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Materials

ZrCls, Zn(NO)3.6H20, benzoic acid, 2,5-dihydroxyterephtalic acid, and
2,5-dihydroxyterephthalic acid were obtained from Aladdin.
(3-Aminopropyl)trimethoxysilane (APTMS),
3-(2-aminoethylamino)propyltrimethoxysilane (AEAPTMYS) and
3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEAEAPTMS) were
obtained from Energy Chemical Co., Ltd. CO2 (Praxair, SFC grade, 99.998 vol%) and
N2 (Praxair, 99.9993 vol%) were obtained from Praxair. All the chemicals were used
as received unless otherwise stated.

Instrumentation

X-ray photoelectron spectroscopy (XPS) were determined on a Thermo Scientific
K-Alpha electron energy spectrometer using Al Ko (1486.6 eV) as the X-ray source.
X-ray diffraction (XRD) patterns were measured on a Rigaku SmartLab9
diffractometer with monochromatic Cu Ko radiation (A = 1.5418 A). Scanning
electron microscopy (SEM) were recorded on a Hitachi S-4800 microscope at 5 kV.
Nuclear magnetic resonance (NMR) spectra were carried out on a JINM-ECZ600R/S3
spectrometer (600 MHz). Mass spectra were measured on an Agilent
GC-MS-5890A/5975C Plus spectrometer (EI). Water contact angles were obtained
through a KRUSS Drop Shape Analyzer 25 (KRUSS DSA25).

2. Figures S1-S28
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Figure S1 XPS spectrum of (a) H-UiO-66-(OH)2, (b) H-UiO-66-(OAPTMS)2, (c)
H-UiO0-66-(OAEAPTMS): and (d) H-UiO-66-(OAEAEAPTMS)..
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Figure S2 High-resolution XPS spectrum of Zr 3d (a), C 1s (b), N 1s (c¢) and Si 2p (d)
of H-UiO-66-(OAPTMS)s..
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Figure S3 High-resolution XPS spectrum of Zr 3d (a), C 1s (b), N 1s (¢) and Si 2p (d)
of H-Ui0-66-(OAEAPTMS)s.
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Figure S4 High-resolution XPS spectrum of Zr 3d (a), N 1s (b) and Si 2p (c) of
H-Ui0-66-(OAEAEAPTMS)s.
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Figure S5 Solid-state '3C NMR spectra of (a) H-UiO-66-(OH), (b)
H-UiO-66-(OAPTMS), (c) H-UiO-66-(OAEAPTMS):2 and (d)
H-UiO-66-(OAEAEAPTMS)..

Figure S6 SEM image of the pristine H-UiO-66-(OH)a.
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Figure S7 Photographs of toluene-in-water emulsions stabilized by

H-Ui0-66-(OAPTMS): (a) and chosen micrographs for (4), (5) and (6) in (a) (b).
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Figure S8 Photographs of toluene-in-water emulsions stabilized by

H-Ui0-66-(OAEAPTMS): (a) and chosen micrographs for (4), (5) and (6) in (a) (b).
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Figure S9 Photographs of benzene (3 ml)-water (2 ml) emulsion stabilized by
H-UiO-66-(OAPTMS). (0.55 wt%): (a), before CO: bubbling; (b), after CO2
bubbling.

Figure S10 Photographs of benzene (3 ml)-water (2 ml) emulsion stabilized by
H-Ui0-66-(OAEAPTMS)2 (0.55 wt%): (a), before CO2 bubbling; (b), after CO2
bubbling.

Figure S11 Photographs of benzene (3 ml)-water (2 ml) emulsion stabilized by
H-UiO-66-(OAEAEAPTMS)2 (0.55 wt%): (a), before CO2 bubbling; (b), after CO2
bubbling.
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Figure S12 Photographs of n-hexane (3 ml)-water (2 ml) emulsion stabilized by
H-UiO-66-(OAPTMS). (0.55 wt%): (a), before CO: bubbling; (b), after CO2
bubbling.

Figure S13 Photographs of n-hexane (3 ml)-water (2 ml) emulsion stabilized by
H-Ui0-66-(OAEAPTMS)2 (0.55 wt%): (a), before CO2 bubbling; (b), after CO2
bubbling.

Figure S14 Photographs of n-hexane (3 ml)-water (2 ml) emulsion stabilized by
H-UiO-66-(OAEAEAPTMS)2 (0.55 wt%): (a), before CO2 bubbling; (b), after CO2
bubbling.
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Figure S15 Photographs of cyclohexane (3 ml)-water (2 ml) emulsion stabilized by
H-UiO-66-(OAPTMS). (0.55 wt%): (a), before CO: bubbling; (b), after CO2
bubbling.
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Figure S16 Photographs of cyclohexane (3 ml)-water (2 ml) emulsion stabilized by
H-Ui0-66-(OAEAPTMS)2 (0.55 wt%): (a), before CO2 bubbling; (b), after CO2
bubbling.
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Figure S17 Photographs of cyclohexane (3 ml)-water (2 ml) emulsion stabilized by
H-UiO-66-(OAEAEAPTMS)2 (0.55 wt%): (a), before CO2 bubbling; (b), after CO2
bubbling.
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Figure S18 Zeta potential and contact angle of H-UiO-66-(OAPTMS)2 before COx,

after CO2 and after Na.
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Figure S19 Zeta potential and contact angle of H-UiO-66-(OAEAPTMS):. before CO2,

after CO2 and after Noa.
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Figure S20 The variation of 2-benzylidenemalononitrile yield with reaction time in

H-UiO-66-(OAEAEAPTMS):-based Pickering emulsion at 25°C
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Figure S21 'H NMR of 2-benzylidenemalononitrile.
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Figure S22 The recyclability of Pickering emulsion in the reaction of benzaldehyde

with malononitrile.
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Figure S23 PXRD patterns of H-UiO-66-(OAEAEAPTMS): before and after each

catalytic run.
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Figure S24 'H NMR of 2-(2-nitrobenzylidene)malononitrile.
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Figure S25 'H NMR of 2-(4-nitrobenzylidene)malononitrile.
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Figure S26 'H NMR of 2-(4-methylbenzylidene)malononitrile.
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Figure S27 'H NMR of 2-(4-fluorobenzylidene)malononitrile.
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Figure S28 'H NMR of 2-(4-bromobenzylidene)malononitrile.
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3. Tables S1-S2

Table S1 Surface chemical composition of the pristine and functionalized

H-Ui0-66-(OH): (in at.%).

MOF Zr C O N Si
H-Ui0-66-(OH)2 1.24 84.43 14.34
H-UiO-66-(OAPTMS)2 1.20 58.62 15.47 22.14 2.57
H-Ui0O-66-(OAEAPTMS)2 1.26 57.13 20.06 16.33 5.21

H-UiO-66-(OAEAEAPTMS)2 1.72 58.11 20.82 15.09 4.26

Table S2 Reaction of benzaldehyde and malononitrile under different catalyst

conditions.

Entry Catalyst GC Yield (%)
1 No 3
2 H-U10-66-(OAPTMS)2 80
3 H-UiO-66-(OAEAPTMS)2 85
4 H-Ui10-66-(OAEAEAPTMS)2 93
Table S3. Recyclability data of reaction of aldehydes and malononitrile under the same

conditions.
Entry Product Cycle 1 (%) Cycle 2 (%) Cycle 3 (%)
NO,
1 N 99 98 98
CN
N CN
2 L 99 98 98
ON
x CN
3 N 98 97 96
HsC
N CN
4 64 62 61
F CN
N CN
5 74 72 72

Br
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