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Abstract: A new type of structural material has begun to be used in the reinforcement of deformed
shield tunnels, known as filament wound profiles (FWPs). The FWPs are formed by wrapping
carbon-fiber-reinforced polymer (CFRP) around steel tubes that are grouted with concrete inside.
However, for practical engineering applications, the design of FWPs requires further insight into their
mechanical behavior, since there is no standard method for this at present. In this study, compression
and bending tests were carried out to investigate the mechanical behavior of FWPs. A reliable
numerical model was established based on the test results, and the effects of the design parameters
on the mechanical properties of the FWPs were analyzed qualitatively. The key design parameters
of bearing capacity and stiffness were determined through numerical experiments. Based on the
experimental results, a method for the calculation of bearing capacities and stiffness was proposed. It
was verified that the results of the calculation formulae and the experimental results showed good
agreement. Moreover, the results of the formulae were relatively conservative, and most of the errors
were within 15%. Thus, this calculation method can be used to calculate the load-bearing capacity
and stiffness of FWPs in practical projects.

Keywords: shield tunnel reinforcement; filament wound profiles; mechanical behavior; sensitivity
analysis; calculation method

1. Introduction

The incidence of diseases of shield tunnel linings is gradually increasing with the
dual effect of the natural environment and the unexpected changes in loading conditions.
Therefore, the demand for shield tunnel reinforcement is also increasing [1]. The methods of
reinforcing shield tunnel linings with large deformations include FRP reinforcement [2,3],
steel plate reinforcement [4–6], steel plate–UHPC composite reinforcement [7,8], and cor-
rugated steel reinforcement [9], among which steel plate reinforcement is widely used in
urban metro shield tunnel linings. However, as shown in Table 1, due to the large self-
weight of steel plates, mechanical arm support is an indispensable part of the construction,
as shown in Figure 1a. With limited time for repair construction in operational tunnels, it is
impossible to repair all deformed rings of one tunnel rapidly, because the mechanical arms
are scarce and expensive. Therefore, the efficiency of emergency repair of the deformed
linings of operational shield tunnels is limited, and a lightweight reinforcement material is
urgently needed to improve the efficiency of tunnel repair.

Table 1. The comparison of single parts’ self-weight between steel plate reinforcement and FWP
reinforcement.

Type Single Part Self-Weight

Steel plate reinforcement 60◦ steel plate with 20 mm thickness [3] 384 kg
FWP reinforcement 100◦ FWPs [7] 46 kg
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in Figure 2, the filament wound profiles (FWPs) are formed by wrapping car-
bon-fiber-reinforced polymer (CFRP) around four steel tubes that are grouted with con-
crete inside. Because of its light weight, as shown in Table 1 and Figure 1b, the rein-
forcement construction with non-grouted FWPs could be finished with manual work 
alone. After installation, the emergency repair of all of the deformed rings in one shield 
tunnel could be finished simultaneously after grouting in the cavity of the FWPs. With 
the application of FWPs, the emergency repair efficiency of the reinforcement construc-
tion can be greatly improved. Investigation has verified that the effect of FWP rein-
forcement of deformed shield tunnels is equivalent to that of steel plate reinforcement 
[10]. 
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that are used in building structures. The mechanical behavior and failure mode of CFRP–
CFST under compression [11], bending [12], compression–bending [13], shear [14], and 
torsion [15] conditions have been investigated, and the compression and bending 
load-bearing capacity of CFRP–CFST have also been calculated. Similar materials include 
CFRP-wrapped aluminum tubes [16,17]. However, there are many differences between 
FWPs used in shield tunnels and CFRP–CFST used in building structures. For example, 

Figure 1. The installation construction in the shield tunnel: (a) steel plate; (b) filament wound profiles.

Based on the idea of lightweight structural materials, FWPs have been introduced and
applied to reinforce deformed shield tunnel structures in recent years [10]. As shown in Fig-
ure 2, the filament wound profiles (FWPs) are formed by wrapping carbon-fiber-reinforced
polymer (CFRP) around four steel tubes that are grouted with concrete inside. Because
of its light weight, as shown in Table 1 and Figure 1b, the reinforcement construction
with non-grouted FWPs could be finished with manual work alone. After installation,
the emergency repair of all of the deformed rings in one shield tunnel could be finished
simultaneously after grouting in the cavity of the FWPs. With the application of FWPs,
the emergency repair efficiency of the reinforcement construction can be greatly improved.
Investigation has verified that the effect of FWP reinforcement of deformed shield tunnels
is equivalent to that of steel plate reinforcement [10].
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Figure 2. The section of the filament wound profiles and the pavement design of CFRP.

As a new kind of structural reinforcement material for shield tunnels, the inspiration
of FWPs comes from the concrete-filled CFRP–steel tube (CFRP–CFST) column mem-
bers that are used in building structures. The mechanical behavior and failure mode of
CFRP–CFST under compression [11], bending [12], compression–bending [13], shear [14],
and torsion [15] conditions have been investigated, and the compression and bending
load-bearing capacity of CFRP–CFST have also been calculated. Similar materials include
CFRP-wrapped aluminum tubes [16,17]. However, there are many differences between
FWPs used in shield tunnels and CFRP–CFST used in building structures. For exam-
ple, FWPs are multi-cavity members, and their section size is much smaller than that of
CFRP–CFST, while the thickness of CFRP in FWPs is same as the thickness of steel. There-
fore, the method of calculating the mechanical properties of CFRP–CFST cannot be directly
applied to the FWPs, not to mention the fact that there has been little research conducted
on the mechanical behavior of FWPs. A previous investigation concluded that when FWPs
were installed at the intrados of the segments, they bore the external loads together with the
tunnel linings, and the FWPs were under combined axial force and bending moment [18].
In order to provide a basis for the design of reinforcement for the deformed linings, it is



Materials 2023, 16, 1645 3 of 26

important to investigate the mechanical behavior and the calculation method of the FWPs
under axial force and bending moment.

In this study, the mechanical behaviors of FWPs were investigated by component
tests, to provide a foundation for the derivation of a method for calculating the mechanical
properties of FWPs. Numerous numerical tests were carried out to provide data for the
verification of the calculation method. With the proposed new calculation method, the
mechanical properties of FWPs can be quantitatively analyzed. Moreover, the design of
FWPs can be adjusted flexibly according to the reinforcement requirement of the deformed
shield tunnel linings, making the usage of reinforcement materials more economical and
efficient.

The rest of this paper is organized as follows: The component tests of the FWPs are
carried out, and the mechanical properties of FWPs are investigated and summarized. The
numerical tests are carried out to analyze the influence of different design parameters on the
mechanical properties of FWPs. Based on the experimental results and the numerical simu-
lation results, the formulae are derived for calculating the ultimate load-bearing capacity
and stiffness of FWPs under compression, tension, bending moment, and combined axial
force and bending moment. The reliability of the formulae is verified by experimental data.

2. Experimental Investigation of the Mechanical Behavior of FWPs
2.1. Experimental Program
2.1.1. Specimens

Three groups of specimens were tested. They referred to intermediate products during
the production of FWPs. The latter were produced as follows: Four steel tubes were
integrated to a profile (see Figure 3a) by means of welding. The integrated profile refers to
specimens of group A. Then, the surface of the integrated steel tubes was subjected to rust
removal and sandblasting. Afterwards, they were wrapped in CFRP layers by means of
epoxy, resulting in non-grouted FWPs. They were then cured under high pressure for 5 h.
The non-grouted FWPs refer to specimens of group B (see Figure 3a). Finally, the cavities of
the FWPs were grouted with concrete. The grouted FWPs refer to specimens of group C.

Materials 2023, 16, x FOR PEER REVIEW 4 of 27 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. (a) Cross-section of a specimen. (b) The layup of CFRP. (c) Setup of the four-point bend-
ing test. (d) Compression test. 

2.1.2. Loading Facility and Loading Program 
Compression tests of the FWPs were carried out using a static loading method, and 

the load was applied by a 200 t universal testing machine, as shown in Figure 3d. 
Four-point bending tests were carried out in a force-controlled fashion. The tested 

specimen beam was simply supported (see Figure 3c). The jack force P was imposed on 
the specimen via a distribution beam. The jack force was increased by 0.05 kN/s up to the 
load-bearing capacity of the specimens. 

2.1.3. Measurement Program 
In the bending tests, the experimental measurements concerned the strain and the 

deflection of the specimens. As for measuring the strains, two gauges were located each 
on the top and the bottom surface of the specimens. Three gauges were evenly located on 
the side surface, as shown in Figure 4. 

Figure 3. Cont.



Materials 2023, 16, 1645 4 of 26

Materials 2023, 16, x FOR PEER REVIEW 4 of 27 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. (a) Cross-section of a specimen. (b) The layup of CFRP. (c) Setup of the four-point bend-
ing test. (d) Compression test. 

2.1.2. Loading Facility and Loading Program 
Compression tests of the FWPs were carried out using a static loading method, and 

the load was applied by a 200 t universal testing machine, as shown in Figure 3d. 
Four-point bending tests were carried out in a force-controlled fashion. The tested 

specimen beam was simply supported (see Figure 3c). The jack force P was imposed on 
the specimen via a distribution beam. The jack force was increased by 0.05 kN/s up to the 
load-bearing capacity of the specimens. 

2.1.3. Measurement Program 
In the bending tests, the experimental measurements concerned the strain and the 

deflection of the specimens. As for measuring the strains, two gauges were located each 
on the top and the bottom surface of the specimens. Three gauges were evenly located on 
the side surface, as shown in Figure 4. 
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The tubes of the FWPs were composed of Q420 steel. The tensile strength of the CFRP
was 4 GPa, and the elastic modulus was 235 GPa. As shown in Figure 3b, the FWPs had
3 layers of CFRP wrapped horizontally and 6 layers of CFRP wrapped vertically. The CFRP
wrapped horizontally was marked as 0◦, and the CFRP wrapped vertically was marked as 90◦.
The thickness of each layer was 0.167 mm, and the total thickness of the CFRP was 1.503 mm.
The concrete was high-performance self-leveling concrete with a strength of 50 MPa.

2.1.2. Loading Facility and Loading Program

Compression tests of the FWPs were carried out using a static loading method, and
the load was applied by a 200 t universal testing machine, as shown in Figure 3d.

Four-point bending tests were carried out in a force-controlled fashion. The tested
specimen beam was simply supported (see Figure 3c). The jack force P was imposed on
the specimen via a distribution beam. The jack force was increased by 0.05 kN/s up to the
load-bearing capacity of the specimens.

2.1.3. Measurement Program

In the bending tests, the experimental measurements concerned the strain and the
deflection of the specimens. As for measuring the strains, two gauges were located each on
the top and the bottom surface of the specimens. Three gauges were evenly located on the
side surface, as shown in Figure 4.
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2.2. Experiment Results

The compression test results and load–displacement curves of the members are shown
in Figure 5 and Table 1. The deformation of group A increased linearly with the increase
in the load. When the ultimate load was reached, the steel tubes buckled locally at the
load points and lost their stability. The deformation of the non-grouted FWPs increased
linearly with the increase in load. When the ultimate load was reached, the adhesive layer
between the steel tubes and the CFRP was damaged, and the compressive stiffness of the
specimens began to decrease. When the ultimate load-bearing capacity was reached, the
steel tubes buckled locally and lost their stability. The wrapped CFRP could not restrict
the local buckling of the steel tubes. The deformation of the FWPs increased linearly with
the increase in load. When the load reached 1400 kN, the specimen made a lot of “hissing”
noise, and the compressive stiffness of the specimen began to decrease. When the ultimate
load was reached, the steel tubes buckled locally and the wrapped CFRP could not limit
the transverse deformation of the steel tubes, leading to the CFRP tearing at the corners.
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In the bending tests, there was no visible failure phenomenon of the specimens in
group A until the integrated steel tubes yielded. As the displacement increased sharply,
associated with the load bucking of the steel tubes at the position of the point loads (see
Figure 6), the specific bearing capacity was reached.
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The failure mode of the specimens of groups B and C was virtually the same. Their
failure process started with the damage to the bonds between the individual CFRP layers,
resulting in a hissing sound. Immediately afterwards, the displacement of the tested
specimens increased sharply. The failure process ended with tearing of the CFRP at the
load points. This phenomenon is of great relevance in engineering practice, because it is a
sign of the failure of both non-grouted FWPs and grouted FWPs. The ultimate load-bearing
capacity and the stiffness under the bending test are shown in Table 2.

Table 2. The results of the compression tests.

Specimen Compression Bearing
Capacity/kN Average Value/kN Displacement/mm Average Value/mm

Compression-A1 718.01
732.43

4.16
3.88Compression-A2 815.16 3.29

Compression-A3 664.12 4.20

Compression-B1 822.24
910.66

3.35
4.98Compression-B2 942.28 6.42

Compression-B3 967.47 5.17

Compression-C1 1492.49
1414.59

0.38
0.37Compression-C2 1291.60 0.36

Compression-C3 1459.67 1.01

2.3. Discussion of the Mechanical Behavior of FWPs
2.3.1. The Function of CFRP in FWPs

The CFRP material has one-way load-bearing characteristics, and it can only bear
tensile stress, which means that the six layers of 90◦ CFRP have no usage in compression
tests.

According to the comparison between the compression test results of group A and
group B in Table 2, after the steel tubes were restrained by three layers of 0◦ CFRP, the
compressive ultimate load-bearing capacity of the specimen increased by 24.33%. It can
also be concluded that the compression stiffness of the FWPs could not be improved by
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three layers of 0◦ CFRP. From the compression tests, it could be concluded that 0◦ CFRP
could increase the load-bearing capacity of FWPs but had little relevance to the compressive
stiffness.

In the bending tests, the ultimate load-bearing capacity of specimens of group B and
group C was 93.0% and 127.2% higher than that of the specimens of group A, respectively
(see Table 3 and Figure 6). Both the CFRP and the concrete significantly improved the
load-bearing capacity of the FWPs. The bending stiffness was greatly improved by the
CFRP according to the slope of the load–displacement curves of group A and B, while it
had little relevance to the concrete.

Table 3. The results of the bending tests.

Specimen Load/kN Bending Bearing
Capacity t/kNm

Average
Value/kNm Displacement/mm Average

Value/mm

Bending-A1 150.03 11.25
11.09

15.73
19.58Bending-A2 146.42 10.98 20.49

Bending-A3 147.23 11.04 22.52

Bending-B1 290.43 21.78
21.41

8.89
9.36Bending-B2 280.61 21.05 10.09

Bending-B3 285.21 21.39 9.10

Bending-C1 339 25.43
25.20

6.44
6.23Bending-C2 333 24.98 6.02

2.3.2. Mechanical Behaviors and Failure Mode

The load was mainly borne by the steel tubes and concrete under compression, with
the restriction in transverse deformation due to the CFRP. When the ultimate compressive
load-bearing capacity was reached, the concrete underwent transverse deformation, and
the steel tubes lost their stability and deformed outwards. The failure mode of the FWPs
under compression was that the transverse deformation of the FWPs could not be limited
by the CFRP, and the CFRP was torn down.

In the bending tests, six layers of 90◦ CFRP and steel tubes contributed to the tensile
stress together in the tensile area of the section, while the concrete and steel tubes bore
the compressive stress together in the compression area of the section. Three layers of 0◦

CFRP restricted the transverse deformation of the steel tubes in the compression area of the
section. When the ultimate bending moment was reached, the 0◦ CFRP in the compression
zone at the loading point could not restrain the transverse deformation of the steel tubes
and was torn down, and then the FWPs failed in the bending test. The failure mode of the
FWPs under bending moment was that the CFRP was torn down in the compression zone
of the FWP section because of the buckling deformation.

3. Numerical Tests of the Mechanical Properties of FWPs
3.1. Finite Element Modeling and Validation

The commercial finite element software ABAQUS6.13/Explicit was employed to
simulate FWPs. The material properties are shown in Tables 4–7. The steel tubes were set as
isotropic materials, modeled by the solid elements (C3D8R). The elastic and plastic damage
characteristics of CFRP were considered, and the CFRP was discretized by shell elements
(S4R). The Hashin damage criterion was considered for plastic damage. After the CFRP
material was damaged, the stiffness of the CFRP degraded until it equaled 0, corresponding
to the failure mode in the component tests. The stiffness of 0◦ CFRP degrading to zero
means that the CFRP is torn down under tension. The parameter setting of the Hashin
damage criterion was derived from research [19,20]. The concrete was modeled by the
solid elements (C3D8R). The elastic and plastic damage characteristics of concrete were
considered, and the constitutive curves of plastic damage are shown in Figure 7.
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Table 4. The properties of steel tubes in the numerical model.

Value Unit

Density 7.8 × 10−9 t/mm3

Elastic modulus 200,000 MPa
Poisson’s ratio 0.3 -

Yield stress 420 MPa

Table 5. The properties of CFRP in the numerical model.

Value Unit

Density 1 × 10−9 t/mm3

Elastic modulus-E1 235,000 MPa
Poisson’s ratio 0.05 -

Table 6. Hashin failure criteria parameters.

Parameter Value

Damage initiation
parameter/MPa

Longitudinal tensile strength 4000
Longitudinal compressive strength 267

Transverse tensile strength 643
Transverse compressive strength 267

Longitudinal shear strength 643
Transverse shear strength 267

Fracture energy/(mJ/mm)

Longitudinal tensile fracture energy 223.66
Longitudinal compressive fracture energy 72

Transverse tensile fracture energy 83
Transverse compressive fracture energy 72

Table 7. The properties of concrete in the numerical model.

Value Unit

Density 2.4 × 10−9 t/mm3

Elastic modulus 34,500 MPa
Poisson’s ratio 0.2 -
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The interactions between steel tubes and concrete cubes were simulated by the surface-
to-surface contact, and the steel tubes are bound with CFRP shells.

It can be seen from Figure 8 that the failure mode of FWPs in the numerical model
was the same as that in the component tests. The CFRP was torn down at the corners of the
FWPs. The position marked in red in the Figure 8b indicates that the stiffness of the CFRP
has degraded to 0, showing that the CFRP is torn down at the corner. It can be concluded
from Table 8 that the numerical results of FEA are consistent with the test results.
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Table 8. Comparison between experimental results and FEA results.

Ultimate Compressive
Bearing Capacity/kN

Compressive Stiffness in
Elastic Stage/102 kNmm

Ultimate Bending
Bearing Capacity/kN

Bending Stiffness in
Elastic Stage/1010 Nmm2

Experiment results 1412 3821 336 12.3
Numerical model results 1382 4896 297 16.7
Experiment/numerical

model 97.9% 128.1% 88.4% 135.8%

3.2. Numerical Test Results of Design Parameters

As shown in Table 9, based on the reliable FEA model, the ultimate load-bearing
capacity and stiffness of FWPs under the conditions of tension, compression, and bending
were investigated with different design parameters, including concrete grade, steel grade,
0◦ and 90◦ layers of CFRP, elastic modulus and strength of CFRP, wrapping angle of CFRP,
steel tube thickness, and section size.

Table 9. Design parameter variables.

Design Parameter Variables

1 Concrete grade C30, C40, C50, C60
2 Steel grade Q235, Q345, Q390, Q420, Q460, Al-6063-T5
3 The thickness of steel tubes 1 mm, 2 mm, 3 mm
4 The number of 90◦ CFRP layers 0, 3, 6, 9
5 The number of 0◦ CFRP layers 0, 1, 2, 3
6 The elastic modulus of CFRP 200 GPa, 300 GPa, 400 GPa, 600 GPa
7 The strength of CFRP 2000 MPa, 3000 MPa, 4000 MPa, 6000 MPa
8 The wrapping angle of CFRP 0◦, 30◦, 45◦, 60◦, 90◦

9 Section size of FWPs 40 mm × 160 mm, 30 mm × 180 mm, 40 mm × 180 mm, 40 mm × 240 mm

The load–displacement curves of FWPs with different design parameters under axial
compression, axial tension, and bending are shown in Figures 9–11, respectively. The effects
of the design parameters on the mechanical properties of the FWPs are shown in Table 10,
where “+” means that the variable is positively correlated with the mechanical properties,
“−” means that the variable is negatively correlated with the mechanical properties, and
“0” means that the variable is irrelevant to the mechanical properties. When the section
size is variable, the order of load-bearing capacity performance of the composite profile
members, from small to large, is as follows: 180 × 30, 160 × 40, 180 × 40, 240 × 40.

Table 10. Summary of effects of design parameters.

Design Parameter Nc Kc Nt Kt Mu KEI

1 Concrete grade + + 0 0 + +
2 Steel grade + 0 + 0 + 0
3 The thickness of steel tubes + + + + + +
4 The number of 90◦ CFRP layers 0 0 + + + +
5 The number of 0◦ CFRP layers + 0 0 0 + 0
6 The elastic modulus of CFRP + + − + + +
7 The strength of CFRP 0 0 + 0 0 0

8 The wrapping angle of CFRP <45◦−
>45◦+ 0 − − <60◦−

>60◦+
<60◦−
>60◦+

9 Section size of FWPs + + 0 0 + +

“+” means positive correlation, “−” means negative correlation, and “0” means irrelevant.
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Figure 9. Parameter analysis of compression tests: (a) Variable is concrete strength. (b) Variable is
steel grade. (c) Variable is the number of 0◦ CFRP layers. (d) Variable is the elastic modulus of CFRP.
(e) Variable is the ultimate tensile strength of CFRP. (f) Variable is the thickness of the steel tubes.
(g) Variable is the section size of the FWP. (h) Variable is the angle of the CFRP.
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Figure 10. Parameter analysis of tension tests: (a) Variable is concrete strength. (b) Variable is steel
grade. (c) Variable is the number of 90◦ CFRP layers. (d) Variable is the elastic modulus of CFRP.
(e) Variable is the ultimate tensile strength of CFRP. (f) Variable is the thickness of the steel tubes.
(g) Variable is the section size of the FWP. (h) Variable is the angle of the CFRP.
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Figure 11. Parameter analysis of bending tests: (a) Variable is concrete strength. (b) Variable is
steel grade. (c) Variable is the number of 0◦ CFRP layers. (d) Variable is the number of 90◦ CFRP
layers. (e) Variable is the elastic modulus of CFRP. (f) Variable is the ultimate tensile strength of CFRP.
(g) Variable is the thickness of the steel tubes. (h) Variable is the angle of the CFRP. (i) Variable is the
section size of the FWP.
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3.3. Sensitivity Analysis

In order to eliminate the influence of the dimensions on the results, the relative value
index was applied for analysis. The design parameters and performance indicators were
normalized and made dimensionless according to the following formula:

Rp =
Pu
Pur

(1)

Rk =
Pk
Pkr

(2)

Zm
i =

xm
i −min(xm)

max(xm)−max(xm)
(3)

where Rp denotes the index of load-bearing capacity, Pu denotes the ultimate load-bearing
capacity of the experimental group, Pur stands for the ultimate load-bearing capacity of
the benchmark, Rk denotes the index of stiffness, Pk denotes the elastic stiffness of the
experimental group, Pkr denotes the elastic stiffness of the benchmark, xm denotes the
set of parameters m, and Zm

i denotes the ith parameter value of the parameter m after
normalization.

Figure 12 shows the trend of the mechanical properties of FWPs with different design
parameters under compression, tension, and bending after normalization.

From Figure 12a, it can be concluded that the ultimate compressive load-bearing
capacity (Nu) of FWPs is mainly affected by three parameters, i.e., steel thickness, steel
grade, and the number of 0◦ CFRP layers. Increasing the thickness of the steel tubes can
significantly increase the area of the steel, and increasing the steel grade can increase the
ultimate strength of the steel. With more material and a higher level of ultimate compressive
stress, the Nu of the FWPs improves. The 0◦ CFRP layers do not directly participate in
compression, but they effectively restrict the transverse deformation of concrete-filled steel
tubes, delaying the time of buckling of the steel tubes, thereby effectively improving the
Nu of the FWPs.

From Figure 12b, it can be concluded that the elastic compressive stiffness (KN) of
FWPs is mainly influenced by the thickness of the steel and the grade of the concrete.
The thickness of steel tubes is related to the area of the steel. When the area of the steel
increases, the average elastic modulus of the FWPs increases, and the KN increases. The
elastic modulus of concrete increases with the increase in the concrete grade, leading to
higher KN of the FWPs.

From Figure 12c, it can be concluded that the ultimate tensile load-bearing capacity
(Tu) of FWPs is mainly affected by the steel thickness, the number of 90◦ CFRP layers, the
ultimate tensile strength of the CFRP, and the angle of the CFRP layers. Increasing the
thickness of the steel and the number of 90◦ CFRP layers causes an increase in the area of
the tensile materials in the FWP section. With more material participating in the tension,
the Tu increases. The higher the strength of the CFRP, and the higher the tensile capacity of
materials with the same area, the higher the Tu of the FWPs. The smaller the angle of the
CFRP layers, the smaller the area of CFRP pulled along the steel tube, leading to a decrease
in the Tu of the FWPs.

From Figure 12d, it can be concluded that the elastic tensile stiffness (KT) of FWPs
is mainly affected by the steel thickness, the number of 90◦ CFRP layers, and the elastic
modulus of the CFRP. Increasing the steel thickness and the number of 90◦ CFRP layers
ensures that more material participates in tension; therefore, the KN increases. The increase
in the elastic modulus of the CFRP ensures that the average elastic modulus of the FWPs is
larger and that the KN of the FWPs is increased.
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From Figure 12e, it can be concluded that the ultimate bending moment (Mu) of FWPs
is mainly affected by the thickness of the steel, the steel grade, and the number of 90◦ CFRP
layers. The steel area participating in the bending is multiplied with the increase in the
thickness of the steel tubes. Increasing the number of 90◦ CFRP layers ensures that more
CFRP can participate in stress at the tension area of the section, enlarging the area of the
compression zone in the axially balanced section, and resulting in higher Mu of the FWPs.

From Figure 12f, it can be concluded that the bending stiffness (EI) of FWPs is mainly
influenced by the thickness of the steel tubes and the number of 90◦ CFRP layers. Increas-
ing the steel thickness will multiply the average elastic modulus of the material in the
compression and tension zones of the section, thereby increasing the EI of the FWPs. The
increase in the number of 90◦ CFRP layers causes more CFRP to participate in the tension
at the FWP section, which causes the EI of the FWPs to increase.

4. Calculation Method of the Mechanical Properties of FWPs
4.1. Bearing Capacity
4.1.1. The Ultimate Compressive and Tensile Load-Bearing Capacity

It can be concluded from Section 2.3.2 that the axial compression load is mainly borne
by the steel tubes and concrete in the FWPs. The wrapped CFRP layers restrict the lateral
deformation of the concrete-filled steel tubes, improving the ultimate compressive load-
bearing capacity (Nu) of the specimens. Therefore, the Nu of the FWPs considers the sum of
the load-bearing capacity of the steel tubes and concrete, and the restraint effect coefficient
of CFRP (ξfrp−s) should also be considered, as shown in Formulas (4)–(6):

Nu = Asfyy + Acfc (4)

fyy = (ξfrp−s + 1)fy (5)
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ξfrp−s =
1
n
∗

Afrpθffrp

Asfy
(6)

where As and Ac are the area of steel and concrete in the FWP section, respectively, fc
is the compressive strength of the concrete cubes, fy stands for the yield strength of the
steel tubes, fyy denotes the strength of steel considering 0◦ CFRP restraint, ξfrp−s is the
correction coefficient of 0◦ CFRP restraint, ffrpθ is the ultimate tensile strength of CFRP in
the 0◦ direction, Afrpθ is the sectional area of the 0◦ CFRP layers, n is the number of steel
tubes in one FWP section, and ffrp is the ultimate tensile strength of the CFRP.

The ultimate tensile load-bearing capacity (Nut) refers to the axial tensile load-bearing
capacity formula of concrete-filled steel tubular members in the Code [21], and the contri-
bution of 90◦ CFRP is considered, as shown in Formula (7):

Nut = Asfy + kAfrpffrp (7)

where Afrp denotes the area of 90◦ CFRP; k stands for the correction coefficient of 90◦ CFRP
strength, and the value of k is 0.503. In the numerical tests, six layers of 90◦ CFRP in FWPs
were damaged after the specimen reached the Nut. As shown in Figure 13, six layers of 90◦

CFRP did not reach the ultimate strength simultaneously when the FWPs reached Tu, so
the strength of the CFRP needs to be reduced. The solution of the correction coefficient m
is based on the numerical test data; a set of contradictory equations was established, and
the least-squares method was used to fit it. The value of k was 0.503.
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4.1.2. The Ultimate Bending Moment

As shown in Figure 14, the ultimate bending moment (Mu) is the superposition of
the bending moment values borne by the concrete and the steel tubes in the compression
zone, and of the steel tubes and CFRP in the tension zone at the FWP section. During the
derivation process, the height of the compression zone of the section was solved by using
the boundary condition, with the axial force of the section equal to zero. The stress and
moment of each material were calculated according to the assumption of a flat section.
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where f′c stands for the compressive strength of concrete, β is the rectangular coefficient
of equivalent stress under compression, and m is the number of layers of 90◦ CFRP. The
meanings of the other symbols are shown in Figure 14.

4.1.3. FWPs under Compression Bending and Tension Bending Conditions

The FWPs were subjected to compression bending and tension bending in the full-scale
test, and the load-bearing capacity calculation formula was derived from the Code [18].
The formula is shown in Formula (12):

N
Nu

+
M

Mu
≤ 1 (12)

4.2. Stiffness
4.2.1. Axial Stiffness

The elastic compressive stiffness (KN) of the FWPs is mainly contributed by the
concrete and steel tubes. The elastic tensile stiffness (KT) is mainly contributed by the
CFRP and steel tubes, and the contribution of the concrete can be ignored. Therefore, the
calculation formula of tension and compression stiffness can be established, as shown in
Formulae (13) and (14):

KT = EsAs + EfrpAfrp (13)

KN = EsAs + EcAc (14)

where Es, Ec, and Efrp represent the elastic modulus of steel, concrete, and CFRP, respec-
tively.

4.2.2. Bending Stiffness

Based on the derivation process of Formula (8), the bending stiffness (EI) calculation
formula of FWPs is summarized in Formula (15). The moment of inertia provided by the
concrete (Ic) is shown in Formula (16). The moment of inertia provided by the steel tubes
(Is) is shown in Formula (17). The moment of inertia provided by the CFRP (Ifrp) is shown
in Formula (18). The other symbols’ meanings are as defined above.

EI = EfrpIfrp + EsIs + EcIc (15)

Ic =
n
3

bcx3
c (16)

Is ==
n
6

bst3
s + nbsts

[(
xc +

ts

2

)2
+

(
hc − xc +

ts

2

)2
]
+ 2n

[
1
3

tsx3
c +

1
3

ts(hc − xc)
3
]

(17)

If ==
2
3

mtf(hc − xc + ts)
3 +

[
1
12

bf(mtf)
3 + bfmtf

(
hc − xc + ts +

mtf
2

)2
]

(18)

5. Validation and Limitations
5.1. Validation of the Load-Bearing Capacity Formula
5.1.1. Single Stress State

As shown in Figure 15, the abscissa of the symbol is the formula solution of Nu, Tu
and Mu, and the ordinate of the symbol is the FEM solution of Nu, Tu and Mu. The
closer the symbols are to the slash, the closer the two values are. Thus, the validity of
the load-bearing capacity formula is verified. The comparison between the calculation
formula and the test results is shown in Table 11. The calculation results of the ultimate
load-bearing capacity formula are conservative and smaller than the actual test values, and
the standard deviation, coefficient of variation, and ratio fluctuation are small, meaning
that the load-bearing capacity formula can be referred to in the actual design calculation.
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Figure 15. Comparison between formula solutions and test results: (a) ultimate compressive load-
bearing capacity; (b) ultimate tension load-bearing capacity; (c) ultimate bending capacity.

Table 11. Reliability verification of the load-bearing capacity formula.

Formula/Experiment Standard Deviation Coefficient of
Variation

Compression 0.99 0.085 0.0855
Tension 0.98 0.0948 0.0967
Bending 0.87 0.0816 0.0938

5.1.2. Combined Stress State

In this section, a simplified computational model is established to calculate the N–M
correlation curve of FWPs and improve the calculation efficiency of the finite element
model.

The simplified computational model keeps the upper-edge strain of the FWP section
constant during calculation, and the lower-edge strain of the FWP section changes from
compression to tension. In each incremental calculation step, the axial force N and bending



Materials 2023, 16, 1645 21 of 26

moment M of the composite profile are calculated in incremental steps according to Formu-
las (19) and (20). After summarizing the (Mt, Nt) obtained in each incremental step, the
corresponding N–M curve can be drawn.

Nt =
n

∑
i=1

(
σifrpAifrp + σicAic + σisAis

)
(19)

Mt =
n

∑
i=1

(
σifrpAifrpyifrp + σicAicyic + σisAisyis

)
(20)

where σifrp, σic, and σis denote the stress of CFRP, concrete, and steel in layer I, respectively.
Aifrp, Aic, and Ais stand for the area of CFRP, concrete, and steel in layer i, respectively. yifrp,
yic, and yis are the distance from the ith layer of CFRP, concrete, and steel to the neutral
axis, respectively.

The following assumptions are considered in the calculation process:

1. Plane section assumption of the FWP section;
2. The influence of local buckling of the steel tubes is not considered;
3. The tension of the concrete is ignored;
4. CFRP can only bear the tension in the fiber direction.

As shown in Figure 16, the simplified computational model’s results were compared
with the results of the component tests and numerical tests. It can be concluded that
the component test results, numerical test results, and simplified computational model
results fit well. According to the results of the full-scale testing of FWPs used to strengthen
staggered-jointed tunnel linings [15], the FWPs in the 56.25◦, 90◦, and 270◦ sections were
still elastic. Therefore, the simplified computational model can be used for verification.

It can be seen from Figure 17 that the load-bearing capacity calculation formula under
combined stress states is consistent with the simplified computational model’s results, so
Formula (12) can be used to calculate the load-bearing capacity of FWPs under compression
bending and tension bending conditions.
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5.2. Validation of Stiffness Formula

The comparison between the KN and KT formula solutions and the test results is
shown in Figure 18a,b below. The average value of the ratio between the KN formula
calculation results and the test results was 0.87, the standard deviation was 0.068, and the
coefficient of variation was 0.078. The average value of the ratio between the calculated
results of the KT formula and the test results was 0.97, the standard deviation was 0.039,
and the coefficient of variation was 0.04. The formula calculation results are conservative,
meaning that they can be referred to in the actual design calculation.
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Figure 18. Comparison between the formula results and the numerical model results: (a) compression
stiffness; (b) tension stiffness; (c) bending stiffness.

The comparison between the formula of EI and the numerical model’s calculation
results is shown in Figure 18c below. The stiffness calculated by the numerical tests was
generally larger than that calculated by the EI formula. The average value of the ratio
between the results of the EI formula and the test results was 0.49, the standard deviation
was 0.0405, and the coefficient of variation was 0.008, as shown in Table 12. In summary,
the formula for calculating the EI of FWPs is conservative and can be used for reference in
the actual design calculation.

Table 12. Reliability verification of the stiffness formula.

Formula/Experiment Standard Deviation Coefficient of
Variation

Compression 0.87 0.068 0.078
Tension 0.97 0.039 0.04
Bending 0.49 0.0405 0.008

5.3. Limitations

The calculation method proposed here is based on the working mechanism of the
FWPs. The formula is simple and can be calculated by hand. However, the results of the
calculation method are relatively conservative, and the errors are within 15% according
to Tables 10 and 11, except for the formula of bending stiffness. The calculation method
results are less discrete from the test results.

There have been few compression and bending tests carried out to verify the accuracy
of the calculation formulae to date, but it could also be verified by new component tests
and numerical simulations for the practical application of tunnel reinforcements in the
future. New approaches, such as neural networks [22,23], could be used to propose new
methods for predicting the mechanical properties of FWPs in the future.

6. Conclusions

In this paper, the mechanical behavior of FWPs was clarified through component tests,
and a reliable FEA model of FWPs was established. The effects of the design parameters
were qualitatively summarized through parameter analysis. Based on the mechanical
behaviors of FWPs and the data of FEA tests, the load-bearing capacity and stiffness



Materials 2023, 16, 1645 25 of 26

calculation formula of the FWPs were established and verified. The conclusions are as
follows:

1. From the compression test, it can be concluded that the steel tubes and concrete bear
the compressive load when the FWPs are compressed, and the 0◦ CFRP improves the
compressive ultimate load-bearing capacity by limiting the transverse deformation of
the steel tubes. The compressive failure mode is that three layers of 0◦ CFRP cannot
limit the transverse deformation of the steel tubes, and then the CFRP is torn down.

2. When the FWPs bear the bending moment, the concrete cubes and the steel tubes in
the compression area at the FWP section bear the compressive stress, while the steel
tubes and the six layers of 90◦ CFRP in the tension area bear the tensile stress. The
bending failure mode is that the steel tubes in the compression area of the section
buckle and deform outwards at the loading point, while the 0◦ CFRP cannot limit the
transverse deformation of the steel tubes, and the 0◦ CFRP is torn down.

3. According to the sensitivity analysis of the load-bearing capacity parameters, the key
parameters of compressive ultimate load-bearing capacity of FWPs are steel thickness,
steel grade, and the number of 0◦ CFRP layers. The key parameters of ultimate
tensile load-bearing capacity are steel thickness, number of 90◦ CFRP layers, and
CFRP strength; The key sensitive parameters of ultimate bending capacity are steel
thickness, steel grade, and number of 90◦ CFRP layers.

4. According to the sensitivity analysis of the stiffness parameters, the key parameters
of compressive stiffness are steel thickness and concrete grade. The key parameters of
tensile stiffness are the steel tube thickness, the number of 90◦ CFRP layers, and the
CFRP elastic modulus. The key parameters of bending stiffness are the thickness of
the steel tubes and the number of 90◦ CFRP layers.

5. According to the mechanical behavior of FWPs, the load-bearing capacity and stiffness
calculation formulae for FWPs under tension, compression, bending, compression–
bending, and tension–bending conditions were derived and established. The formula
results are conservative and consistent with the component test results, FEA test
results, and theoretical calculation results. Most of the errors are within 15%, which
means the calculation method can be used for actual design.

The formula proposed in this paper for calculating the mechanical properties of the
FWPs lays the foundation for subsequent research on the design method of FWP-reinforced
shield tunnels.
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