into the
desired shape. In this scheme, internal pressure only plays a supporting role. The pressure
required for forming is reduced to 30% of the hydraulic forming. As a result, the use of
high pressure is avoided, and the wrinkles of the tube are suppressed. However, the above
forming schemes are all developed for the square tube members with the small size of the
vehicle. When the upsetting rate of the cross-section reaches more than 56%, this scheme is
limited greatly. In addition, when the thickness of the part is reduced to less than 0.5 mm,
the tube can easily lose stability and wrinkle.

Especially for rocket nozzles, as a thin-wall annular component, which has a sharply
varying diameter from one end to the other end. It is thickened at the small end and thinned
at the large end. When a tube with a smaller diameter is used in the manufacture of a
rocket nozzle, it carries the risk of rupture depending on high-pressure tube hydroforming
(HPTH). When a tube with a larger diameter is used in the manufacture of a rocket nozzle,
there is still a risk of wrinkles, even with the support of internal pressure, because of the
large degree of deformation.

For a long time, studies on the deformation of thin-wall tubes only stayed on the
single deformation (stamping, upsetting, bulging, hydroforming), the case of combining
upsetting and bulging simultaneously has not been examined or reported. For this purpose,
we proposed a new tube-forming method called tube upsetting-bulging (TUBG). Different
from the traditional methods, the deformation of upsetting and bulging occur on the
different parts of the same tube in TUBG. A theoretical model of TUBG that considers
wrinkling and rupturing is built. The influence factors of internal pressure during TUBG
are discussed. Experiments and simulation works are conducted to analyze the plastic
deformation process of TUBG.

2. Principle of Tube Upsetting-Bulging Method
2.1. Forming Processes

The schematic diagram of the TUBG studied in this paper is shown in Figure 1. For
the rocket nozzle, as shown in Figure 1a, the small end is thicker, and the large end is
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thinner. Compared with the high-pressure tube hydroforming or tube upsetting, during
TUBG, instead of a single bulging or upsetting, the different parts of the tube are upset and
expanded, respectively. In the process of tube upsetting-bulging (TUBG), by controlling
the movement of the punch, the tube is deformed under the force of the punch and mold.
By operating the pump, the pressure provided by the liquid drives the tube to have plastic
deformation. As a result, one end of the tube is upsetting, and the other end is bulging.
The wall thickness of the smaller end increases and the wall thickness of the larger end
decreases because of the same volume of the metals. Combining the above processes, the
thickness of the smaller end and larger end of the nozzle is controlled. In this scheme, since
one end of the tube is upsetting and the other end is bulging, we call this process tube
upsetting-bulging.
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Figure 1. Nozzle of rocket and schematic of TUBG. (a) The rocket nozzle, (b) The schematic of TUBG
with initial internal pressure P0, (c)The tube after upsetting with higher internal pressure P1, (d) The
tube after bulging with much higher internal pressure P2, (e) The perfectly formed rocket nozzle.

Taking a certain type of rocket engine nozzle as an example, the diameter ratio of the
small end to the big end is 31.67%. The wall thickness of the small end is thicker, and the
wall thickness of the large end is thinner. According to the principle of upsetting-bulging,
it is advisable to use an appropriate diameter in the middle of the nozzle as the diameter of
the original tube. During TUBG, the tube is supported by a rubber container with liquids,
which can provide internal pressure. The upper half of the tube meets the punch of the
stamping machine, it is knocked into the cavity of the mold under the action of the punch
until it is completely fitted. In this process, the perimeter of the tube decreases, the section
of the tube is reduced, and the wall thickness increases. Subsequently, the internal pressure
is increased. The cross-section is expanded, and the wall thickness is thinned until it fits
into the mold.

2.2. Advantages of Novel Method

From the principle of TUBG, the tube only has soft contact with the rubber container in
the whole process of forming. There is no reciprocating effect of the rigid wheel. Compared
with the traditional spinning forming, the product of TUBG has excellent surface properties.
It will be conducive to the coating of the thermal insulation layer on the surface of the
rocket nozzle, which improves the reliability of the nozzle in the service process effectively.
At the same time, to meet the size requirements of the target parts, the upsetting and
bulging sections can be formed at one time. Therefore, it shortens the production cycle and
improves the qualification rate, which also ensures the dimensional accuracy better.
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Compared with the traditional tube forming methods, in the process of TUBG, the
deformation force driving the upsetting is provided by the stamping machine. Internal
pressure only plays a supporting role. It greatly reduces the demand for internal high
pressure. Therefore, the influence of friction caused by high pressure is weakened. At the
same time, upsetting and bulging occur in different parts of a single tube, which divides the
traditional severe plastic deformation into two parts. The forming quality of the product
is better improved. In addition, because two opposite deformation behaviors occur on
a single tube in one process, TUBG can be used to manufacture components with large
variations in diameter from small to large ends.

It can be seen that if the internal pressure is too low during upsetting, the tube has
the tendency to wrinkle. If the internal pressure is too high during bulging, the tube has
the tendency to rupture. These are two typical geometric defects in the upsetting-bulging
process. Therefore, according to the size and properties of the materials, it is important to
understand the influencing factors of wrinkling and rupturing. On this basis, the minimum
pressure to eliminate wrinkling and the maximum pressure to prevent rupturing can be
determined. Further, the forming zone which meets the forming needs will be established.
To achieve this the corresponding analytical model will be proposed in the next section.

3. Theoretical Analysis
3.1. Theoretical Model

As shown in Figure 2, during TUBG, it is important to determine the critical minimum
support pressure to prevent wrinkling and the critical maximum rupture pressure to
prevent breaking. Therefore, it is necessary to propose a TUBG theoretical model with a
correction coefficient. Subsequently, the relative forming zone, according to the theoretical
calculation, can be determined.
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Figure 2. Outer and inner forces where lead wrinkles and ruptures.

3.1.1. Mechanism of Wrinkles Suppression

When upsetting occurs, due to the incompressibility of the metals, the perimeter of the
tube section decreases, and the thickness increases. For wrinkling cases, it is assumed that
the circumference of the round tube remains unchanged [27]. When the internal pressure is
lower than the critical value, the cross-section of the wrinkled tube is shown in Figure 3b.
With internal pressure support, the perfect upsetting tube is shown in Figure 3c.
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Figure 3. Cross-sectional topography of tube, (a) Initial tube, Tube after upsetting (b) with wrinkles
and (c) without wrinkles (from the perspective of the XOZ plane).

When the upsetting process is completed, there are two results: the tube keeps perfect
or it wrinkles. The appearance of wrinkles can be regarded as the behavior to release the
tube’s internal energy. The strain energy E1 contained in the unwrinkled tube is greater
than the strain energy E2 contained in the wrinkled tube. The energy released by wrinkling
can be written as E0. The relationship exists as follows:

E0 = E1 − E2 (1)

Under the action of critical internal pressure PL, when the tube with a wrinkled area
of A is suppressed, the energy can be written as:

E0 = PL

∫
dA = PL A (2)

The process of inhibiting wrinkles can be seen as a force F, forcing the wrinkles to
move a distance. When studying the wrinkle behavior of the thin plate, Cao et al. [28]
deduced the critical internal pressure as:

PL =
3(E1 − E2)

4ϕs
(3)

ϕ is the height of wrinkles and s is the length of wrinkles.
In the past, when scholars studied the upsetting behavior of tubes, the shape of the

wrinkled part y was regarded as a sine wave [26,27], which can be expressed as a function
with x as an intermediate variable:

y =
ϕ

2
(1− cos ax) (4)

Assuming without the internal pressure, when the displacement of u1 occurs at the
edge of the wrinkle, the frequency a of the corresponding mode can be expressed as:

a =
2π

s− 2∆u1
(5)

In the work of previous scholars [26], s – 2∆u1 can be expressed as seε1 . Therefore, the
height ϕ of wrinkles can be expressed as:

ϕ =
2y

1− cos 2π
seε1 x

(6)

The length of the wrinkles can be expressed according to the means of calculus as:

s =
∫ s−∆u1

0

√
1 + y2dx (7)
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Consequently, ϕ can be expressed as:

ϕ =
2s
π

√
eε1 − e2ε1 (8)

When studying the wrinkling behavior, Cao et al. [28] deduced the strain energy
contained in the unwrinkled tube as follows:

E1 =
sKt

n + 1
(ε0 −

2
√

3
3

ε1)

n+1

(9)

ε0 is the pre-strain. In this experiment, the pre-strain of the tube without deformation
can be regarded as 0.

There is a relationship between the stress and strain of the material as follows:

σ = Kεn (10)

where K is the strength coefficient, and n is the strain-hardening exponent. σ and ε are
effective values.

After upsetting, the shape of the tube from the perspective of the XOY plane is shown
in Figure 4.
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During the tube upsetting process, it meets the simple loading conditions. From the
full volume theory, the correlation between ε and σ can be rewritten as:

ε
′
r

σ
′
r
=

ε
′
θ

σ
′
θ

=
ε
′
t

σ
′
t

(11)

Using the law of equal proportionality, the above equation can be rewritten as:

ε
′
r − ε

′
θ

σ
′
r − σ

′
θ

=
ε
′
θ − ε

′
t

σ
′
θ − σ

′
t

(12)
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According to the theory of thin plate and the theory of thin-wall shell [29,30], since
the diameter is much larger than the thickness, the principal stress σt perpendicular to the
direction of the material surface is considered 0, the above equation can be regarded as:

εr − εθ

σr − σθ

=
εθ − εt

σθ

(13)

Record the angle between the contour of the mold and the axis as α, εt can be written as:

εt = −
σθ + σr

2σθ − σr
εθ = −

1 + (1 + µ cot α)(1− r
R )

2− (1 + µ cot α)(1− r
R )

ln
R
R0

(14)

For tubes with stable upsetting, there is an equilibrium equation:

R
dσr

dR
+ σr − σθ(1 + µ cot α) = 0 (15)

In the upsetting area, the compressive stress σθ can be expressed as:

σθ = βY (16)

β is a constant. In the study of this forming process, 1.15 can be taken.
Because the degree of deformation varies from point to point within the deformation

area, the true stress Y can be expressed as:

Y = σs + (
Yb − σs

ln σb
)(1− R

R0
) (17)

In summary, the equilibrium equation can be written as:

R
dσr

dR
+ σr − 1.15

[
σs + (

Yb − σs

ln σb
)(1− R

R0
)

]
(1 + µ cot α) = 0 (18)

Integrate the above equation:

Rσr = 1.15(1 + µ cot α)

[
σsR + R(

Yb − σs

ln σb
)− (

Yb − σs

ln σb
)

R2

2R0

]
+ C (19)

When R = r, σr = 0, C can be written as:

C = −1.15(1 + µ cot α)

[
σsr + r(

Yb − σs

ln σb
)− (

Yb − σs

ln σb
)

R2

2R0

]
(20)

The distribution law of σr in the deformation zone of the workpiece can be written as:

σr = 1.15(1 + µ cot α)(1− r
R
)

[
σs + (

Yb − σs

ln σb
)(1− Rr

2R0
)

]
(21)

At the same time, under the condition that the material is not compressed,
Cao [28] et al. provide the formula for calculating the strain energy contained in the
wrinkled tube:

E2 =
2Kt

n + 1

(√
3t

3

)n+1(
2

ϕ2∆a
+

t
2

)−n
tan−1

(
ϕ∆a

2

)
(22)
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It can be observed that the wrinkle length s and the tube wall thickness t are the same
dimensions, so there are multiple relationships between the defined wrinkle length and the
tube wall thickness:

N =
s
t

(23)

Combined with the above formula, the critical internal pressure Pcr1 of the tube
without wrinkling can be expressed as:

pc1 =
3Kπ

4N
√

eε1 − e2ε1

[
ε1

n+1 −
(√

3t
3

)n(
Nte2ε1

4
√

eε1 − e2ε1
+

t
2

)(
2
N

)
tan−1

(
2
√

eε1 − e2ε1

eε1

)]
(24)

3.1.2. Mechanism of Resistance to Rupturing

After bulging, the shape of the tube from the perspective of the XOY plane is shown
in Figure 5. For the bulging phase, it is generally assumed that the stress-strain is evenly
distributed along the wall thickness. The radial stress is ignored. Only the tangential tensile
stress is considered.
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Under the drive of internal pressure, the tube is expanded to the maximum diameter.
Taking a unit width of the tube for analysis, according to the equilibrium conditions of the
round tube, it can be obtained that:∫ x

0
pr sin αdα = 2σtt (25)

It can be simplified as:

p =
t
r

σt (26)

When studying the ultimate expansion coefficient of the tube, considering the thick
anisotropy of the material, Yang [31] et al. provide the influence coefficient of the above formula:

M =
1 + R√
1 + 2R

(27)

R is the anisotropic parameter of the selected material.
Considering the influence of cold work hardening of the material, replace σt with σb,

combined with the influence coefficient, and the critical pressure required for expansion
can be corrected to:

p =
1 + R√
1 + 2R

t
r

σb (28)

Assuming that the ratio of axial stress to circumferential stress is ξ, the initial critical
yield pressure obtained from the Tresca yield criterion is:

ps =
1

1− ξ

t
r

σs (29)
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During the bulging process, there are: σz = ln
(

l
L0

)
σθ = ln

(
r

R0

) (30)

Combined with the above influence coefficients, when plastic deformation occurs, the
ring stress and axial stress are derived as: σθ = (1+R)2

1+2R
σe
εe

(
R

1+R εz + εθ

)
σz =

(1+R)2

1+2R
σe
εe

(
R

1+R εx + εz

) (31)

To deform the tube without failure conditions such as rupture, Chow [32] et al. provide
a critical pressure including the thick anisotropy parameter when the tube is expanded:

pc2 = K
t0

r0en
1 + R√
1 + 2R

(
n
2

1 + R√
1 + 2R

)n
(32)

In summary, the selectable pressures pcr for this process are between pcr1 and pcr2 :

3Kπ

4N
√

eε1 − e2ε1

[
ε1

n+1 −
(√

3t
3

)n(
Nte2ε1

4
√

eε1 − e2ε1
+

t
2

)(
2
N

)
tan−1

(
2
√

eε1 − e2ε1

eε1

)]
≤ pcr ≤ K

t0

r0en
1 + R√
1 + 2R

(
n
2

1 + R√
1 + 2R

)n
(33)

3.2. Influencing Factors of Pressure
3.2.1. Materials

The proposal in this process is derived from two hypotheses: the length of wrinkles
gradually decreases until it disappears with the increase of internal pressure; the risk of
rupture gradually decreases until it disappears with the decrease of internal pressure. The
experimental results confirm the above two hypotheses.

Figure 6 shows the critical wrinkling pressure of 20 steel and AA6061. For 20 steel,
with the increase of internal pressure, the wrinkles can be suppressed. When the internal
pressure reaches 10.4 MPa, the wrinkles eventually disappear. That means that the critical
wrinkling pressure of a 20 steel tube with a punch stroke of 100 mm is 10.4 MPa. When
the internal pressure is higher than 10.4 MPa, the 20 steel tube can achieve stable upsetting
deformation. For AA6061, the critical wrinkling pressure with a punch stroke of 100 mm is
7.9 MPa. Compared to 20 steel, the critical wrinkling pressure of AA6061 is 24% lower.
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Figure 7 shows the critical rupture pressure of 20 steel and AA6061. It is clear from the
picture that for tubes that have undergone bulging behavior, the risk of tube rupture can be
reduced with the reduction of internal pressure. When the internal pressure is reduced to
13.9 MPa, for the 20 steel tube with a radius of 75 mm and a wall thickness of 2 mm, the
rupture defect eventually disappears. That means the critical rupture pressure is 13.9 MPa.
When the internal pressure is lower than 13.9 MPa, the 20 steel tube can produce mold
bugling behavior without rupture. For AA6061, the critical rupture pressure is 7.2 MPa.
Compared to 20 steel, the critical rupture pressure of AA6061 is 48.2% lower.
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As shown in Figure 8, the TUBG forming zone of 20 steel can be obtained after combing
the above critical pressure.
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3.2.2. Mechanical Properties

In this paper, the critical rupture pressure is obtained for different strength coefficients,
strain hardening exponent, and anisotropy. As shown in Figure 9, when the anisotropy
increases from 0.68 to 1.28, the critical rupture pressure gradually increases. For tubes with
a diameter of 60 mm, when the anisotropy increases from 0.68 to 1.28, the critical rupture
pressure increases from 17.3 MPa to 19.4 MPa, with an increasing range of 12.1%. For
tubes with a diameter of 80mm, when the anisotropy increases from 0.68 to 1.28, the critical
rupture pressure increases from 12.9 MPa to 14.1 MPa, with an increasing range of 9.3%.
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As shown in Figure 10, when the strain hardening exponent increases from 0.15–0.30,
the critical internal pressure gradually decreases. When 0 < ε < 1 and K are given, the
strain hardening exponent n of the material decreases, and the value of σ is larger, which
means the material has higher strength and is difficult to rupture during the bulging phase.
For tubes with a diameter of 60 mm, when the strain hardening exponent increases from
0.15–0.30, the critical rupture pressure decreases from 14.7 MPa to 20.2 MPa, with a de-
creasing range of 37.4%. For tubes with a diameter of 80 mm, when the strain hardening
exponent increases from 0.15–0.30, the critical rupture pressure increases from 11.1 MPa to
15.2 MPa, with a decreasing range of 36.9%.



Materials 2023, 16, 1680 12 of 22

Materials 2023, 16, x FOR PEER REVIEW 12 of 22 
 

 

tubes with a diameter of 60 mm, when the strain hardening exponent increases from 0.15–
0.30, the critical rupture pressure decreases from 14.7 MPa to 20.2 MPa, with a decreasing 
range of 37.4%. For tubes with a diameter of 80 mm, when the strain hardening exponent 
increases from 0.15–0.30, the critical rupture pressure increases from 11.1 MPa to 15.2 
MPa, with a decreasing range of 36.9%. 

 
Figure 10. Critical internal pressure for rupture with different strain hardening exponents. 

As shown in Figure 11, when the strength coefficient increases from 700–1000 MPa, 
the critical rupture pressure gradually increases. For tubes with a diameter of 60 mm, 
when the strength coefficient increases from 700–1000 MPa, the critical rupture pressure 
increases from 13.9 MPa to 20.0 MPa, with an increasing range of 43.8%. For tubes with a 
diameter of 80 mm, when the strength coefficient increases from 700–1000 MPa, the critical 
rupture pressure increases from 10.5 MPa to 14.9 MPa, with an increasing range of 41.9%. 
Strength coefficient K describes the strength of the materials. The material with a higher 
value of K has higher strength, which means that it is difficult to rupture during the bulg-
ing phase. 

 
Figure 11. Critical internal pressure for rupture with different strength coefficients. 

Figure 10. Critical internal pressure for rupture with different strain hardening exponents.

As shown in Figure 11, when the strength coefficient increases from 700–1000 MPa,
the critical rupture pressure gradually increases. For tubes with a diameter of 60 mm, when
the strength coefficient increases from 700–1000 MPa, the critical rupture pressure increases
from 13.9 MPa to 20.0 MPa, with an increasing range of 43.8%. For tubes with a diameter
of 80 mm, when the strength coefficient increases from 700–1000 MPa, the critical rupture
pressure increases from 10.5 MPa to 14.9 MPa, with an increasing range of 41.9%. Strength
coefficient K describes the strength of the materials. The material with a higher value of K
has higher strength, which means that it is difficult to rupture during the bulging phase.
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As shown in Figure 12, it compares the critical rupture pressure between 20 steel
and AA6061 using TUBG. To meet the needs of this process, materials with large strength
coefficients, anisotropy, and a small hardening index should be selected. That means a
larger forming zone can be obtained. When the above parameters change, these rules and
equations are still valid for other materials.
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3.2.3. Geometric Parameters

This paper obtains the forming zone for tubes with different thickness-diameter ratios
under the condition of a 100 mm stamping stroke. In this work, the mold is unchanged.
Therefore, the outer contour of the nozzle is fixed. The smaller thickness-diameter ratio
means the tube has a smaller wall thickness. When the thickness-diameter ratio is reduced
from 1.67% to 1%, the thickness of the tube is reduced from 2.5 mm to 1.5 mm. The
forming zone is gradually reduced. As shown in Figure 13, when the thickness-diameter
ratio = 1.67%, the thickness is 2.5 mm. The critical wrinkling pressure is 7.8 MPa, and the
critical rupture pressure is 15 MPa.
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Figure 13. The forming zone of TUBG (thickness-diameter ratio = 1.67%).

As shown in Figure 14, when the thickness-diameter ratio = 1.33%, the thickness is
2.0 mm. The critical wrinkling pressure is 10.3 MPa, and the critical rupture pressure is
13.6 MPa. Compared to Figure 13, the critical wrinkling pressure is increased by 32.1%, and
the critical rupture pressure is reduced by 9.3%.
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Figure 14. The forming zone of TUBG (thickness-diameter ratio = 1.33%).

As shown in Figure 15, when the thickness-diameter ratio = 1.33%, the thickness is
2.0 mm. The critical wrinkling pressure is 11.0 MPa, and the critical rupture pressure is
11.9 MPa. Compared to Figure 13, the critical wrinkling pressure is increased by 41.1%, and
the critical rupture pressure is reduced by 20.6%.
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Therefore, for the component with a small thickness-diameter ratio, the process should
be strictly controlled as a result of a narrower forming zone.

4. Experiments and Simulation Analysis
4.1. Experimental

The simulation and experimental equipment for TUBG are shown in Figure 16. The
speed of the punch stroke is set to 2 mm/s with friction coefficient µ = 0.05 between tube
and mode. When simulating, assume the extrusion model is isothermal. Both the mold
and punch are set to a rigid body, and the tube is set to a deformed body. In this paper, the
global seed method is selected to strictly control the grid density and determine the size of
the grid to be 1 mm2.
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Figure 16. The equipment and simulation model for TUBG. (a) The equipment for TUBG, (b) The
simulation model for TUBG.

Before the experiment, the shortened length in the axial direction was calculated. The
calculation results showed that for tubes with a length of 200 mm, the shortened length in
the axial direction is 8 mm. It means only 4 percent of the length is required in the axial
direction during TUBG. Due to the small proportion, the length of this part is negligible
in experiments.

Combined with the results of theoretical analysis, using the liquid pressure pump to
supply internal pressure. The pump is connected to the tube. The tube is placed inside
the mold. The geometry of the mold limits the minimum and maximum diameter of the
nozzle. Through a catheter, the liquid in the pump can be injected into a rubber container,
which in turn provides pressure. When TUBG begins, by controlling the movement of the
punch, the tube is deformed under the force of punch and mold. By operating the pump,
the pressure provided by the liquid drives the tube to have plastic deformation.

4.2. Plastic Deformation Process
4.2.1. Simulation Accuracy

During the upsetting process of hollow tubes, it is very easy to shrink and wrinkle. As
shown in Figure 17, four wrinkles appear around the edge when the upsetting is finished,
with a low pressure of 9 MPa. Moreover, as the stamping process progresses, the wrinkle
gradually evolves in size and becomes a dead wrinkle, which directly leads to the failure of
the forming process.

Materials 2023, 16, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 16. The equipment and simulation model for TUBG. (a) The equipment for TUBG, (b)The 
simulation model for TUBG. 

Before the experiment, the shortened length in the axial direction was calculated. The 
calculation results showed that for tubes with a length of 200 mm, the shortened length in 
the axial direction is 8 mm. It means only 4 percent of the length is required in the axial 
direction during TUBG. Due to the small proportion, the length of this part is negligible 
in experiments. 

Combined with the results of theoretical analysis, using the liquid pressure pump to 
supply internal pressure. The pump is connected to the tube. The tube is placed inside the 
mold. The geometry of the mold limits the minimum and maximum diameter of the noz-
zle. Through a catheter, the liquid in the pump can be injected into a rubber container, 
which in turn provides pressure. When TUBG begins, by controlling the movement of the 
punch, the tube is deformed under the force of punch and mold. By operating the pump, 
the pressure provided by the liquid drives the tube to have plastic deformation. 

4.2. Plastic Deformation Process 
4.2.1. Simulation Accuracy 

During the upsetting process of hollow tubes, it is very easy to shrink and wrinkle. 
As shown in Figure 17, four wrinkles appear around the edge when the upsetting is fin-
ished, with a low pressure of 9 MPa. Moreover, as the stamping process progresses, the 
wrinkle gradually evolves in size and becomes a dead wrinkle, which directly leads to the 
failure of the forming process. 

 
Figure 17. Wrinkle in XOZ plane during TUBG process with pressure of 9 MPa. 

At the same time, it is worth noting that, during the simulation and experimental 
forming process, the axial direction of the tube gradually evolves into annular wrinkles. 
As shown in Figure 18a,b, the emergence and evolution of this type of wrinkle. Figure 18c 
shows the wrinkle morphology after the experiment. It is considered to be the result of 
increased friction between the tube and mold. At the beginning of the forming process, 
the contact area between the tube and mold is small. The value of friction has not yet 
reached the critical value of wrinkling. When the contact area between the tube surface 
and the mold increases, the value of friction increases and leads to wrinkles eventually. 

Figure 17. Wrinkle in XOZ plane during TUBG process with pressure of 9 MPa.



Materials 2023, 16, 1680 16 of 22

At the same time, it is worth noting that, during the simulation and experimental
forming process, the axial direction of the tube gradually evolves into annular wrinkles.
As shown in Figure 18a,b, the emergence and evolution of this type of wrinkle. Figure 18c
shows the wrinkle morphology after the experiment. It is considered to be the result of
increased friction between the tube and mold. At the beginning of the forming process, the
contact area between the tube and mold is small. The value of friction has not yet reached
the critical value of wrinkling. When the contact area between the tube surface and the
mold increases, the value of friction increases and leads to wrinkles eventually. Whether it
is a beneficial wrinkle and whether it can be flattened in bugling remains to be discussed.
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In this process, the extrusion force required per unit area can be obtained according to
the empirical formula [33]:

Pα =
2√
3

σµ(1 + C) ln(
R1 − R2

r1 − r2
) (34)

σ is the average equivalent force value; R1, R2 are the outer diameter and inner
diameter of the experimental tube; r1, r2 are the outer diameter and inner diameter of the
thin wall of the hollow cone; µ is the coefficient of friction. When the friction increases, it is
extremely difficult for the tube to complete a stamping process due to the press of internal
pressure. The tube is more prone to wrinkling. It is extremely important to reduce friction
between the tube and mold for the TUBG process.

4.2.2. Forming Zone

When bulging, if the internal pressure is too low, it is difficult to make the tube ex-
pand to the predetermined shape, which cannot fit with the mold and meet the shape
requirements. If the internal pressure is too high, not only better performance equipment is
required, but also the tube may be ruptured, which results in the failure of nozzle manufac-
turing.

The materials selected for this experiment are 20 steel. The strength coefficient (K) is
800 MPa, hardening index (n) is 0.2, anisotropy (R) is 0.88, wall thickness is 2 mm, diameter
is 75 mm, and length is 200 mm. Combined with the formula in this article, the forming
zone is given, as shown in Figure 19. The initial well-formed upsetting process does not
require internal pressure support. As the punch stroke increases, the required support
internal pressure gradually appears and increases. Combine the support pressure with the
rupture pressure, forming zone of TUBG in this experiment is given.
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4.2.3. Deformation Analysis

As shown in Figure 20, the process of TUBG is shown. The first stage of TUBG is
shown in Figure 20a. The tube completes the well-formed upsetting process with the
support of internal pressure. However, there are three wrinkles in the force transmission
area. As the experiment progresses and pressure increases, as shown in Figure 20b, two
wrinkles are flattened. Most parts of the tube have been fitted to the mold. Finally, as
shown in Figure 20c, after the internal pressure increases to the set value, all wrinkles are
flattened, and no rupture occurs. A well-formed rocket nozzle is obtained.
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shape of the nozzle that two wrinkles are flattened, (c) A well-formed rocket nozzle.

In order to explore the accuracy of the forming zone, the upper and lower limits of the
forming zone are taken respectively. As shown in Figure 21a–c, when P = 13.9 MPa, the evolution
process of tube bulging is discussed. With the increase of internal pressure, the wrinkles are
flattened to a certain extent. Finally, after forming, the tube was perfectly molded.
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Figure 21. Mises stress distribution of formed parts in cases of 11.9 MPa and 13.9 MPa. (a–c) The
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morphology when P = 11.9 MPa.

In order to explore the forming results under the different pressure in the forming zone,
this paper discusses the forming conditions under P = 11.9 MPa. As shown in Figure 21d–f,
with the increase of internal pressure, the wrinkles are flattened to a certain extent. Finally,
the tube fits into the mold and forms a well-formed part. It also indicates that the wrinkles
formed under this coefficient of friction are beneficial.

For the rocket nozzle to be formed, its wall thickness shows a gradual thinning
phenomenon from the small end to the large end. With the improvement of the uniformity
of the wall thickness change, its ability to resist ablation during the working process
is enhanced.

In this process, the theoretical calculation of Section 3 shows that the wall thickness
is thickened after upsetting, and the wall thickness is thinned after bulging. However, in
order to explore the wall thickness distribution under different pressure, the corresponding
strain is extracted for analysis. As shown in Figure 22, compared to P = 11.9 MPa, the
strain evolution of the bulging segment under 13.9 MPa is more uniform. For P = 13.9 MPa,
considering that due to the greater pressure, the greater wrinkling behavior in the force
transmission zone of the material occurs. After repeated action of the internal pressure
bulging shape, an uneven strain distribution phenomenon occurs.
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Therefore, when manufacturing nozzle parts, a process scheme with a larger value of
P should be selected in the forming zone. Especially compared to spinning, which uses a
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steel plate to make the rocket nozzle, TUBG has a smaller degree of deformation. Based on
this, many defects are avoided.

Furthermore, the strain distribution along the axial direction is extracted, as shown in
Figure 23. In contrast, when P = 11.9 MPa, the real value is more fitted to the theoretical
value. In the real strain distribution, the location of the mutation is the same as the wrinkle
position during the simulation. It is considered that the appearance of beneficial wrinkles
has caused the sudden change in the strain value there.
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4.2.4. Experimental Results

Figure 24 shows the outline of a rocket nozzle. For this component, the diameter ratio
of small end to large end is 31.67%. When it is formed, the difficulty is that the small end
diameter is 75 mm, and the large end diameter is 200 mm.
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In the process of TUBG, under the pressure of 13.2 MPa, the rocket nozzle of the
above size can be manufactured without any wrinkling and rupturing defects. As shown in
Figure 25a-(1), with an internal pressure lower than the critical value, an imperfect upsetting
process occurs. Wrinkles appear on the tube. As shown in Figure 25a-(2), within the given
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forming zone, the tube undergoes a well-formed TUBG process. A well-formed rocket
nozzle is obtained. As shown in Figure 25a-(3), under the pressure above the critical value,
annular wrinkles appear in the force transmission zone of the tube. It is considered that
excessive internal pressure increases friction, which leads to the appearance of wrinkles. As
shown in Figure 25b, the wall thickness of the perfect nozzle obtained in Path 2 is measured.
The thickness values from the finite element analysis results are also extracted. From the
small end to the big end of the rocket nozzle, the thickness shows a trend from thicker to
thinner, which meets the requirements for the use of the rocket nozzle.
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5. Conclusions

The traditional forming process of the rocket nozzle has the problems of multi-step
forming, the occurrence of defects, and severe plastic deformation. This study proposed a
novel tube upsetting-bulging (TUBG) method. Both theoretical and experimental works
are conducted to analyze plastic deformation behavior. Detailed conclusions can be drawn
as below:

1. A theoretical model for wrinkling and rupturing is built. Based on the energy
method, a theoretical critical internal pressure is established, which can avoid wrinkling and
rupturing. The model considered the factors such as materials and geometric parameters.
For a certain degree of deformation, the critical pressure is improved with the increase
of the strengthen coefficient and anisotropies but decreases as the hardening exponent
increases. A theoretical forming zone for TUBE is established, which decreases with the
decrease of the thickness-diameter ratio.

2. A finite element analysis model is set up. The accuracy of this model is verified by
the wrinkling behaviors of different cross-sections. The plastic deformation behavior of
TUBG is analyzed. During deformation, the small end is compressed and thickened. The
large end is stretched and thinned. Wrinkles appear at the beginning of the deformation,
which can unfold in the later stages. The finite element analysis results show that the strain
distribution is consistent with the theoretical predictions.

3. An experimental platform is established, and verification is carried out. Three
loading paths are selected near the forming zone for testing. When the pressure is less than
the critical value, an imperfect upsetting process occurs with wrinkles appearing. When the
loading path is inside the forming zone, a well-formed rocket nozzle can be obtained. When
the pressure is higher than the critical value, axial wrinkles appear due to the increased
friction force.

4. The study shows that TUBG combines the advantages of traditional schemes. Using
the predicted forming zone, a well-formed nozzle can be obtained with high efficiency. The
strain distribution of the specimens is relatively uniform.
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Nomenclature
PL critical internal pressure σr radial stress
E0 energy released by wrinkles σθ circumferential stress
E1 strain energy in unwrinkled tube εr radial strain
E2 strain energy in wrinkled tube εθ circumferential strain
A area where wrinkles appear f friction coefficient
ϕ the height of wrinkles t thickness of the tube
S the length of wrinkles L length of the tube
y the shape of the wrinkled part Y correction coefficient when upsetting
a the frequency of the mode Pcr1 critical wrinkling pressure
r internal diameter Pcr2 critical rupturing pressure
K strength coefficient M correction coefficient when bulging
n strain hardening exponent Ps critical yield pressure
R anisotropy coefficient Pcr selectable internal pressure
ε0 pre-strain
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