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Abstract: Efficient capture of CO2 and its conversion into other high value-added compounds by
electrochemical methods is an effective way to reduce excess CO2 in the atmosphere. Porous poly-
meric materials hold great promise for selective adsorption and electrocatalytic reduction of CO2

due to their high specific surface area, tunable porosity, structural diversity, and chemical stability.
Here, we review recent research advances in this field, including design of porous organic polymers
(POPs), porous coordination polymers (PCPs), covalent organic frameworks (COFs), and functional
nitrogen-containing polymers for capture and electrocatalytic reduction of CO2. In addition, key
issues and prospects for the optimal design of porous polymers for future development are eluci-
dated. This review is expected to shed new light on the development of advanced porous polymer
electrocatalysts for efficient CO2 reduction.

Keywords: polymer; porous structure; CO2 capture; CO2 reduction

1. Introduction

The usage of fossil energy has enabled human society to prosper, but it has also led to
serious environmental problems [1]. Since the burning of coal, petroleum, and natural gas,
the CO2 fixed by plants from nature through millions of years of photosynthesis has been
released by humans in just a few hundred years [2]. Moreover, the greenhouse effect caused
by excessive CO2 emissions contributes to the climate crisis, sea level rise, and ocean acidity
increase [3–5]. Up to now, “zero carbon” or “carbon neutral” climate goals have been set
up in more than 130 countries or regions [6]. In order to achieve this goal, research work
focuses on finding clean energy alternatives to fossil fuels to reduce CO2 emissions, and
developing technologies such as CO2 capture, storage, utilization, and chemical conversion
to reduce the concentration of CO2 in the air [7–9].

The International Energy Agency predicted that CO2 capture and storage (CCS) can
reduce CO2 emissions by about 14% annually, which is an important green “bridging” strat-
egy in greenhouse gas reduction [10]. CO2 capture primarily includes pre-combustion, oxy-
fuel combustion, and post-combustion. CO2 sequestration is the last link of the CCS chain,
which focuses on marine and geological sequestration and mineral carbonation [11]. In
addition, the research focus of CO2 capture lies on post-combustion technology, which can
be applied to the capture of low-pressure CO2 in flue gases [12]. In industry, CO2 in mixed
exhaust gases can be effectively captured by amine solutions such as monoethanolamine
(MEA) and diethanolamine (DEA). However, the high degree of toxicity, corrosion risk, as
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well as intense energy consumption hinder their wide applications [13]. It is necessary to
develop environmental-friendly CO2 capture materials when considering people’s health
and gradually serious environmental problems [14,15]. Morphology, functionality, struc-
ture stability, and pore structure are key parameters that determine the efficiency of an
adsorbent. In particular, the size of the pore regulates the physical/chemical interaction
between the pore and the gas. Porous materials with a pore size closer to the kinetic diam-
eter of CO2 have a higher CO2 affinity. Typically, microporous materials show excellent
adsorption performance at lower CO2 pressures [16], while mesoporous materials perform
better for CO2 adsorption at higher pressures [17]. The equilibrium adsorption capacity of
adsorbent varies with pressure or temperature. In industry, CO2 regeneration is mainly
achieved by reducing pressure or increasing temperature [18,19].

From another perspective, CO2 is a low-cost, atoxic, and renewable carbon resource.
So, the achievement of CO2 capture and conversion not only mitigates the greenhouse effect
but also reduces human industry’s dependence on fossil fuels. However, CO2 has a low
standard Gibbs free energy ∆G0 = −394.38 kJ mol−1. Moreover, CO2 shows kinetic inertia
and thermodynamic stability, which make it difficult to be activated [20]. Therefore, the
transformation of CO2 generally requires reactions with high-energy molecules (e.g., H2,
epoxides, unsaturated complexes, organometallic complexes) or relies on external energy
(e.g., thermal energy, solar energy, or electricity). In the above strategy, electrochemical
technology enables an efficient conversion between electrical and chemical energy. CO2
electrocatalytic reduction is valued due to its mild reaction conditions and renewable
clean energy source [21]. Developing novel electrocatalysts, atomic engineering at the
catalysts’ surface interface and increasing the specific surface area all contribute to the
boosting the catalytic activity of the electrocatalysts [22–24]. In addition, a large number
of metallic (e.g., metals, alloys, metal oxides, metal carbides, metal sulfides, etc.), non-
metallic (e.g., carbon nanotubes, graphene, polymers), and combinations of them served as
efficient electrocatalysts for different electrocatalytic reactions [25–27]. In previous studies,
porous materials have been shown to have more accessible catalytic sites, larger specific
surface areas, rich structural designs, and suitable constraints on active species for superior
catalytic performance compared to non-porous materials. Therefore, porous materials have
the potential to be applied to CO2 capture and electrocatalysis (Scheme 1). Moreover, the
functional modules of CO2 capture and electrocatalytic reduction can be integrated in a
single system, where the porous material adsorbs CO2 and subsequently completes the
catalytic reaction process at the catalytic active site to directly produce a chemical with high
added value (e.g., methanol, acetic acid). Recently, interesting research advances have been
made in CO2 capture and electrocatalytic reduction, involving porous materials such as
zeolites [28], porous carbon materials [29], and porous polymers [30].
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Scheme 1. Porous materials for CO2 capture and electrocatalytic reduction.

Among them, porous polymers are particularly attractive due to their high specific
surface area, regulatable porosity, and precisely designed active sites. Some previous
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reviews have covered the studies of porous polymers in the field of CO2 capture and
conversion [31,32], but a thorough overview of the structure–activity relationship, especially
the effect of porosity on the capture capacity and catalytic activity of CO2 is still lacking. In
this review paper, the porosity regulation in porous polymers and the influence of pore sizes
on CO2 capture and electrocatalytic reduction are comprehensively summarized. Special
attention will be paid to the interaction between pore structure with CO2 and reaction
intermediates. Porous polymers as CO2 adsorbents and catalysts for CO2 electrocatalytic
reduction will be discussed in this paper. Moreover, the existing limitations, the challenges
in porous polymer design, and the future research direction have also been prospected.

2. Porous Polymers for CO2 Capture and Electrocatalytic Reduction

Porous polymer materials used for CO2 capture and electrocatalytic reduction are
mainly divided into four categories, namely, porous organic polymers (POPs), porous coor-
dination polymers (PCPs), covalent organic frameworks (COFs), and nitrogen-containing
polymers (N-polymers). Such porous polymeric materials can be prepared through a variety
of synthetic methods, including solvothermal, ionothermal, microwave, mechanochemical,
and interfacial synthesis methods. Among them, the solvothermal method is the most
common preparation method [33]. The advantage of the solvent thermal method is that it
can improve the synthesis efficiency by changing the solvent, but the biggest problem is
that the solvent used is mostly organic solvent, which will cause environmental pollution
when used in large quantities, and the reaction conditions are harsh, so it is not suitable
for large-scale production. The ionothermal method is mainly used for the synthesis of
covalent triazine frameworks (CTFs), and the reaction conditions required are more severe
than those of the solvent thermal method, so the ionothermal method is not suitable for
industrial applications [34]. The microwave method can effectively reduce the reaction time
and maintain the porosity by microwave, which is a promising synthesis method [35]. The
mechanochemical method does not require solvents and therefore avoids environmental
pollution and is a good green synthesis method because of the simplicity of the process [36].

The CO2 Reduction Reaction (CO2RR) generally takes three steps: CO2 adsorption,
electrocatalytic reduction, and desorption. To be specific, gaseous CO2 molecules are first
dissolved in the solvent and form a CO2-saturated electrolyte. Then, the dissolved CO2
in the solvent reacts on the electrode surface. Finally, the reaction products are desorbed
from the electrode surface to complete the whole reaction process. Because of the large
number of products and complex intermediates in multi-step reactions of CO2RR, definite
reaction mechanisms remain unclear. Currently reported CO2RRs occurring in aqueous
solutions are summarized in Table 1. From the reaction equations in the table, it can be
seen that CO2 can undergo different degrees of electrochemical reduction reactions by
transferring different numbers of electrons, and the products include HCOOH, CH3OH,
CO, CH4, CH3COOH, C2H4, CH3CH2OH, C2H6, etc. Additionally, the reduction of CO2 is
accompanied by HER on the cathode.

Table 1. Reaction mechanism of electrocatalytic CO2 reduction.

Cathodic Reaction Products E◦ /V

CO2 + 2H+ + 2e−→HCOOH HCOOH −0.61
CO2 + 2H+ + 2e−→CO + H2O CO −0.53

CO2 + 6H+ + 6e−→CH3OH + H2O CH3OH −0.38
CO2 + 8H+ + 8e−→CH4 + 2H2O CH4 −0.24

2CO2 + 8H+ + 8e−→CH3COOH + 2H2O CH3COOH −0.30
2CO2 + 12H+ + 12e−→C2H4 + 4H2O C2H4 −0.34

2CO2 + 12H+ + 12e−→CH3CH2OH + 3H2O CH3CH2OH −0.33
2CO2 + 14H+ + 14e−→C2H6 + 4H2O C2H6 −0.27

2H+ + 2e−→H2 H2 −0.42
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2.1. Porous Organic Polymers (POPs)

Porous organic polymers (POPs) are 2D or 3D network structures expanded by organic
groups or fragments generated through chemical polymerization [37,38]. With a large
specific surface area, variable porosity, excellent thermal stability, as well as controllable
functionality, POPs are widely applied in gas adsorption, heterogeneous catalysis, energy
storage, and other fields [36,39–42]. A large specific surface area and abundant porosity
lead to high CO2 absorption capacity, bringing out the importance of pore regulation in the
design of CO2 capture materials (Table 2).

In recent years, many studies have focused on POPs serving as hosts or heteroatom
catalysts to capture and convert CO2 [31,43–45]. Han et al. [46] obtained 1,3-dialkyne linked
porous polymer LKK-CMP-1 through 1,3,6,8-Tetraethynylpyrene homopolymerization
for CO2 capture. The N2 adsorption/desorption isotherm for LKK-CMP-1 is a typical
I-type, indicating a microporous structure (Figure 1a). The pore size of LKK-CMP-1 is
mainly distributed around 0.59 nm (Figure 1b), close to the dynamic diameter of CO2
(0.33 nm). The CO2 isosteric heat (Qst) for LKK-CMP-1 was 35.0 kJ mol−1 (Figure 1c),
which proves CO2 molecules have a strong interaction with LKK-CMP-1 pore walls. The
CO2 adsorption capacity can reach 9.78 wt% at 273 K (1 bar). Song et al. [47] tuned the
size of micropores through side-chain engineering. Crosslinkable dianhydride monomers
PEPHADA and PEQDA were utilized to construct microporous networks (Figure 1d). The
crosslinkable alkyne group on the PDQDA side branch is closer to the molecular skeleton,
which adjusts the pore size of porous polymers to 0.57 nm (Figure 1e). Therefore, the
pore size of crosslinked polyimide can be precisely regulated by adjusting the position of
the crosslinkable group in polyimide. The 6FA-PE-CL with well-developed micropores
shows a higher surface area and stronger CO2 uptake ability. At 273 K and 1 bar, the CO2
uptake ability of 6FA-PE-CL is 8.9 wt% (Figure 1f). 6FA-PE-CL exhibits a significant Qst
value downward trend compared to 6FA-PEPH-CL with the increase of CO2 adsorption,
which indicates that there is a stronger interaction between ultramicropores (0.56 nm) and
CO2 molecules.

POP is an ideal porous structure, which can be applied for the electrocatalytic reduc-
tion of CO2 through functional design. Dai et al. [48] reported a porous triazine linking
framework TTF-1 with a pyridine linker as the reactive site (Figure 2a). The existence of
a well-developed porous structure enables a large contact area between electrodes and
electrolytes, and facilitates the charge and mass transfer (Figure 2b). Amorphous porous
polymer POP often shows a broad pore size distribution, which is attributed to the inter-
particle void. In particular, a large number of micropores promote the adsorption of CO2.
The permanent CO2 uptake of TTF-1 is up to 64.4 cm3 g−1 (298 K, 1 bar). TTF-1 also shows
excellent electrocatalytic activity for CO2 reduction, with a Faraday efficiency of about 82%.

The size of the pore can affect the charge density of the polymer and the confinement
of the pore to the active site. Tang et al. [49] synthesized a series of porous polymers, POP-
Py (n) (n means the quantity of benzene rings), through the reaction of benzyl bromide
and pyridine. POP-Py (n) with pore sizes from micropore to mesopore were obtained
by changing the amount of benzene rings (Figure 3a). The highly efficient electrocatalyst
was obtained by encapsulating cobalt meso-tetra(4-carboxyphenyl)porphyrin (CoTCPP)
(Figure 3b) into POP-Py (n) by the ion exchange method, with single-molecule dispersion.
POP-Py (0)/CoTCPP showed the highest FEco of 83% at −0.6 V vs. RHE, which is twice as
high as the activity of the pure CoTCPP molecular electrocatalytic conversion of CO2 to
CO (Figure 3c). The high activity is caused by the monomolecular dispersion of CoTCPP in
the pores of POP-Py (0), which promotes the electrochemical accessibility of active sites.
Moreover, the positively charged substituted pyridine ring in POP-Py can stabilize the key
reaction intermediate *COOH to accelerate the conversion of CO2. When a neutral benzyl
ring is inserted between two pyridine rings, the positive charge on the pyridine ring will
be delocalized through the conjugation effect. Hence, the interaction between POP-Py and
key reaction intermediate *COOH becomes weaker. In addition, at a high overpotential,
the current attenuation of POPy-Py(2) indicated the aggregation of CoTCPP (Figure 3d).
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vier Ltd. (Amsterdam, The Netherlands). 
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Figure 1. (a) N2−sorption isotherms at 77 K. (b) Pore size distribution. (c) Isosteric-heat values of the
CO2 adsorption of LKK−CMP−1 [46]. Reprinted with permission from Ref. [46]. Copyright 2018
Copyright, American Chemical Society. (Washington, DC, USA). (d) The strategy for constructing
the microporous polymer networks. (e) Pore size distribution of the polyimides. (f) CO2 adsorption
isotherms for the crosslinked polyimides. (g) Isosteric-heat values of the CO2 adsorption of 6FA-PE-
CL and 6FA-PEPH-CL [47]. Reprinted with permission from Ref. [47]. Copyright 2020 Copyright,
Elsevier Ltd. (Amsterdam, The Netherlands).

Table 2. The textural features and CO2 adsorption characteristics of reported POPs.

POPs SBET
(m2 g−1)

Vtotal
(cm3 g−1)

CO2 Uptake
(mmol g−1)

273 K

CO2 Qst
(kJ mol−1 )

CO2/N2
Selectivity

273 K
Ref

isox-CTF-500 1683 0.70 4.92 29 29 [43]
acac-CTF-500 1556 1.20 3.30 28 46 [43]

cCTFs-400 744 0.36 2.86 49 - [45]
cCTFs-450 861 0.59 2.25 46 - [45]
cCTFs-500 1247 1.04 3.02 43 - [45]

LKK-CMP-1 467 - 2.24 35.0 44.2 [46]
6FA-PEPH-CL 653 0.37 1.65 - 38.0 [47]

6FA-PE-CL 698 0.46 2.02 - 58.0 [47]
TTF-1 1234 0.59 2.86 - - [48]
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However, many POPs have poor electrical conductivity, which hinders their appli-
cation in electrochemistry. Alkordi et al. [50] homogenously deposited porous organic
polymer containing pyrimidine atop a graphene sheet to provide composite material Py-
POP@G (Figure 4a). It shows significant CO2 electrochemical reduction activity (5 mA cm−2

at −1.6 V), which is much higher than the separated component. PyPOP has an intentional
affinity for CO2 due to its rich microporous structure (Figure 4b), while graphene enhances
the electrical conductivity of the composite. The synergistic effect of the two components
promotes the electrocatalytic reduction of CO2. Later, Alkordi et al. [51] prepared a compos-
ite material named POP@MWCNT by synthesizing POP on multi-walled carbon nanotubes
in a one-pot method. It was verified by the N2 physical adsorption/desorption test that the
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high porosity of POP@MWCNT is mainly contributed to by POP, not MWCNTs (Figure 4c).
The Qst of CO2 into the POP and the POP@G are almost the same, which confirms that
the adsorption of CO2 by the composites mainly occurs in the pores of POP (Figure 4d).
Alkordi et al. proposed post-synthetic modification of the electrode material by initial
impregnation in CuBr acetonitrile solution. Impregnation of Cu ions enhances electrode
catalytic activity. The current density for the POP-Cu@MWCNTs was enhanced by 75%
compared to POP@MWCNTs at −1.5 V (Figure 4e).
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2.2. Porous Coordination Polymers (PCPs)

Porous coordination polymers (PCPs), also known as metal-organic frameworks
(MOFs), are crystalline materials. Such materials are composed of metal ions or metal
particles with organic complexes through coordination linkages. PCPs have now become
a significant category of nanoporous polymers with multiple uses in CO2 storage, CO2
separation, and CO2 electrocatalysis due to their organized porous structures with large sur-
face areas and adjustable pore surface features [52–56]. The catalytic performance of PCPs
catalysts in CO2 electroreduction is summarized in Table 3. Sun et al. [57] reported a two-
dimensional bismuth metal-organic framework (Bi-MOF), a catalyst with a microporous
structure, for the electrocatalytic reduction of CO2 to HCOOH. They prepared Bi-MOFs
with tunable grain size and coordination environment by a simple solvothermal method,
varying the reaction temperature and the type of organic linker. Figure 5d shows the crystal
structure of a Bi-MOF (CAU-17) composed of a triple base linker (1,3,5-benzene tricar-
boxylic acid, H3BTC). Figure 5a shows a representative type-I N2 adsorption/desorption
isotherm of Bi-MOF, and after measuring it was found that the average pore size was about
0.8 nm (inset of Figure 5a), indicating a remarkable microporous structure. In particular,
the obtained Bi-MOF has a CO2 adsorption capacity of 33.0 mgCO2gcat

−1, which is twice
the CO2 adsorption capacity of Bi sheets under the same testing conditions (Figure 5b). The
superior CO2 adsorption capacity of Bi-MOF is attributed to the large number of differently
shaped channels in its structure, which are larger in size than the molecular diameter of
CO2. The excellent CO2 uptake capacity promotes the adsorption of large amounts of
CO2 on the surface of Bi-MOF catalysts, thus potentially contributing to higher catalytic
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conversion. This Bi-MOF shows large Faraday efficiency of HCOOH over a wide potential
window, reaching 92.2% at −0.9 V (vs. RHE), and excellent stability over 30 h (Figure 5c).
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The same microporous structure is a nickel phthalocyanine-based conductive MOF
(NiPc-Ni(NH)4) constructed from 2,3,9,10,16,17,23,24-octaaminonickel(II) (NiPc-(NH2)8)
as reported by Cao et al. [58]. In this research, Ni-phthalocyanines (NiPc), which was
built block-based, with an activated CO2 molecular reduction site, were incorporated
into a porous essentially conductive 2D MOF NiPc-Ni(NH)4 for the efficient CO2RR to-
wards the CO2 conversion in an aqueous medium. NiPc-Ni(NH)4 showed a 1.78 nm
one-dimensional rectangular channel while running along the c-direction with a distance
of 0.34 nm between the stacked two-dimensional conjugated layers in the structural model
(Figure 6a). Therefore, the N atoms of the amino groups in NiPc-(NH2)8 ligands were
managed to coordinate with the Ni(II) ion, forming a fully π-conjugated two-dimensional
backbone in NiPc-Ni(NH)4. The accessible pore size of ~1.7 nm was obtained by N2 adsorp-
tion/desorption isotherms (Figure 6b), and this large microporous structure facilitates the
diffusion and mass transfer of reactants to improve the activity of electrocatalytic reactions.
Similarly, the porous NiPc-Ni(NH)4 has a great CO2 adsorption capacity (Figure 6c), which
indicates that NiPc-Ni(NH)4 with a nitrogen-rich structure has a strong affinity for CO2 to
enhance its electrocatalytic activity in CO2RR. It can be seen that NiPc-Ni(NH)4 nanosheets
reach a high CO Faraday efficiency of 96.4% at −0.7V (vs. RHE).

Among PCP materials, not only are microporous structures often seen, but also meso-
porous structures are common for CO2RR catalysts. Gu et al. [59] prepared a series of
imidazole (Im)-based zeolite imidazolium salt backbone Ni(Im)2 nanosheets of differ-
ent thicknesses using the liquid phase top-down exfoliation method (Figure 7a). Zeolite
imidazole frameworks (ZIFs) are a relatively stable class of MOF materials consisting
of imidazole groups and metal ions. They stripped layered massive Ni(Im)2 ZIF to 2D
Ni(Im)2 nanosheets of different thicknesses (5 nm, 15 nm, 65 nm, and 140 nm) and used
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them as CO2RR electrochemical catalysts. As can be seen in Figure 7b, their N2 adsorp-
tion/resolution isotherms are all type VI, which corresponds to a mesoporous structure.
It provides a large specific surface area for the catalysts while more reactive sites are ex-
posed, thus ensuring the high catalytic activity of this material. This catalyst was found to
achieve 78.8% CO Faraday efficiency at −0.9 V (vs. RHE) with a stability of more than 14 h
(Figure 7c).
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Because a single porous structure is not sufficient for high performance in CO2 cap-
ture and electrocatalytic reduction, some researchers have attempted to create hierarchical
porous materials through pore engineering strategies [60–63]. In recent years, the field
of MOF has made great progress in the development of hierarchically porous materi-
als [64–67]. In such hierarchical porous polymers, the inherent micropores of the frame-
work contribute to a high surface area, while the mesopores and/or macropores provide
channels for mass transfer and accommodate molecules larger than the micropores [68].
Martin et al. [69] reported the deposition of porous metal-organic skeletons on copper
electrodes by electrosynthesis of ionic liquid templates [Cu2(L)] [H4L = 4,4′,4′′,4′ ′′-(1,4-
phenylenebis(pyridine-4,2,6-triyl))tetrabenzoic acid]. The structure of Cu2(L) comprises
a 3D network built around binuclear [Cu2(OOCR)4] paddlewheels with four bridging
carboxylate ligands (Figure 8a,b). The porosity of this MOF was investigated by the N2
adsorption/desorption test at 77 K, and Cu2(L)-e exhibited a distribution between type I
and type IV, indicating the presence of both mesopores and micropores. The distribution
of micropores and mesopores in both materials was analyzed by Horvath Kawazoe and
Barrett–Joyner–Halenda (BJH) methods, respectively (Figure 8c,d). By contrast, the reduc-
tion of micropores in Cu2(L)-e resulted in lower N2 uptake at low pressure, while the total
pore volume of Cu2(R)-e produced by the template effect of the ionic liquid during elec-
trolytic synthesis was 1.89 cm3 g−1, significantly larger than that of Cu2(L)-t (0.32 cm3 g−1),
reflecting the presence of Cu2(L)-e-mediated pores. The presence of mesopores also fa-
cilitates the mass transfer process during the reaction. As a result, this electrode showed
excellent activity for the electroreduction of CO2 to formic acid with a low starting potential
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of −1.45 V (vs. Ag/AgCl) and HCOOH Faraday efficiency reaching 90.5% at −1.80 V (vs.
Ag/AgCl). Despite a similar micro- and mesoporous structure, the role of pore structure
in the materials reported by Lan et al. [70] is quite different. The specific surface area of
the material decreases instead after the introduction of PPy in the material, which is due
to the encapsulation of PPy in the pores of MOF-545-Co. The formation of PPy occurs in
the MOF channel, and after the formation of PPy, there will be a π-π interaction between
the PPy molecules and TCPP molecules in the MOF structure similar to the host–object
interaction, and this interaction will facilitate the charge transfer process during the reac-
tion. Meanwhile, the results of CO2 adsorption measurements showed that the addition of
PPy was quite beneficial for CO2 adsorption. As a result, the CO2 reduction efficiency is
significantly enhanced.
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Table 3. Summary of catalytic performance of PCP catalysts in CO2 electroreduction.

Catalysts E/V vs. RHE Major Products FE/% Structure Ref.

Bi-MOF −0.9 HCOOH 92.2 microporous [57]
NiPc-Ni(NH)4 −0.7 CO 96.4 microporous [58]

2D Ni(Im)2-5 nm −0.9 CO 78.8 mesoporous [59]
Cu2(L)-e/Cu −1.2 HCOOH 90.5 micro- and mesoporous [69]

PPy@MOF-545-Co −0.8 CO 98 micro- and mesoporous [70]
MOF-NS-Cu −0.6 HCOOH 83.1 mesoporous [71]
MOF-NS-Co −0.6 CO 98.7 mesoporous [71]
PCN-222(Cu) −0.7 HCOOH 44.3 mesoporous [72]
PCN-224(Cu) −0.7 HCOOH 34.1 microporous [72]

Al2(OH)2TCPP-Co −0.7 CO 76 mesoporous [73]
PcCu-O8-Zn −0.7 CO 88 microporous mesoporous [74]

PCN-224-NH3 −0.9 CO 60 microporous [75]
ZIF-A-LD −1.1 CO 90.57 microporous [76]
D-P-CoPc −0.6 CO 97 macroporous [77]

Cu30%ZIF-8 −1.0 CH4 35.21 microporous mesoporous [78]
p-CuL-4 −0.37 CH3COOH 64 microporous [79]
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2.3. Covalent Organic Frameworks (COFs)

Covalent organic frameworks (COFs) are a class of reticulated porous polymeric
materials in which the constructed organic blocks are connected by covalent bonds. COFs
are characterized by their tunable porosity, which gives them a great accessible surface
area and an abundance of active sites. It is due to this property that they have also been
extensively studied in catalytic and energy storage systems [80,81]. In recent years, COFs
have been widely recognized by researchers as an excellent material that can be used for
electrocatalytic CO2 reduction reactions due to their rich pore structure that can facilitate the
adsorption and desorption of gas molecules during the reaction. By consciously introducing
functional units such as bipyridyl, porphyrin, and phthalocyanine in the COF backbone to
link metal ions for electrocatalytic CO2 reduction reactions, they have been widely explored
in CO2 reduction reactions [82–84].

Recently, fluorinated COFs have also been effective catalysts for electrocatalysis. CTFs
are a class of COF materials consisting of three elements, C, N, and H, and aromatic
triazine units connected by covalent bonds. Since CTFs usually have a large specific
surface area, high nitrogen content, excellent stability, and electrical conductivity, CTFs
have a wide range of applications in gas separation and storage, energy storage, and
electrocatalysis [85–90]. We summarize the catalytic performance of COF catalysts in
CO2 electroreduction in Table 4. Dai et al. [91] synthesized a fluorinated covalent tri-
azine skeleton (F-CTF-1) with the low-temperature ionothermal method using 2,3,5,6-
tetrafluoroterephthalonitrile as a monomer (Figure 9a,b). The BET specific surface area
of this fluorinated COF-containing material was 367 m2 g−1 and mainly microporous
(Figure 9c–e). The introduction of fluorine enhanced the hydrophobic and pro-CO2 prop-
erties of F-CTF-1 and improved the interaction between F-CTF-1 and CO2 molecules.
As an outcome, F-CTF-1 exhibited great Faraday efficiency (95.7%) at −0.8 V (vs. RHE)
and was used for the electroreduction of CO2 to CO. Also with a microporous structure,
Yaghi and colleagues [92] synthesized a 2D COF (COF-366-Co) in which the cobalt por-
phyrin site could catalyze the conversion of CO2 to CO by CO2RR. They synthesized
a model framework (COF-366-Co) by the imine condensation of 5,10,15,20-tetrakis[(4-
aminophenyl)porphinato]cobalt[Co(TAP)] with 1,4-benzenedicarboxaldehyde (BDA). The
porous COF material was evacuated by activation with supercritical carbon dioxide and
heating to 100 ◦C for 18 h. The surface area was determined to be 1360 m2 g−1. The
adsorption branch fitted using density functional theory (DFT) showed a relatively narrow
pore size distribution (10 to 18 Å), consistent with the proposed model. When tested in an
aqueous solution, COF-336-Co showed a high Faraday efficiency of 90% Co (FECO), which
is 10% higher than that of the molecular cobalt porphyrin catalyst. It is therefore inferred
that micropores would allow for a higher CO2 adsorption capacity in the framework,
and the greater electrocatalytic activity and chemical availability of the catalytic cobalt
porphyrin active site.

It was found that the difference in pore size in similar structures also affects the per-
formance of COF catalysts. Recently, Huang et al. [93] constructed two catalysts, CuPcF8-
CoNPc-COF and CuPcF8-CoPc-COF (Figure 10a), with similar pore structures. The adsorp-
tion curves of both COFs were classified as typical type I isotherms, which is characteristic
of micropores (Figure 10c,d). The surface areas of CuPcF8-CoPc-COF and CuPcF8-CoNPc-
COF were determined to be 376 and 452 m2 g−1, respectively. Correspondingly, their pore
volumes were calculated to be 0.23 and 0.30 cm3 g−1. Non-local density flooding theory
(NLDFT) was used to evaluate their pore sizes of 1.0 and 1.2 nm (Figure 6c,d). Meanwhile,
the CO2 capacities of CuPcF8-CoPc-COF and CuPcF8-CoNPc-COF were 18 and 35 mg g−1,
respectively. It can be seen that CuPcF8-CoNPc-COF has a larger pore size, specific surface
area, and better CO2 capacity compared to CuPcF8-CoPc-COF, which is more favorable to
improve the catalytic activity of CO2RR. Thus, when tested in 0.5 M CsHCO3, the FECO
of CuPcF8-CoPc-COF reached a peak of 91% at −0.70 V (vs. RHE), while the FECO of
CuPcF8-CoNPc-COF was as high as 97% at −0.62 V (vs. RHE).
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Similarly, mesoporous structures are also present in COF materials, and Zeng et al. [94]
formed COF on the surface of Mg/Al-LDH, and the obtained catalysts showed a layered
and porous morphology with a thickness of about 36 nm and an abundance of active
sites. The N2 adsorption isotherm at 77 K showed a BET surface area of 123 m2 g−1 for
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2D-Co-COF500 (Figure 11a). The pore size distribution plot shows that the pore volume
of 2D-CO-COF500 is 0.52 cm3 g−1, where most of the pores are between 25 and 80 nm in
diameter (Figure 11b). Electrochemical tests were then performed on this material. The
FE of CO was found to be 66.1% at −0.5 V, 84.0% at −0.6 V, 92.1% at −0.7 V, 96.5% at
−0.8 V, 96.0 at −0.9 V, and finally 80.2% at −1.0 V (Figure 11c), while electrochemical tests
on CO-COF500 revealed that the FEs of CO were all at the same test potential. Among
them, 2D-Co-COF500 reached a maximum FE of 96.5% for CO at −0.8 V, and the catalytic
performance was better than most of the current COF materials. To further investigate the
catalyst activity, the CO current density (jCO) was tested. It was found that 2D-CO-COF500
had the highest current density of 17.9 mA cm−2 at a potential of−1.0 V (Figure 11d), while
Co-COF500 also reached a maximum current density of 6.8 mA cm−2 at −0.9 V.
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Figure 11. (a) BET plot of 2D−Co−COF500; (b) pore distribution; (c) the FEs of CO; (d) the current
density of CO [94]. Reprinted with permission from Ref. [94]. Copyright 2022 Copyright Elsevier
(Amsterdam, The Netherlands).

For materials with multi-level pore structures with both micro- and mesopores, the
large specific surface area and rich pore structure allows them to have a strong CO2 adsorp-
tion capacity, enhanced mass transfer, and more exposed reactive sites, ultimately leading
to stronger CO2 reduction performance. Zhang et al. [95] used porphyrin-based covalent
organic framework (Por-COF) nanosheets vertically anchored to carbon nanotubes (CNT)
by covalent linkage for an efficient electrocatalytic CO2 reduction reaction. The porosity
structure of Por-COF and MWCNT-Por-COF-M were investigated by the BET test at 77 K.
The results indicate that all the samples exhibit type I adsorption isotherms and the pore
size distributions are concentrated on 15 Å (Figure 12a,b). The electrochemical test results
show that the MWCNT-Por-COF-M (M: Co, Ni, Fe) material has higher electrocatalytic
performance and Faraday efficiency than Por-COF-M. Specifically, MWCNT-Por-COF-Co
achieves the highest Faraday efficiency of 99.3% for CO at -0.6 V, and the highest current
density of 18.77 mA cm−2 at −1.0 V and TOF of 70.6 s−1 (Figure 12c). The electrochemical
test results indicate that the excellent electrocatalytic activity of MWCNT-Por-COF-Co is
due to the effective electron transfer. In addition, they used MWCNT-Por-COF-Cu in a flow
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cell for a CO2RR test with electrolytes in 1.0 M KOH. The test results illustrate that MWCNT-
Por-COF-Cu has a higher CO2 catalytic efficiency than MWCNT-Por-COF, the product is
mainly CH4, and the Faraday efficiency can reach up to 71.2% (Figure 12d). Sun et al. [96]
used tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyanine cobalt(II) (CoTAPc)
as a junction to couple with 5,15-di(4-aminophenyl)-10,20-diphenylporphyrin (DAPor)
or 5,15,10,20-tetrayl(4-aminophenyl)porphyrin (TAPor) by imination reaction to fabricate
novel coupled phthalocyanine–porphyrin type 1:2 (CoPc-2H2Por) or type 1:1 (CoPc-H2Por)
COFs. Both type 1:2 and type 1:1 COFs were found to exhibit over 90% maximum Faraday
efficiency and high stability in CO2 electrocatalytic reduction reactions. Meanwhile, CoPc-
2H2Por has a larger pore size and a more conjugated structure than CoPc-H2Por, leading to
more efficiency in electron transfer, more adsorption and reaction of CO2, and rapid proton
transfer during the reaction, which ultimately leads to higher reaction kinetics, resulting in
better CO2RR activity than CoPc-H2Por.
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Table 4. Summary of catalytic performance of COF catalysts in CO2 electroreduction.

Catalysts E/V vs. RHE Major Products FE/% Structure Ref.

COF-366-Cu (HS) −0.9 CH4 52.4 microporous [86]
F-CTF-1-275 −0.8 CO 95.7 microporous [87]
COF-366-Co −0.67 CO 90 microporous [92]

CuPcF8-CoNPc-COF −0.62 CO 97 microporous [93]
2D-Co-COF500 −0.8 CO 96.5 mesoporous [94]

MWCNT-PorCOF-Cu −1.0 CH4 71.2 micro- and mesoporous [95]
CoPc-2H2Por −0.55 CO 95 micro- and mesoporous [96]
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Table 4. Cont.

Catalysts E/V vs. RHE Major Products FE/% Structure Ref.

AAn-COF-Cu (NF) −0.9 CH4 77 microporous [97]
FN-CTF-400 −0.8 CH4 91.7 microporous [98]

TPE-CoPor-COF −0.7 CO 95 microporous [99]
3D-Por(Co/H)-COF −0.6 CO 92.4 microporous [100]

COF@CoPor −0.6 CO 94.3 microporous [101]
NiPc-TFPN COF −0.9 CO 99.8 microporous [102]
CoPc-PI-COF-3 −0.9 CO 96 microporous [103]

COF-366-(OMe)2-
Co@CNT −0.68 CO 93.6 macroporous [104]

CTF-Cu −1.47 C2H4 30.6 micro- and mesoporous [105]

2.4. Nitrogen-Containing Polymers (N-Polymers)

There is also a class of porous polymeric materials called “metal-loaded ligand-active
nitrogen-containing polymers” (N-polymers). This kind of N-polymer is characterized
by the presence of nitrogen functional groups that complex metal cations or anchor metal
nanoparticles within the polymer backbone (e.g., polyaniline and polypyrrole) or side
chains (e.g., polyvinyl terbium pyridine and poly (4-vinyl pyridine)). The application of
such materials in the field of CO2 electroreduction, however, dates back to three decades
ago, when Wrighton’s [106] and Meyer’s groups [107] introduced N-polymers in the field
of non-homogeneous CO2 electroreduction and found that such catalysts have excellent
catalytic properties in CO2 conversion. So far, metal-doped N-polymer materials have been
tested to synthesize polycarbon products up to propanol.

CO2 adsorption by porous polymers has been used as a competitive strategy for
selective CO2 removal/capture [108–110]. Due to the rapid development of nitrogen-
containing nanoporous polymeric materials, the application of N-polymers in CO2 capture
has achieved remarkable success. Nitrogen-rich carbons are of great interest because of
the contribution of N as a basic or polar site for effective interaction with CO2 [111,112].
Therefore, the preparation of nitrogen-rich carbon materials for CO2 capture is quite
attractive and important in various applications such as CO2 capture. Due to the high
porosity and relatively high nitrogen content, the adsorption of polyaniline (PANI) is very
effective in both liquid and gas phases [113–115]. Park and his colleagues [116] prepared
a porous carbon material using melamine and PANI with milder reaction conditions
(≤650 ◦C). The prepared materials (MPCs) were found to have some CO2 adsorption
capacity and therefore could be used for CO2 adsorption. It can be seen from Figure 13a
that the adsorption capacity of PDCs for N2 increases with the increase in the pyrolysis
temperature. Therefore, for N2 adsorption capacity, MPC-500 is the worst while MPC-650
is the best. The pore size distribution (PSD) of the material was also obtained from the
isothermal curve shown in Figure 13a and shown in Figure 13b by nonlocal linear density
functional theory (NLDFT). The adsorption capacities of the different materials prepared
for CO2 and N2 are depicted from Figure 13c. As shown in Figure 13a, the adsorption
of CO2 decreases according to the decrease in the pyrolysis temperature of the material.
Thus, MPC-600 has the highest CO2 adsorption capacity and MPC-500 has the lowest CO2
adsorption capacity. Among them, MPC-550 showed superior CO2 selectivity, attributing
this performance to the increase in the elemental N content of the material, the decrease in
porosity, or the decrease in pore size and the increase in defects.
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P4VP is an N-heteroaromatic polymer with a mesoporous structure that allows easy
diffusion of small molecules and anions through the polymer network [117,118]. Nowadays,
this N-polymer has been introduced into the electrochemical reduction of CO2 reactions,
and Koper and colleagues [119] showed a significant improvement in the selectivity of
polycrystalline Cu and Au electrodes for HCOOH at low overpotentials after chemical
modification by using poly(4-vinyl pyridine) (P4VP) layers. Measurements showed that
the hydrophobicity of the P4VP layer limited the mass transport of HCO3

− and H2O, but
had little effect on the mass transport of CO2 due to its mesoporous structure.

Meanwhile, g-C3N4 is also a common N-polymer material with a structure in which
the C and N atoms are sp2-hybridized to form a π-type conjugated system with a highly
delocalized domain. Due to its high stability no matter the extreme chemical environment
or high temperature, proper pore structure, redox potential, and abundant functional
groups on the surface, there are also many studies based on g-C3N4 materials reported
for energy and environmental applications [120,121], especially for electrocatalytic CO2
reduction [122]. Zhao et al. [123] prepared a Au-CDots-C3N4 material for CO2RR that
can efficiently convert CO2 to CO. Electrochemical tests showed that 4 wt% Au-CDots-
C3N4 has optimal CO2 electrocatalytic performance, and this material can undergo CO2
electrocatalytic reactions at −0.5 V and the Faraday efficiency of CO reached a maximum
of 79.8%. The surface area of 4 wt% Au-CDots-C3N4 was investigated by the BET method
at 77K. Figure 14a demonstrates the BET plot of 4 wt% Au-CDots-C3N4, which is consistent
with a typical type IV isotherm with an H3-type hysteresis loop, indicating a large number
of mesopores in this material. The specific surface area of this material was tested to
be 117 m2 g−1, which originates from the rich void structure unique to the C3N4 matrix.
Additionally, the pore size distribution obtained by the BJH method test can be shown
by Figure 14a. Hu et al. [124] tried to modify Cu and Ru onto g-C3N4 (CuxRuyCN) and
use it as an electrode for electrocatalytic CO2 reduction, and it can be seen from the test
results that Cu and Ru modification on g-C3N4 can be an effective way to improve its
electrocatalytic performance for energy applications. As can be seen in Figure 14a, the
surface area of the g-C3N4 sample decreases with increasing Cu content, which indicates
that the increased Ru and tiny CuO particles partially block the mesopores. Therefore, this
result indicates that the CuxRuyCN samples with proper Cu and Ru ratios show the best
BET surface area, pore volume and pore size under optimized Cu and Ru decoration to
attract reactant molecules and provide active sites for better electrocatalytic reactions.

To summarize, the influence of the structural characteristics of four different types
of porous polymer materials, POPs, PCPs, COFs, and N-polymers, on CO2 capture and
electrocatalytic reduction have been reviewed. Their structural features and advantages
and disadvantages for CO2 capture and electrocatalytic reduction are further summarized
in Table 5.
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Table 5. Advantages and disadvantages of porous polymer materials for CO2 capture and electrocat-
alytic reduction.

Materials Structural Features Advantages Disadvantages

POPs

A 2D or 3D network structure
expanded by organic groups or
fragments generated by
chemical polymerization

1. Large surface area
2. Controllable functionality
3. Tunable porosity
4. Good thermal stability

1. High cost
2. Poor porosity

PCPs
A solid crystal material formed by
connecting metal ions or metal
clusters with organic complexes.

1. Large specific surface area
2. Adjustable pore surface

function

1. Poor thermal stability
2. High cost

COFs

A kind of organic building blocks
connected together by covalent
bonds to form a porous skeleton
with periodic structure.

1. Large surface areas
2. Abundant active sites
3. Diverse synthetic strategies

1. High cost
2. Poor porosity
3. Difficulty in controlling

crystallization

N-polymers

A kind of material with nitrogen
functional groups in the main
chain or side chain of polymer,
which can complex or anchor
metal particles.

1. Simple preparation methods
2. Cost efficiency
3. Adjustable pore structures

1. Poor conductivity
2. Poor mechanical stability
3. Difficulty in large-scale

preparation

3. Conclusions and Perspectives

Global climate change caused by excessive CO2 emissions has become a major concern
in modern society. CO2 capture and conversion can remove excess CO2 from the atmo-
sphere and reduce it into products with high added value. Porous polymers have been
applied as potential CO2 adsorbents and electroreduction catalysts due to their high surface
area, designable functionalization, tunable porosity, and various reaction sites. This review
has systematically summarized the influence of the structural characteristics of different
porous materials on CO2 capture and electrocatalytic reduction. Four different types of
porous polymers, including POPs, PCPs, COFs, and N-polymers, have been discussed in
depth. Porous polymers can serve as a multifunctional platform to achieve the desired
purpose. Their high specific surface area and porosity enable them to absorb and store CO2.
The design of the structure can not only improve the selective adsorption of CO2, but also
allow the porous polymer as a catalyst to capture and convert CO2 into high-value-added
chemicals. The adsorption of CO2 on porous polymers mainly depends on pore filling,
so the highly developed porous features determine the ability of CO2 capture. It is worth



Materials 2023, 16, 1630 18 of 24

noting that the introduction of heteroatoms can effectively improve the affinity of porous
polymers to CO2 compared with other gases. Heteroatoms act as binding sites of CO2
through dipole–quadrupole interaction. In addition, the functionalization of the surface
CO2-philic groups helps to further improve the adsorption capacity and selectivity.

The role of pore structures in CO2 adsorption and electroreduction should be par-
ticularly emphasized. An abundant variety of building blocks with various functional
groups are utilized for porous materials’ synthesis, which allows the pore structure and the
chemical environment within the pore to be designed for a specific purpose. The microp-
orous and ultramicroporous structures are considered to be preferred for the adsorption
of CO2 molecules. The physical and chemical interactions between pore walls and CO2
molecules can be enhanced by fine-tuning the pore size and structure, which improves
the catalytic efficiency of the electrocatalyst. The mesoporous structure is conducive to the
increase in the accessibility of catalytic reaction sites, mass transfer, and the enrichment of
reactants in the pores, which will accelerate the rate of the CO2 electrocatalytic reduction
reaction. The hierarchical porous structure generally consists of a composite of micropores
and mesopores. Although the surface area and pore volume of the polymers decrease
as the mesopores increase, the disadvantage of single micropores that are not conducive
to the diffusion of reactants and products at a single microporous pore size is overcome.
Hierarchical porous polymers are promising candidates for expanding the electrocatalyst
family. Effective electrocatalytic reactions occur at certain active sites. Therefore, it is of
practical significance to create and regulate porous structures in order to expose more
catalytic active sites.

Despite the above progresses achieved, there are still some great challenges to over-
come in the design and synthesis of porous polymers towards highly efficient CO2 capture
and catalytic reduction. Promising future research directions in this field are also prospected
as follows.

Firstly, the specific surface area, pore size, and pore morphology of porous polymer
materials are tuned by functionalized modification of the polymer backbone to achieve
the result of improved catalytic performance, for example, functional elements of a semi-
conductor nature can be introduced into the backbone structure, thus enabling porous
polymer materials to achieve and improve performance in electrocatalysis, energy storage,
etc. However, for now, achieving specific tuning of porous polymer materials is still a
great challenge. More attention should be paid to boosting the coordination of active sites
and pore topology to prevent the separation of metal ions or mixtures while improving
the electrocatalytic performance, so as to provide long-term stability. Hierarchical porous
structures can be constructed by developing advanced synthetic methods to improve the
adsorption and activation of electrocatalysts for CO2. The chemical environment within
the pores can be regulated by introducing heteroatoms, substituents, and metal compo-
nents to stabilize key reaction intermediates and promote the charge transfer properties of
porous polymers.

Secondly, the mechanism of porous polymers in the electrocatalytic reduction of CO2 is
not well understood, especially for the exploration of the pathway of polycarbonate product
generation. In the current study, different reaction intermediates are detected corresponding
to different reaction mechanisms, but most of them stay in proposing the mechanism, and
the investigation of experimental evidence is not comprehensive. It is difficult to accurately
predict the electrocatalytic performance of porous polymers only by theoretical calculation,
which limits the development of novel advanced porous polymers for CO2 electrocatalysts.
Development of cutting-edge in situ monitoring technologies could bring about promising
solutions to this issue. In situ surface characterization techniques, such as XPS, TEM,
XRD, and XAS, can provide clear information about the evolution of the active sites of
the electrocatalyst and the intermediate species of key reactions, which will deepen the
understanding of CO2 capture and catalytic reduction by porous polymers.

Third, the lab-scale research generally utilizes concentrated CO2 for testing, which is
quite different from the atmospheric CO2 in practical situations. To facilitate the conversion
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of basic research achievements into products in industry, atmospheric samples are recom-
mended to be used in basic research. In addition, most of the existing synthetic means
are costly and have harsh reaction conditions, making it difficult to achieve low-cost mass
production. We should focus on finding environmentally friendly, simple, and inexpensive
co-production methods to promote the industrial application of porous polymer materials.

In conclusion, porous polymers are highly efficient CO2 capture and conversion
materials with great development potential. There are still severe challenges including
lack of accurate design of porous polymers with well-coordinated catalytic active sites
and pore topology, insufficient cutting-edge in situ monitoring technologies, as well as
impractical testing conditions and high production costs. Through reasonable structure
design, in-depth research on electrocatalysis mechanisms, and reduction of production cost,
the practicability of porous polymers can be further promoted.
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