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Abstract: In-process penetration monitoring of the pulsed laser welding process remains a great
challenge for achieving uniform and reproducible products due to the highly complex nature of
the keyhole dynamics within the intense laser-metal interactions. The main purpose of this study
is to investigate the feasibility of acoustic emission (AE) measurement for penetration monitoring
based on acoustic wave characteristics and deep learning. Firstly, a series of laser welding exper-
iments on aluminum alloys were conducted using high-speed photography and AE techniques.
This allowed us to in-situ visualize the complete keyhole dynamics and elucidate the generation
mechanism of acoustic waves originating from pressure fluctuations at the keyhole wall. Then, an
adaptive time-frequency technique namely VMD (Variational Mode Decomposition) was proposed
to characterize the acoustic energy distribution among the nine subsignals with low-frequency and
high-frequency components under different welding penetrations. Lastly, a novel hybrid model
combing CNN (Convolutional Neural Network) and LSTM (Long Short Term Memory) was designed
to deeply mine the spatial and temporal acoustic features from the extracted frequency components.
Extensive experiments demonstrate that our proposed approach yields a remarkable classification
performance with a test accuracy of 99.8% and a standard deviation of 0.21, which obtains a high
recognition rate. This work is a new paradigm in the digitization and intelligence of the laser welding
process and contributes to an alternative way of developing an efficient end-to-end penetration
monitoring system.

Keywords: pulsed laser welding; acoustic emission; keyhole dynamics

1. Introduction

Aluminium alloys have the advantages of high specific strength, good corrosion
resistance, and high thermal conductivity and are widely used in aerospace and automotive
manufacturing [1]. 6XXX series aluminium alloys are widely used in the automotive
manufacturing industry, usually in the fields of battery manufacturing and automotive
chassis manufacturing by joining in a welding way.

However, due to the poor heat resistance and strong thermal conductivity of alu-
minium alloys, defects are very easy to form in welding [2]. Traditional arc welding for
welding aluminium alloys has large welding deformation and low productivity, while
electron beam welding of aluminium alloys requires a guaranteed vacuum environment,
resulting in high costs and low efficiency. However, laser welding has a high energy density
and high welding speed, which allow more precise control of the heat input. Therefore,
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laser welding in aluminium alloys has a high energy density, low heat input, low welding
distortion, and a large depth to width ratio.

Therefore, laser welding processes with such advantages as high energy, high precision,
and high efficiency have been widely applied in high-end industry fields such as aerospace,
automotive, shipbuilding, etc. [1]. With its precise regulation of laser energy, the pulsed
mode laser welding technique is particularly suitable for joining thin aluminium alloys
with high reflectivity and high thermal conductivity [2]. In general, the combination of
pulse frequency, pulse width, peak power, and other parameters can directly affect the
welding process stability. Particularly, the intense interaction between the high-energy laser
beam and aluminium alloy easily drills an extremely unstable vapor capillary (referred to
as a “keyhole”) into the workpiece. As such, any tiny change of operation conditions can
easily produce the instability phenomena of melt pool morphology and intense keyhole
oscillation, which may easily cause the welding defects occurring in the welding process [3].
Therein, insufficient penetration weakens the mechanical properties of the welded parts,
while excessive penetration can be characterized by sagging, holes, and bum-through.

To understand the keyhole dynamics and further improve the product quality, a series
of in-situ monitoring approaches, including thermal [4,5], photoelectric [6], and optical
sensors [7,8], have been proposed in industry and academia. The design idea of mainstream
monitoring solutions lies in the utilization of the phenomenon of keyhole formation, which
carries various types of valuable information about weld quality. It is worth noting that
acoustic waves play a key role in driving pores near the keyhole tip far enough away from
the large thermal gradient field around the keyhole during the laser melting process [9].

Therefore, a promising acoustic emission (AE) monitoring system has received much
attention recently due to its cost-efficient, in-line, and non-invasive measurement [10]. It
can capture the strong acoustic wave generated from the laser-material interactions, propa-
gating inside the workpiece and atmosphere. Due to this nature, on-line AE measurement
can detect the pressure fluctuation generated by the molten pool pulsation, plasma/metal
vapor generation, thermal stress, and keyhole oscillation, which are closely related to the
depth of weld penetration. However, the key challenge in the development of a reliable and
cost-effective acoustic monitoring system is the intricate dependency between the process
parameters, the acoustic signatures, and the weld quality. A detailed investigation of the
generation mechanism of acoustic waves and its relation to welding quality has not yet
been assessed conclusively.

(1) Acoustic emission monitoring

To overcome this issue, Gu et al. [11,12] applied a frequency analysis and a statistical
approach to deal with the airborne sound signals acquired in the CO2 laser welding process.
The results suggest that the band of frequency components is well associated with the key-
hole oscillation, and these frequencies are distinctive when the welds are fully penetrated.
Huang et al. [13,14] used a spectral subtraction method to reduce the background noise in
the acquired acoustic signals and then applied a power spectrum method (Welch-Bartlett)
to analyze the frequency characteristics of the acoustic signals. The relationship between
acoustic features and various penetration depths can also be established based on time- and
frequency-domain processing. Recently, Yusof et al. [15,16] extracted the time-frequency
characteristics of the collected AE signals based on synchrosqueezed wavelet analysis
during pulsed laser welding experiments and statistically correlated them with two process
regimes, including half-penetration and full-penetration status.

To sum up, the observation of distinct AE signals could provide a base for developing
a diagnostic/analytical technique for laser welding processes, and it also underpins the
existing high potential of AE monitoring in laser processes. Although previous studies
have shown that acoustic signals can effectively monitor the laser welding of mild steel,
stainless steel, and high-strength steels, there is limited literature on the study of acoustic
signals during the pulsed laser welding of aluminum alloys. Moreover, pulse mode laser
welding could possibly emit non-stationary period acoustic signals when the pulsed laser
beam intermittently interacts with the workpiece over very short time intervals. How to



Materials 2023, 16, 1614 3 of 22

accurately extract the useful information for reflecting the keyhole oscillation and welding
stability independently remains a challenge and warrants further research. Consequently,
a good prior knowledge of the laser welding process is required to explain the acoustic
generation mechanism and acoustic emission trends.

(2) Machine learning modeling

Based on the afore-cited research, it could be summarized that much of the research
up to now has attempted to reveal the significant correlation between the weld quality
and the acoustic signatures. Basically, an accurate and quantitative classification of the
weld penetration is also imperative as it could directly give feedback to the control system
in the automated welding process [17,18]. Wu et al. [19] pointed out that the key term
“monitoring” is applied to indicate in-situ information collection, feature extraction, and
process modeling. Multiple approaches have been proposed, which are mostly based on
analytic/numerical modeling via AE measurements and process data. Due to the high
complexity and dynamic nature of laser-metal interactions, a large number of factors affect
the final result of repetitive pulsed laser irradiation, and a wide range of relevant physical
processes complicate a detailed analysis. Moreover, establishing a complex theoretical or
numerical model is rather time-consuming and not suitable for real-time monitoring and
quality control.

Therefore, proper acoustic in-process monitoring associated with data-driven machine
learning (ML) and feature extraction is needed to increase the productivity and repeatability
of laser welding. To our knowledge, a common ML-based algorithm, namely artificial
neural networks (ANNs), is capable of dealing with complex databases, and has been
widely used to perform tasks such as nonlinear approximation [20], prediction, and classifi-
cation [21] in a dynamic and complicated industrial process, especially in the field of laser
welding. For instance, Huang et al. [14] proposed a neural network and multiple regression
method to characterize the depth of weld penetration based on the acquired signatures.
The results show that the acoustic signatures can predict the penetration depth well under
different laser welding parameters. Lee et al. [22] presented an in-process monitoring
scheme for pulsed Nd:YAG laser spot welding based on the AE technique. The amplitudes
of three different frequency ranges (100–200, 200–300, and 300–500 kHz) are used as input
vectors, and three different process conditions (unsuccessful, successful, and over-welding)
are clearly distinguished by utilizing the ANN-based classification model. However, the
shallow ANNs usually require feature extraction of acoustic signals in time or frequency
domain, which could not completely reflect the dynamic changes of the melt pool and the
keyhole under non-stationary and complex conditions of the AE events.

To overcome the above difficulty, a recently developed convolutional neural network
(CNN) is emerging as a promising deep learning (DL) framework since it can automatically
learn and characterize the non-linear AE signatures through the multi-layer stacks. For
instance, Shevchik et al. [23] studied the feasibility of using acoustic emission (AE) and
Spectral Convolution Neural Network (SCNN) for in-situ and real-time quality monitoring
by using the energy in narrow-frequency acoustic features. Pandiyan et al. [24] extracted
the AE spectrograms using wavelet transforms and applied two CNN architectures, in-
cluding VGG-16 and ResNets-18, to predict the build quality, including balling, LoF pores,
conduction mode, and keyhole pores, during the laser additive manufacturing.

However, the current CNN methods are limited in exploring the spatial features of the
two-dimensional AE signal spectrogram. There are few studies investigating the temporal
characteristics of the one-dimensional (1-D) AE signal during the dynamic laser welding
process. The newly developed DL framework, called long-short term memory (LSTM),
has several advantages in dealing with time information in time-series AE signals. Since
the CNN can extract much greater high-level spatial features, recent research attempted to
combine the CNN and LSTM models to in-depth mine the spatio-temporal characteristics
of signal data, in order to enhance the predicting accuracy and reliability.

For example, Zhang et al. [25] proposed a dynamic model that combines CNN and
LSTM networks to account for the detected AE signals, which can accurately monitor the
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surface quality during laser shock peening. Shi et al. [26] developed a novel deep learning
algorithm (BiConvLSTM) that combines CNN and LSTM networks for planetary gearbox
fault diagnosis under different operating conditions. The BiConvLSTM can automatically
and simultaneously extract spatio-temporal features from the condition monitoring data
collected by three accelerometers and one tachometer sensor. Song et al. [27] developed a
CNN-LSTM bearing fault diagnosis model using the VMD (Variational Mode Decomposi-
tion) technique to reconstruct the bearing signals, which was then fed into a CNN-LSTM
network to extract spatio-temporal features simultaneously and obtain a good diagnostic
result. However, there are no investigations in the state of the art yet that correlate the acous-
tic characteristics to keyhole dynamics and weld penetration depth based on CNN-LSTM.
Driven by the intrinsic relationship between acoustic characteristics and welding quality,
our study develops a hybrid CNN-LSTM model for penetration prediction to provide a
new approach for in-situ monitoring of the laser welding process. The main contributions
to this work are as follows:

1. Through investigating the correlations between the transient nature of the subsur-
face keyhole and the acoustic signals, the AE technique could better characterize the
keyhole dynamics and weld penetration. It will also provide important guidance
for understanding the complicated interaction mechanisms between the pulsed laser
radiation and aluminum alloy and can be extended to other laser-based manufactur-
ing scenarios.

2. In contrast to traditional time- or frequency-domain processing for non-stationary AE
signals, an adaptive time-frequency technique called VMD was proposed, which can
accurately distinguish between low-frequency and high-frequency components for
better describing the weld penetration.

3. A novel CNN-LSTM hybrid model was proposed to deeply mine the spatial and
temporal acoustic features from the extracted frequency components. It can improve
the penetration predicting performance of AE sensing and provide a potential and
reliable monitoring technology for the dynamic laser welding process.

The framework of this paper is organized as follows: Section 2 introduces the ex-
perimental setup and process analysis; Section 3 illustrates the AE frequency component
extraction process using the VMD; Section 4 presents the spatio-temporal CNN-LSTM
model for predicting the weld quality; Section 5 illustrates the performance results com-
pared with other algorithms; the main conclusions and future study are stated in Section 6.

2. Methodical Approach
2.1. Experimental Setup and Data Acquisition

To reveal the relationship between AE signals and keyhole characteristics as well
as the weld penetration during pulsed laser welding, a complete experimental platform
was created, including: (i) a multi-information acquisition system, (ii) a pulsed mode
laser welding system, and (iii) a traveling mechanism system, as illustrated in Figure 1.
In our work, the laser welding system mainly contains a rectangular pulsed fiber laser
device (TRUPULSE 556, λ = 1064 nm) with a 10 kW maximum output power. A laser head
(Trumpf BEO D70, Ditzingen, Germany) with an inclination angle of 5◦ was applied to
avoid the back reflection damaging the delivery optics, particularly for welding highly
reflective aluminum alloys. Pure argon was used as the shielding gas, and a rectangular
pulse type was selected with a beam diameter of 0.6 mm at the focal position. The traveling
mechanism system was applied to drive the workpiece while the laser head remained fixed
in the vertical position.

To gain a better understanding of the AE technique and to broaden its application
for estimating different weld penetration, it is necessary to test its capability with a wide
range of laser parameters. Thus, a series of different bead-on-plate experiments were
conducted on aluminum alloy (6061) plates by modifying the laser power. Other parameters
remained unchanged, as listed in Table 1. This procedure was repeated in order to create a
data basis for the evaluation of the correlation between achieved penetration depth and
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AE with respect to the adjustable welding parameters. After laser welding, the weld’s
quality was characterized postmortem by means of metallographic testing using an optical
microscope setup.
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Table 1. Detailed welding parameters used in experiments and corresponding welding quality.

Case Laser
Power

Pulse
Width

Pulse
Frequency

Welding
Speed

Defocusing
Distance

Penetration
Status

1 5 kW 10 ms 10 Hz 20 mm/s 0 mm FP
2 4 kW 10 ms 10 Hz 20 mm/s 0 mm PP
3 3 kW 10 ms 10 Hz 20 mm/s 0 mm NP

(Full-penetration: FP, Partial-penetration: PP; None-penetration: NP).

The multi-information synchronous acquisition system consists of two subsystems:
visual sensor and the ABAE sensor (BSWA TECH, Beijing, China, MA231 pPreampli-
fier). Therein, the visual sensing system contains a high-speed camera (PHANTOM
VEO 710L) with a band-pass filter (810 nm) and an auxiliary illuminant (CAVILUX HF,
810 nm ± 10 nm), which could efficiently reduce the existing interferences of spatters and
plasma plumes. The sampling frequency was set to 10,000 fps, and the exposure duration
was 1 µs. The original lateral keyhole image was 512 × 384 pixels with a resolution of
0.022 mm/pixel. In addition, a butt-joint configuration consisting of an aluminum alloy
(6061) with size of 100 mm (length) × 50 mm (width) × 2 mm (height), and transparent
heat-resistant quartz glass with size of 100 mm (length) × 5 mm (width) × 2 mm (height),
was constructed to directly observe the keyhole dynamics inside the melt pool through
the high-speed imaging during the laser welding process. The ABAE signals (airborne
sound pressure waves) were collected using a condenser microphone (BSWA TECH, MA231
Preamplifier) with a sampling frequency of 20 kHz. The microphone was oriented at an
angle of 45◦ with the horizontal axis, and the distance between the laser-metal interaction
and the microphone was 50 mm. The national standards for the chemical composition [28]
and mechanical properties [29] of 6061 aluminium alloys are given in Table 2.

Table 2. The national standards for the chemical composition and the mechanical properties of
6061 alloys.

Alloy Si (%) Fe (%) Cu (%) Mn (%) Mg (%) Cr (%) Zn (%) Ti (%)
Tensile
Strength
(MPa)

Yield
Strength
(MPa)

Elongation after
Fracture (%)

6061 0.4–0.8 0.7 0.15–0.4 0.15 0.8–1.20 0.04–0.35 0.25 0.15 ≥290 ≥240 7



Materials 2023, 16, 1614 6 of 22

2.2. Detected AE Signals and Process Analysis

It is demonstrated that the weld penetration is of importance to weld formation/joint
quality, and the backside weld width is usually proposed to evaluate the penetration status
quantitatively. According to the actual weld widths, the degree of weld penetration can be
categorized into three types, including: (i) none-penetration (NP), (ii) partial-penetration
(PP), and (iii) full-penetration (FP), as depicted in Table 1. Figure 2 displays the transverse
cross sections (perpendicular to the laser path) of the fusion zone and the corresponding
AE signals detected under different penetration statuses. We can find that the AE signals
mainly change in the time-domain in terms of amplitude fluctuation. It also consists of a lot
of impulses, referring to the pulsed AE events. The cycle of each pulsed AE event is 0.10 s
because the laser pulse frequency applied in our experiment is 10 Hz. When the amplitude
distribution of a pulsed AE event in the time-domain is uniform, the corresponding welding
process is relatively stable, which creates a better appearance of cross-section morphology.
When the laser heat input is always less than the energy threshold for forming a penetration
hole, the intensity of the acoustic signal intensity remains small (less than 2 V) under the
non-penetration status.
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Figure 2. Weld cross-section and top morphology as well as AE signals under different weld penetrations.

As the higher laser energy is gradually delivered to the lower surface of the workpiece,
the full-penetration hole may not necessarily be formed in each pulse period, which refers
to critical-penetration status. Some pulse periods of acoustic signal intensity increased to
exceed 2 V, and other pulse periods of signal intensity were less than 2 V. As the laser heat
input further increased to significantly exceed the energy threshold, the full-penetration
status easily occurred and the acoustic signal intensity reached a maximum value (larger
than 3 V) under a stronger laser-beam illumination.

In general, the pulsed AE events can effectively reflect the keyhole dynamics of the
pulsed laser affecting the workpiece during the laser welding process. The process-based
definitions of various penetration modes come directly from time-resolved imaging of
keyhole morphology. Taking a full-penetration weld as an example, Figure 3 displays
the dynamic evolution of the keyhole and a single pulse AE event extracted from the
complete AE signal during pulsed laser mode. Under the high instantaneous energy of
the laser beam in Phase 1, a concave quickly appeared within a very short time due to a
strong recoil momentum from the vaporization of the liquid surface. The intensity of the
AE signal also began to increase. With an increase in laser energy in Phase 2, the laser
fluence is sufficient to vaporize the metal, generating a large recoil pressure that opens a
deep and slender vapor depression (referring to a gas-vapor keyhole) based on multiple
reflections, which substantially enhances the laser energy absorption by the surrounding
melt pool. Meanwhile, the amplitude of the AE signal increased significantly to a maximum
value, which indicates that the formation process of the keyhole releases intense AE energy.
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From Phase 3 to 4, the laser absorption and reflection occurred due to its interaction with
the vaporized metal; only part of the laser energy was absorbed by the molten metal.
Thus, the depth of the keyhole decayed with time, and the amplitude of the AE signal
began to decrease accordingly. After the pulse laser termination, the keyhole disappeared
quickly over a very short interval of time and reappeared until the next laser pulse started.
Meanwhile, the intensity of the AE signal also degraded rapidly due to the absence of laser
energy, as illustrated in Phase 5.
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during the repetitively pulsed laser welding: (a) formation and collapse dynamics of a gas-vapor
keyhole; (b) waveform of a single pulsed AE event; (c) waveform of a raw AE signal; (d) time-
dependent distribution of pulsed laser power.

By discussing the correlations between the transient nature of the subsurface keyhole
and the AE signal, it is indicated that the acoustic emission could provide a wealth of
information about the keyhole dynamics under the complicated interaction between the
repetitively pulsed laser radiation and the aluminum alloy workpiece. To fully implement
the acoustic monitoring system and manufacture defect-free welded products, we need a
more comprehensive understanding of the acoustic source and its internal relationship to
the weld quality.
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2.3. Generation Mechanism of Acoustic Wave

As depicted in Figure 4a, a high-energy Gaussian-profiled laser beam (I ≥ 1 MW/cm2)
focusing on the surface of a workpiece creates a thin and narrow capillary called a keyhole
in a moving material. According to the hydrodynamic theory [30], the dynamic pressure
balance at the keyhole wall is a premise of the stable keyhole that exists in the deep-
penetration laser welding process. Significantly, the slight variation of the keyhole shape
and size (depth d and exit radius R) could easily cause the pressure to fluctuate at the
keyhole wall.

Figure 4. Generation mechanism of acoustic waves during the pulsed laser welding process: (a) the
pressure balance inside the keyhole under the laser beam radiation; (b) dynamic variation of keyhole
depth under different laser powers.

To keep the keyhole open and stable, the various driving pressures at the keyhole wall
should satisfy a balance equation of pressure ∆p = 0, as follows [30]:

∆p = pγ(r) + pabl(T) + pl + pg (1)

Surface tension pressure : pγ =
γ

R
(2)

Ablation pressure : Pabl(Ts) =
Ir

Lv
(

κ · R · Ts

M
) (3)

Hydrodynamic pressure : pl =
1
2
· ρ · v2 (4)

Hydrostatic pressure : pg = ρ · g · d (5)
where Pγ denotes the surface tension pressure induced by the molten metal around the
keyhole, γ the surface tension coefficient, Pabl the ablation pressure induced by the material
evaporation, Lv the latent heat of vaporization, Ir the laser intensity for material vaporiza-
tion, κ the thermal diffusivity, Ts the keyhole surface temperature, M the molar mass of
aluminium alloy, ρ the fluid density and g the gravity acceleration, v the flow velocity of
the liquid metal fluid, and d the depth of the keyhole.

It is demonstrated that the equilibrium values of the keyhole sizes depend on the
Gaussian laser energy distribution on the keyhole wall and material properties. With the
increase in temperature at the bottom of the vapor depression, the laser absorption also
increases abruptly, disrupting the force balance at the local vapor-liquid interface. The
keyhole then becomes unstable and grows rapidly in depth. Due to the instability of the
keyhole itself, any small deviation of the keyhole depth and radius from their equilibrium
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values leads to a pressure fluctuation and keyhole oscillation. Significantly, the response of
keyholes to pressure fluctuations has been predicted to involve the excitation of a number
of normal modes at characteristic frequencies [31]. The eigenfrequency f 0 of keyhole
oscillation can be calculated by Equation (6):

f 2
0 =

γd2 + 2ρgRd3 − 3γR2

ln 3× δ(3R5 + d2R2)
(6)

It can be seen that the eigenfrequency f 0 is closely related to the keyhole depth d and
radius R under the dynamic balance of the keyhole. Meanwhile, the keyhole oscillations
(e.g., radial, axial, and azimuthal) induced by the interaction between the different laser
energy intensities and materials could generate shock acoustic waves in different ranges of
amplitude/frequency, which could be reflected in the acoustic intensity and spectrum. In
addition, the acoustic emission in the audible frequency range is also likely to be related
to the vapor plume ejection from the keyhole outlet. The keyhole-induced vapor plume
compresses the ambient atmosphere and generates a high air pressure. It will further
produce an acoustic wave with a large overall amplitude, depending on the plume size,
which will rely on the laser energy input. Particularly, the expanding plume dynamics
are influenced by the keyhole fluctuations caused by distortion of the pressure balance.
The vapor ejection and the plasma size are modulated by the keyhole oscillation under
the dynamic pressure fluctuations. Thus, the oscillation of the keyhole itself is considered
a potential point acoustic source, and the molten pool acts like a speaker diaphragm,
generating acoustic waves in the surrounding atmosphere.

To verify the rationality of the acoustic source mechanism, the keyhole depth was
extracted under different laser powers with a common imaging-processing algorithm
according to our previous studies [32,33]. From a series of variation curves of keyhole
depths in each laser pulse (see Figure 4b), we found that: (1) when the laser energy is lower
(3 kW), the depth variation of keyhole increases from 0.7 mm to 1.5 mm. The average depth
(see the solid red line) also changes gradually, which is close to 1.2 mm. Consequently,
the acoustic signal intensity is lower under the none-penetration status, as depicted in
Figure 2a. This is because the oscillation behavior of the keyhole is not intense under the
relatively smooth changing pressure acting on the keyhole wall; (2) when the laser energy is
further increased, the keyhole depth dynamically changes from 1.8 mm to 3.0 mm, and the
acoustic signal intensity also increases significantly under the full-penetration status (see
Figure 2c). It is indicated that the evolution process of a penetrated keyhole releases intense
AE energy due to a more intense keyhole oscillation behavior. Based on the theoretical and
experimental analysis, the AE characteristics are a strong function of various influencing
factors, including the material properties, experimental conditions (laser power, pulse
duration, and frequency), and acoustic waves induced by the keyhole oscillation.

For better correlating the acoustic wave characteristics with the various weld pen-
etrations, revealing the amplitude and spectrum distribution of acoustic signals with
time-frequency analysis is indeed crucial to enhance the potential adoption of the AE
technique, which will be discussed in the next section.

2.4. Time-Frequency Analysis of AE Signals

Since the spectrum property of the AE signal is closely related to the keyhole oscillation
and vapor plume expansion generated by the interaction between the pulsed laser beam
and materials, the frequency-domain analysis is a more accurate and efficient analytical
approach, providing additional interesting insights compared to the time-domain. Addi-
tionally, the frequency-domain features on the specific frequency band are not sensitive to
the environment and the machine noises from other frequency bands. In our study, a Fast
Fourier Transform (FFT) algorithm was applied to extract the frequency characteristics of
the AE signal segments, as shown in Equation (7):

X(k) =
N−1

∑
n=0

x(n)(cos 2πk
n
N
− j sin 2πk

n
N
) (k = 0, 1, 2, . . . , N − 1) (7)
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where X(k) is the calculated data after FFT processing, x(n) is the recorded acoustic signal,
and N is the sample points (N = 20 k). To directly reflect the distribution of frequency-
domain characteristics over time, the acoustic signals belonging to different penetration
states were transformed into a 2-D spectrogram using the short-time Fourier transform
(STFT). The corresponding “time-frequency-amplitude” information is investigated in
combination with the keyhole behavior. By shifting the window function h(t) on the time
axis, the acoustic signal was analyzed segment by segment to obtain a local spectrum of
the acoustic signals. The STFT of the raw signal x(t) is defined as:

STFT(t, f ) =
∫ +∞
−∞ x(τ)h(τ − t)e−j2π f τdτ (8)

Figure 5 depicts the formation and dynamic evolution of the keyhole and the corre-
sponding depth variation, as well as the 2-D spectrograms under different weld penetra-
tions. It is found that the time-frequency spectrograms transformed by the STFT algorithm
can visually display an obvious pulse component describing the pulse laser action over
time. Moreover, the spectrum intensity of a low-frequency band (less than 2 kHz) under
various weld penetration is almost equal, while the spectrum intensity of a high-frequency
band under PP and FP states are larger than in the NP state. It may be due to of the
increased laser energy input; the keyhole (see Figure 5) and the metal vapor ejections
are becoming more intense, exhibiting much stronger fluctuations (larger amplitude and
frequency). While the NP state does not have a deep enough keyhole, the laser energy
is relatively small, melting the metal more slowly, making the metal vapor and plasma
ejection less intense and the keyhole depression slower, so the AE event occurs in the
low-frequency range.
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variation under different weld penetrations.

Therefore, the results of spectrum distribution further indicate that the keyhole and its
surrounding liquid molten pool layer act as a frequency-selective amplifier for pressure
fluctuations induced by changes in the interaction of pulsed laser radiation with the keyhole
wall. The experimental data show a strong correlation between the acoustic emission
spectrum at 1~10 kHz and keyhole behavior as well as weld penetration. These acoustic
spectra undoubtedly reflect a variety of quasi-periodic phenomena that are characteristic
of the laser-metal interaction during laser welding. It is worth noting that an individual
frequency component at a given frequency has no clear physical significance, which is not
sufficient to be used as an efficient acoustic feature.

3. VMD-Based Frequency Component Extraction

To investigate more about the feasibility of distinguishing between low-frequency
and high-frequency components for better describing the weld penetration, an efficient
frequency decomposing technique is crucial. In this research, we apply the VMD (Vari-
ational Mode Decomposition) method, which is an adaptive signal processing method
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that decomposes a none-stationary AE signal f into K modal component sub-signals uk
with each component having a defined finite bandwidth and a central frequency ωk. The
method assumes that any signal consists of a series of sub-signals with a specific center
frequency and finite bandwidth, i.e., an IMF (intrinsic mode function) [34].

Based on the classical Wiener filter, the modal function is obtained by solving the
variational problem to obtain the central frequencies and bandwidth limits and finding the
effective components corresponding to each central frequency in the frequency domain.
The variational problem for the constraint is:

min
{uk} {ωk}

{
K
∑

k=1
||∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt||22

}
s.t.

K
∑

k=1
uk = f

 (9)

where: {uk} = {u1, . . . , uK}, {ωk} = {ω1, . . . , ωK} are all modes and their central frequencies,
respectively; ∂t is the partial derivative with respect to t, δ(t) is the Dirac distribution, and
* denotes the convolution.

To solve Equation (9), a quadratic penalty factor α and a Lagrange multiplier operator
λ can be introduced to convert Equation (9) into an unconstrained variational problem, the
augmented Lagrangian function is expressed as in Equation (10):

L({uk}, {ωk}, λ) = α
K
∑

k=1
||∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−iωkt||22 + || f (t)−

K
∑

k=1
uk(t)||22

+〈λ(t), f (t)−
K
∑

k=1
uk(t)〉

(10)

By using the alternating directional multiplier (ADMM) iterative algorithm combined
with the Parseval/Plancherel, Fourier isometric transform, the modal components, and
central frequencies were all optimally obtained, and the saddle points of the extended
Lagrange function were searched for. The expressions for uk, ωk, and λ after the alternating
search iteration are as follows [34]:

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (11)

The same method of updating the central frequency is understood to be:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(12)

where µ̂n+1
k (ω) is equivalent to the Wiener filter of the current residual f̂ (ω)− ∑

i 6=k
ûi(ω);

ωn+1
k is the center of gravity of the current eigenmode power spectrum.

When using VMD for signal processing, a K value that is too large or too small will
result in spurious or missing components, so the parameter K needs to be optimized. Using
the instantaneous frequency averaging method [35], the instantaneous frequency of the
jth sample point is obtained as fij, assuming that the ith modal component of the original
signal has M samples. The original signal was pre-decomposed using the VMD method,
and the modal classification at K = 2~9 was Hilbert transformed to obtain the resolved
signals. By applying the instantaneous frequency averaging method:

fi =
1
N ∑

j
fij (13)

where N is the number of instantaneous frequencies of a modal component, and the penalty
factor α was set to 2000. The normalized instantaneous frequency averaging curves for
VMD modal components 2 to 9 were analyzed, as depicted in Figure 5.

It can be seen that when the modal component increases to a certain value, the curve
bends distinctly from the neighboring points, and the instantaneous frequency mean of
the modal component at that point changes abruptly, indicating that the different sub-
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signals produce abrupt changes in frequency during the decomposition. If the curve does
not bend significantly but forms a gentler horizontal or vertical line with the adjacent
points, it indicates that the different sub-signals have generated frequency blending during
the decomposition of the signal. According to the instantaneous frequency averaging
transformation curves from K2 to K9 in Figure 6, the result of the VMD decomposition
layer at K9 is a relatively smooth folded line. There is no sudden change in the frequency
components of each mode, which means that the VMD method at K9 can better decompose
the raw AE signals into different IMF components.
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Taking a full-penetration AE signal as an example, the signal was decomposed into
9-layer IMF components using the VMD method, and the penalty factor α was set to
2000 based on the discrimination method of center frequency observation. Figure 7a illus-
trates the various reconstitution sub-signals of each layer of the IMF. Then the FFT-based
spectral analysis was performed for each IMF layer to visualize the nine IMF components
of the raw AE signal, as shown in Figure 7b.

It can be seen that the frequency distribution of the IMF sub-signal derived from the
raw AE signal after 9-layer decomposition is more reasonable, which is consistent with
the interpretation of the instantaneous frequency averaging method. To calculate whether
the VMD method separates signals with high energy in the low-frequency band, the time
domain energy calculation method is introduced:

En(x) =
∫ N

0 |x(t) |
2dt (14)

N is the maximum number of time series; N is set to 800,000. The energy percentage
of each sub-signal is calculated as shown in Figure 8. It indicates that the 9th layer IMF
component is in the lowest frequency band with the highest energy, and the remaining
8 IMF components are in higher frequency bands with lower energy. The comparison
result demonstrates the feasibility and veracity of the VMD technique in reflecting the
acoustic energy distribution among the low-frequency and high-frequency components of
AE signals.
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4. The Proposed Spatio-Temporal CNN-LSTM Model

During the pulsed laser welding process, affected by the high transient characteristics
of the laser beam, the AE signal presents a highly dynamic, complex, and changeable
characteristic. In particular, the energy distribution of different components in AE signals
over time would vary under different welding conditions based on VMD pre-processing.
Therefore, a deep learning algorithm based on the fusion of spatio-temporal information
was proposed to make full use of the time-dependent relationship and spatial characteristics
of the time-frequency information in a time-varying AE signal. In this section, a 1-D CNN
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model was firstly applied to deeply explore the spatial feature differences between the
low-frequency high-energy components and the high-frequency low-energy components.
After extracting the spatial features of the AE signal, an LSTM model was connected to
mine the temporal features of this time series. Then, a hybrid CNN-LSTM model was
constructed to predict the laser welding penetration status.

4.1. CNN Framework

In this study, the 1-D CNN architecture was used, and the decomposed AE sub-signals
using VMD were used as the model input. Due to the advantage that 1-D CNN only
convolves the filter width without the filter height [36], it can effectively convolve the
9-layer sub-signals at each time-series sample to deeply explore the energy distribution
feature between low-frequency and high-frequency components. As shown in Figure 9,
the filter width and height were set to 9 and 1, and the width and height of each sequence
vector were 9 and 480,000. The filter sliding step was 1 from the start position along the
height direction sliding to the final position, for a total of 479,999 sliding times. The second
sequence vector was obtained after one filter convolution operation with the width and
height changing, and was calculated as follows:

H2 = H1−FH1
S1

+ 1 (15)

W2 = W1−FW1
S1

+ 1 (16)
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feature between low-frequency and high-frequency components (Structure includes 1-D convolution
kernel, i.e., filter, and sequence vectors. Width × Height of the filter and sequence vectors are
9 × 1 and 9 × 480,000 respectively).

Taking the height calculation as an example, H1 and H2 are the heights of the first and
second sequence vectors, respectively; FH1 is the height of the first convolutional layer; and
S1 is the sliding length. The width was also calculated in the same way. Two layers of 1-D
CNN were used to extract the sequence vector features in turn. Nine filters were set in
the first layer to extract the width features of the sequence vectors, resulting in sequence
vectors of 9 × 480,000. The second layer was set with six filters to extract the width features
of the sequence vectors, resulting in sequence vectors of 6 × 480,000. Each 1-D CNN layer
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was then connected with one RELU layer as an excitation function, and a dropout layer
was used at the end of the two convolution layers to prevent over-fitting.

4.2. LSTM Framework

LSTM (Long Short Term Memory) has a more accurate information transfer mechanism
and can automatically store and remove temporal state information compared to RNN
(Recurrent Neural Network). In addition, it can effectively solve the gradient disappearance
problem and dependency problems caused by long input sequences [37]. As shown in
Figure 10, the basic structure of the LSTM model uses input gates, output gates, and
forgetting gates to protect and control the state of the storage unit.

Figure 10. The detailed architecture of the LSTM model.

Firstly, the input Xt is used in conjunction with the previous output ht−1, in order to
obtain the output ft of the forgetting gate; the output range is used to filter whether the
output of the previous unit is remembered, or not. The input gate is then responsible for
selectively remembering the current input information and outputting it, and together
they update the state information in the long-term memory chain Ct. Finally, ht−1 and Xt
are passed through the output gate and multiplied by the activation function to obtain
the output ht for that cell. The flow of information in the LSTM can be described as the
following equation:

ft = σ ·
(

W f · [ht−1 + Xt] + bt

)
(17)

it = σ · (Wi · [ht−1 + Xt] + bi) (18)

C′t = tanh · (Wc · [ht−1 + Xt] + bC) (19)

Ct = ft ∗ Ct−1 + it ∗ C′t (20)

ot = σ · (Wo · [ht−1 + Xt] + bo) (21)

ht = ot ∗ tanh(Ct) (22)
where Wf, Wi, Wo, Wc are weighting coefficients and bt, bi, bc are bias coefficients.

After extracting the deep spatial features of the temporal vectors using two 1-D CNN
layers, the time-series size of the temporal vector became 6 × 480,000. Then, a LSTM layer
was connected to explore the temporal features of this time series. As shown in Figure 11,
one pulse period of the pulsed laser is 10 ms, and the sampling frequency was set to
20 kHz, i.e., one pulse period covers 2000 sampling points. With one pulse cycle as one
frame, there are 240 frames within 480,000 sequence points. Therefore, the number of
hidden units in the LSTM layer was fixed to 240, and each hidden unit processed one pulse
cycle, which greatly speeds up the efficiency of the LSTM layer.

4.3. Establishment of the CNN-LSTM Hybrid Model

After adaptively decomposing the raw AE signal into 9-layer sub-signals with the
VMD technique, a two-layer 1-D CNN model fully extracts the spatial features character-
izing the time-frequency energy distribution of each sub-signal, while the LSTM model
extracts the temporal state information reflecting the keyhole dynamics. Thus, the combi-
nation of CNN-LSTM hybrid models can describe the complex variation trend of acoustic
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waves under different welding conditions and obtain more accurate penetration predicting
results. After combining with CNN and LSTM layers, a dropout layer was connected to
prevent over-fitting with a dropout value of 0.5, followed by a FC (fully connected) layer, a
Softmax activation function layer, and a classification layer including three types of pene-
tration states (NP, PP, and FP). Figure 12 depicts the basic architecture of the CNN-LSTM
hybrid model, which will be trained in order to verify the model’s performance in the
next section.
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5. Results and Discussion
5.1. Performance Evaluation of the Constructed Model

In this subsection, the predicting accuracy of different penetration states was evaluated
using the constructed deep learning model. Due to the large number of parameters involved
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in CNN-LSTM, many hyperparameters (e.g., number of CNN or LSTM layers, batch size,
and CNN filter number) directly affect the model recognition accuracy. Based on a great
deal of experimentation, the optimized hyperparameters are provided in Figure 13; the
rest of the parameters are defaults. A total of 800,000 samples of data were available for
each of the three penetration states. 60% of the sample data from each state was used as
the training set, 20% as the validation set, and the remaining 20% as the testing set. All
experiments were deployed based on the Matlab 2022a environment and validated, using a
computer equipped with an Intel(R) core(TM) i7-10750H processor and a NVIDIA RTX2060
GPU. The performances of implemented methods were assessed and compared within
terms of recognition, accuracy, and corresponding loss values.
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According to Figure 13, although there is a decline in accuracy after 40 iterations,
the proposed model has a higher overall recognition accuracy of 99.8% after 150 training
iterations. Meanwhile, the training and validation of model loss converged to zero after
completing iterating. In addition, the normalized confusion matrix was calculated to
clearly display the classification and misclassification results of each penetration status
under different feature representations. As depicted in Figure 14, only one sample was
misclassified as an FP state in an NP state classification, and the recognition accuracy
reached about 100%. In the PP state classification, 183 samples were misclassified as NP,
and the recognition accuracy reached 99.9%. In the FP state classification, 539 samples were
misclassified as PP state, and the recognition accuracy reached 99.7%. The CNN-LSTM
hybrid model can obtain a very high classification accuracy of 99.8%.

5.2. Performance Comparison between Different Models

To further demonstrate the superiority of the CNN-LSTM model, the performance
comparison with other models was verified by examining the test accuracy. The effects of
different network structures on the model’s performance were also tested. To guarantee
the reliability of the proposed approach, 5-fold cross-validation was applied, and the
average of those five times was calculated as the final accuracy of each model. The standard
deviation (STD) was also calculated for each model’s accuracy to judge the model’s stability.
The performance statistics of the replicate experiments for each model were depicted and
compared in Figure 15, the parameters of the different networks are detailed in Table 3, and
the following conclusions can be drawn:

1. No. 1 and No. 3 network models only compared the effect of different hidden
layer nodes in LSTM on the model performance when other parameters remained
unchanged. As the number of hidden nodes increases from 120 to 240, the average



Materials 2023, 16, 1614 18 of 22

recognition accuracy also increases from 96.43% to 98.50%, which indicates that a
lager node number in the LSTM hidden layer has a higher classification performance;

2. Since the 1st layer of CNN was applied to extract the spatial features of 9-layer
sub-signals through VMD, the filter number of the 1st layer was fixed at 9, thus
No. 2–No. 5 network models compared the effect of the filter number of the 2nd
CNN layer in turn. It is worth noting that the No. 4 model has a best classification
performance of 99.85% when the filter number of 2nd layer is set to 6. Meanwhile, it
has a minimum accuracy fluctuation when STD = 0.21, confirming that the optimal
model is stable. Although other models (No. 2 and No. 5) can also reach a larger
recognition accuracy exceeding 98%, there exists a strong accuracy fluctuation at 50 or
100 iterations, indicating that these models are not stable;

3. As shown in Figure 15b, the No. 4 and No. 6 compared the effect of the VMD-based
frequency components on the model’s performance. It can be found that the input
data of the No. 6 network was not decomposed using the VMD method, which led
to a significant accuracy (67.83%) decrease compared to the No. 4 network with the
VMD method;

4. Lastly, the No. 4 and No. 7 compared the effect of the CNN-based spatial feature
extraction on the model performance after the VMD processing. The final recognition
classification of No. 4 (99.85%) is higher than No. 7 (95.04%), and the standard
deviation of No. 4 (0.21) is also lower compared to No. 7 (0.28). Meanwhile, the No. 4
structure achieves the global optimum in fewer iterations, indicating that the CNN
layer contributes greatly to the penetration and prediction of results.
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In conclusion, the combination of the detected AE signals, VMD processing, and
CNN-LSTM approach (No. 4 network) can obviously contribute to achieving excellent
performance for predicting the penetration status during pulsed laser welding. The reason
can be explained: the VMD technique can efficiently decompose the non-stationary AE
signal into low-frequency and high-frequency components. After that, the proposed
approach integrates the excellent spatio-temporal feature extraction capabilities of CNN
and LSTM for dealing with the extracted frequency components. Compared to traditional
feature extraction and machine learning methods used in other studies, such as in [15,16],
the present method does not require the reduction of noise collected by an acoustic emission
sensor and exhibits better adaptive feature extraction properties as well as higher prediction
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accuracy and a lower standard deviation, which is undoubtedly a great improvement in
the model. Thus, the hybrid model provides a more accurate dynamic modeling approach
for monitoring welding penetration based on AE sensing while being able to adequately
characterize the keyhole dynamics during pulsed laser welding.

Table 3. Detailed hyperparameters and performance statistics for different networks.

No. 1 2 3 4 5 6 7
VMD method Yes Yes Yes Yes Yes No Yes
Filter number

of 1st CNN layer 9 9 9 9 9 - -

Filter number
of 2nd CNN layer 3 1 3 6 9 - -

LSTM hidden nodes 120 240 240 240 240 240 240
Max Acc(%) 97.45 98.50 98.82 99.99 99.99 70.32 96.25
Min Acc(%) 96.34 97.78 98.10 99.31 97.31 65.33 94.16
Avg Acc(%) 96.43 98.16 98.50 99.85 98.37 67.83 95.04

Standard deviation 0.28 2.33 0.25 0.21 2.32 0.32 0.28
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Figure 15. (a) Comparison results between No. 1~No. 5 network models. For instance, the network
structure of 9-3-120 means it has 9 filters in the 1st layer, 3 filters in the 2nd layer of the CNN model,
120 hidden nodes in the LSTM layer, and so on. (b) Comparison results between No. 4, 6, and
7 network models. No. 6 and No. 7 networks reflect the model only having a LSTM layer without a
CNN layer, namely Origin-LSTM. No. 6 network deals with the raw AE signals without VMD, while
the No. 7 network deals with the decomposed AE signals with VMD.

6. Conclusions and Future Works

This work developed a novel acoustic in-process penetration monitoring method
based on the acoustic wave characteristics of a CNN-LSTM hybrid model for aluminum
alloys in pulsed laser welding. The following conclusions can be drawn:

1. Combining with the high-speed photography and AE measurements, the characteris-
tics of the AE signal are closely related to the keyhole oscillation and various weld
penetrations. Based on the proposed mechanism of an acoustic source, the keyhole
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oscillation under the dynamic pressure fluctuation is considered a potential point
acoustic source, and the surrounding molten pool acts like a speaker diaphragm,
generating the spherical acoustic waves propagating in the workpiece;

2. According to the STFT time-frequency analysis, the acoustic spectra undoubtedly
reflect a variety of quasi-periodic phenomena that are characteristic of the laser-
metal interaction during laser welding; then the proposed VMD technique adaptively
decomposed the raw AE signal into nine distinct frequency components, which can
precisely characterize the acoustic energy distribution among the low-frequency and
high-frequency components, under different welding penetrations, and improved
frequency domain identifiability;

3. Finally, a novel hybrid model combing CNN and LSTM was designed to deeply mine
the spatial and temporal acoustic features from the extracted frequency components.
Extensive experiments demonstrate that our proposed approach yields a remarkable
classification performance with a test accuracy of 99.8% and a standard deviation
of 0.21, which obtains the best recognition performance compared with other deep
learning methods.

The current research focuses mainly on the penetration status classification for the
fully penetrated butt-joint welds during pulsed laser welding. Aiming at non-penetrated
welds (lap or fillet joints), our future study will apply the acoustic emission and CNN-
LSTM techniques for penetration depth regression forecasting, which can further verify its
reliability and broaden its industrial application domain. In addition, future works will
also focus on the combination of acoustic emission with thermal and photoelectric sensors
and give full play to the potential advantages among monitoring techniques. It will provide
the possibility to detect internal macroscopic seam defects (cracks and pores) and deliver
better performance prediction during highly dynamic laser welding.
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