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Abstract: In dentistry, clinicians mainly use dual-cured or light-cured resin-matrix cements to achieve
a proper polymerization of the organic matrix leading to enhanced physical properties of the cement.
However, several parameters can affect the polymerization of resin-matrix cements. The main aim of
the present study was to perform a scoping review on the degree of conversion (DC) of the organic
matrix, the polymerization, and the light transmittance of different resin-matrix cements used in
dentistry. A search was performed on PubMed using a combination of the following key terms:
degree of conversion, resin cements, light transmittance, polymerization, light curing, and thickness.
Articles in the English language published up to November 2022 were selected. The selected studies’
results demonstrated that restorative structures with a thickness higher than 1.5 mm decrease the
light irradiance towards the resin-matrix cement. A decrease in light transmission provides a low
energy absorption through the resin cement leading to a low DC percentage. On the other hand, the
highest DC percentages, ranging between 55 and 75%, have been reported for dual-cured resin-matrix
cements, although the polymerization mode and exposure time also influence the DC of monomers.
Thus, the polymerization of resin-matrix cements can be optimized taking into account different
parameters of light-curing, such as adequate light distance, irradiance, exposure time, equipment,
and wavelength. Then, optimum physical properties are achieved that provide a long-term clinical
performance of the cemented restorative materials.

Keywords: degree of conversion; resin cement; light transmittance; polymerization; light curing

1. Introduction

A reliable and lasting indirect restoration is the main aim of oral rehabilitation, al-
though that depends on the performance of resin-matrix cements [1]. The polymerization of
resin-matrix cements under ceramic or resin-matrix composite restorations plays a key role
in the mechanical properties of the restorative interface [2,3]. An inadequate polymerization
promotes a faster degradation of resin-matrix cement and increases the risk of fracture at
the restorative interface, leading to debonding [4]. Transmitted light irradiance has a strong
effect on the degree of conversion (DC) of monomers within the organic matrix of resin-
matrix cements [5,6]. In fact, the DC of resin-matrix cements directly affects their physical
properties, and it has been used as a parameter for predicting the restorations’ clinical
performance [7]. The effects of light transmittance on the polymerization of resin-matrix
cements should be clarified concerning their mechanical performance and biocompatibility.
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The most common commercially available resin-matrix cements often used by clini-
cians are dual-cured and self-adhesive cements [7,8]. In particular, dual-cured resin-matrix
cements have become the most used materials due to light-curing and chemical polymer-
ization under light-curing procedures [9,10]. Regarding polymerization, there are three
types of resin-matrix cements: light curing, self-curing, and dual curing [11,12]. Resin-
matrix cements are composed of an organic matrix which agglomerates dispersed inorganic
fillers. The organic matrix often involves bisphenol A-glycidyl dimethacrylate (Bis-GMA),
urethane dimethacrylate (UDMA), and triethylene glycol dimethacrylate (TEGDMA). Inor-
ganic fillers are composed of combinations of barium fluoroaluminoborosilicate, strontium
calcium aluminosilicate glass, quartz, amorphous silica, ytterbium fluoride, zirconia, and
other glass fillers [13,14]. The content of inorganic fillers of commercially available resin-
matrix cements varies in the range from 60 up to 75 wt% [13,15].

Tooth-supported restorations can involve different restorative materials, resin-matrix
cements, and tooth substrate conditions [7]. The most frequent materials applied on
indirect restorations are zirconia, feldspar-based ceramics, lithium disilicate-reinforced
glass ceramics, zirconium-lithium silicate glass-ceramics, resin-matrix composites, and
polymer-infiltrated ceramic networks (PICN) [16,17]. Indirect restorative materials have
different mechanical properties that influence the clinical performance of the restoration.
The elastic modulus of zirconia can reach mean values of 240 GPa [18,19] and its flexural
strength ranges between 900 and 1200 MPa [20]. Translucent zirconia has an elastic modulus
of around 200–210 GPa [21,22] and a flexural strength between 500 and 600 MPa [21,23].
High-translucency zirconia shows an intermediate translucency between the traditional
opaque zirconia and lithium disilicate-reinforced glass ceramics [24]. Lithium disilicate-
reinforced glass ceramics have an elastic modulus around 65 GPa and a flexural strength
of around 380 MPa. The lowest values of elastic modulus and flexural strength have been
reported for resin-matrix composites (16 GPa and 240 MPa, respectively) and PICN (21 GPa
and 200 MPa, respectively) [20,25–27]. The adhesion of resin-matrix cements to indirect
restorations depends on the surface condition of the substrate [28,29]. Several methods of
surface modification have been assessed in the literature such as acidic etching (e.g., 10%
HF), grit-blasting with alumina or silica micro-scale particles, and silane conditioning [30–33].
Previous studies have reported an increase in the shear bond strength of resin-matrix
cements to indirect restorations related to an increase in the roughness of the substrate after
surface treatment. Additionally, a chemical functionalization of the substrate enhances the
adhesion between the resin-matrix cement and the ceramic substrate. Certain compounds
such as silane can establish a chemical bonding between the carbon-based structure of
the resin-matrix cement and the inorganic restorative materials such as zirconia or glass-
ceramics. Novel studies have shown an increased adhesion of resin-matrix composites to
ceramic and polymeric surfaces due to previous surface conditioning with compounds
containing graphene oxide or carbon nanotubes [28,29].

Polymerization of resin-matrix cements can be affected by the type, thickness, re-
fraction index, and shade of indirect restorations, which influence the materials’ translu-
cency [5,34,35]. The light-curing mode and light intensity of light-curing units (LCU) also
influence the polymerization process, since light irradiance decreases as the restoration
thickness and shade increase [4,36]. A low DC of the organic matrix of the resin-matrix ce-
ment is also dependent on their properties [19]. The DC percentage of resin-matrix cements
is dependent on the restorative material thickness and translucency, which influence the
amount of light transmission towards the resin-matrix cement under an indirect restoration.
The light irradiance over the light curing process decreases when the ceramic material thick-
ness is higher than 1 mm [8]. A previous study analyzed the DC of resin-matrix cements
through different high-translucency zirconia shades with 0.9 mm thickness. Higher values
of DC were measured for translucent zirconia when compared to opaque ones [37]. The
thickness of lithium disilicate-reinforced glass ceramics (between 0.6 and 1.5 mm) did not in-
fluence the DC values of dual-cured or light-cured cements [38]. However, different results



Materials 2023, 16, 1560 3 of 18

were found when the thickness of the lithium disilicate-reinforced glass ceramic was higher
than 2 mm with a significant decrease in DC percentage for resin-matrix cements [39].

Thus, the adequate polymerization of resin-matrix cements is a key factor to avoid
clinical failures of indirect restorations. The main aim of this study was to perform a
scoping review on the degree of conversion of the organic matrix, polymerization, and light
transmittance through different resin-matrix cements used in dentistry. It was hypothesized
that the polymerization mode, type of resin cement, restorative material, and light exposure
time have a significant effect on the degree of monomer conversion.

2. Method

A bibliographic search was performed on PubMed (via National Library of Medicine)
considering that includes most journals in the field of biomaterials and dentistry. The
bibliographic search and the selection of studies were in accordance with the method
used in previous integrative review studies [15,40–43]. The following search terms were
applied: “degree of conversion” AND “resin cement” AND “light transmittance” OR “light
absorption” AND “light curing mode” OR “polymerization mode“ AND “restoration
thickness” OR “restoration type”. The inclusion criteria were articles published in the
English language up to November 2022, focusing on the degree of conversion of the organic
matrix, polymerization, and light transmittance through different resin-matrix cements
used in dentistry. The eligibility inclusion criteria also included in vitro studies, randomized
controlled trials, animal assays, and prospective cohort studies. The exclusion criteria were
the following: papers without an abstract; pilot studies; case reports with a short follow-up
period; and studies with a lack of details on the polymerization of resin-matrix cements.
Additionally, a hand-held search was also performed on the reference lists of all primary
sources and eligible studies. Studies were not restricted based on publication date during
the search process.

The articles retrieved from the search process were evaluated in three steps. All
articles were compiled for each combination of key terms and therefore the duplicates were
removed using Mendeley citation manager (Elsevier BV). Studies were primarily scanned
for relevance by title, and the abstracts of those that were not excluded at this stage were
assessed. The second step comprised the evaluation of the abstracts and non-excluded
articles according to the eligibility criteria on the abstract evaluation. Two of the authors
(JCMS and R.F-.P) independently evaluated the titles and abstracts of potentially relevant
articles. A preliminary evaluation of the abstracts was carried out to establish whether
the articles met the main aim of the study. Selected articles were individually read and
evaluated concerning the purpose of this study. At last, the eligible articles received a study
nomenclature label, combining first author names and year of publication. Two reviewers
independently organized the data, for example, by author name, journal, publication year,
purpose, resin-matrix cement data, restoration types, and degree of conversion.

3. Results and Discussion

In this study, the main parameters related to the adequate polymerization of resin-
matrix cements are discussed, such as the degree of conversion of the organic matrix,
light curing procedures, light irradiance, and light transmittance. The polymerization of
resin-matrix cements is affected by the content, type, and size of inorganic fillers. The
photoinitiator system also plays a key role in the polymerization chain reaction in the
organic matrix. On restorations, opaque restorative materials decrease the light trans-
mittance towards the resin-matrix cement and therefore negatively affect the degree of
conversion of the organic matrix. The highest degree of conversion in dual-cured cements
when compared to light-cured cements was recorded with soft-start polymerization. Thus,
the findings of the selected studies validate the hypothesis of the present review.

The initial search in the available database yielded a total of 268 articles, of which
98 duplicate articles were eliminated. Of the remaining 170 articles, the titles and abstracts
were read seeking concordance with the inclusion criteria of the present study and then
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11 studies were discarded because of the lack of data. The evaluation of titles and abstracts
resulted in the selection of 61 potential review articles of which six articles were excluded.
The results of the selection of articles are shown in Figure 1.
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3.1. The Chemical Composition of Resin-Matrix Cements

The chemical composition of resin-matrix composite cements is quite similar to that
recorded for resin-matrix composites, since they are composed of an organic matrix re-
inforced with silanated inorganic fillers [44,45]. Most resin-matrix cements contain high
molecular weight monomers (Bis-GMA, UDMA, TEGDMA, and hydroxyl ethyl methacry-
late (HEMA), as described in Table 1 [46]. Bis-GMA has a high molar mass (512 g mol−1)
and a high viscosity (600–1000 Pa.s−1), which limits the addition of inorganic particles to
resin-based materials [41,47,48]. Additionally, UDMA is commonly used as a base monomer
in self-adhesive resin-matrix cements in combination with TEGDMA [49]. Current self-
adhesive resin cements are composed of conventional dimethacrylate monomers such
as Bis-GMA, UDMA, HEMA, urethane oligomers of Bis-GMA, glycerol dimethacrylate,
TEGDMA, or trimethyloylpropane trimethacylate (Table 1). Self-adhesive resin cements
are also composed of acid-functionalized monomers, which are used to achieve dem-
ineralization and bonding to the tooth surface, e.g., 4-methacryloyloxyethyl trimellitic
anhydride (4-META) or phosphoric acid groups, such as 10-methacryloyloxydo-decyl
dihydrogen phosphate (MDP), 2-methacryloxyethyl phenyl hydrogen phosphate (Phenyl-
P), bis(2-methacryloxyethyl) acid phosphate (BMP), and dipentaerythritol pentaacrylate
monophosphate (Penta-P) [13,50]. However, the concentration of the acidic monomers in
self-adhesive resin cements must be balanced regarding hydrophilicity and pH to establish
an effective bonding to both the dentin and enamel surfaces [45,46,51]. Camphorquinone
(CQ) is also included as a photoinitiator and is associated with a coinitiator such as tertiary
amine (TA) (Table 1). The CQ/TA complex is stimulated by visible light from light-curing to
provide free radicals responsible for initiating the polymerization chain reaction [48,52,53].
Nevertheless, the low color stability of amines remains an issue, and therefore other pho-
toinitiator systems can be found in light-cured resin cements, such as germanium-based
photoinitiators IvocerinTM (bis(4-methoxybenzoyl)diethylgermanium) and LucirinTM TPO
(2,4,6-trimethylbenzoyldiphenyl phosphine oxide) [52,54].
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Regarding the inorganic composition, commercially available resin-matrix cements
contain an inorganic content ranging from 57 up to 78 wt% [13,14,19,55–60]. As shown
in Table 1, colloidal silica, ytterbium, or barium glass are the most frequent inorganic
particles used as fillers [19,61]. However, other combinations of fillers have also been
used, such as fluoroaluminoborosilicate glass, strontium calcium aluminosilicate glass,
quartz, or other glass fillers [13]. The inorganic filler content is responsible for enhanced
mechanical properties, although resin-matrix cements usually have a lower filler content
when compared with resin-matrix composites [58,61]. Resin-matrix cements reveal a high
variability in shape, size, and content of inorganic filler particles [56]. Commercially avail-
able resin-matrix cements can include different particles sizes and types of spherical- and
irregular-shaped particle inorganic fillers [57]. Inorganic particles of three self-adhesive
resin cements (CalibraTM, Denstply; MaxCem EliteTM, Kerr; and RelyX U200TM, 3M ESPE)
have mean particle sizes of 5.95 µm, 9.23 µm, and 8.1 µm, respectively. The highest flexural
strength values of around 96 MPa were recorded for a resin-matrix cement with a high con-
tent of micro-scale inorganic fillers [59]. Other resin-matrix cements have inorganic fillers
with sizes ranging from 0.5 up to 3 µm [14]. The incorporation of submicron- and nano-scale
fillers has also shown improvements in the physical properties of resin cements [62]. A
previous study reported the influence of nanoparticle content on the properties of hybrid
resin luting agents, and concluded that the incorporation of nanoparticles improves the
properties of resin-matrix cements [63]. The film thickness of resin-matrix cements is also
important as it improves the restoration fitting and mechanical performance, while decreas-
ing marginal leakage and loss of marginal integrity. The resin-matrix layer thickness can be
affected by multiple factors, such as viscosity, inorganic filler content, organic composition,
and DC. The thickness limit of a resin-matrix cement is clinically acceptable below 50 µm
following the ISO standard [64].

3.2. Polymerization Pathways

The polymerization reaction of chemically cured (self-cured) resin cements occurs
solely by activation of tertiary amines and benzoyl peroxide [65]. Chemically cured (self-
cured) cements are used for thick restorations, luting posts, and crowns that block light
transmission, such as metallic materials or highly opaque ceramics. Regarding the self-cure
reaction, the initiator, namely benzoyl peroxide, chemically bonds to a co-initiator (tertiary
amine), providing free radicals within the polymeric chain [11]. Resin-matrix cements
include benzoyl peroxide as a chemical initiator in one paste, while a second paste contains
the tertiary amine [66]. To ensure the success of the polymerization process, an increased
concentration of redox initiators is required to achieve the high DC of monomers. However,
chemically cured resin-matrix cements have the drawbacks of a limited working time and
a prolonged setting time [67]. The chemical reaction involves a prolonged working time
and could compromise the luting procedure [10].

Light-cured cements are activated in the presence of a visible light source using light-
curing units (LCU) [68]. The CQ/TA complex is stimulated by visible light at wavelengths
ranging from 420 up to 490 nm [69], although the light absorption peak is recorded at
470 nm (Table 1) [52,53]. Regarding the light-curing reaction, blue visible light (at 470 nm)
transmitted by a LCU is absorbed by the CQ/TA complex, involving three fundamental
steps: (1) polymeric chain growth without restrictions, in which the monomer concen-
tration and free radicals determine the kinetic reactions; (2) fast viscosity increase with
restricted mobility of free radicals and an irreversible increase in the elastic modulus of
the resin matrix (gel point); and (3) vitrification and end of the reaction with a high vis-
cosity level [41,47,48,70]. The increase in viscosity limits the movements of the remaining
monomers responsible for additional polymerization [71–73]. Dual-cured resin-matrix
cements combine light and chemical activation to ensure adequate polymerization under
low light irradiance [10]. Dual-cured resin-matrix cements also include benzoyl peroxide
as a chemical initiator in one paste [66], while a second paste contains a photoinitiator
and TA. A chemical reaction occurs between the benzoyl peroxide and the tertiary amine,
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while the photoinitiator system (CQ/TA) is also stimulated by visible light [74]. Regarding
polymerization, self-adhesive resin cements contain an acidic monomer that may compro-
mise the sufficient polymerization of the resin-matrix cements, diminishing the physical
properties [75].

Regarding the photoinitiator type, LucirinTM TPO, which has a lower wavelength of
light absorption ranging from 380 up to 425 nm, has shown higher DC values, higher color
stability, and improved resistance to hydrolytic degradation when compared to CQ [16,76].
However, several studies have reported processes to improve the performance of CQ as
a photoinitiator. A previous study reported the use of idonium salt as a component of
the initiator system to increase the DC of the resin-matrix cement in regions with low
light exposure [77]. The combination of CQ and idonium salt increased the number of
free radicals formed per molecule of CQ and allowed a higher DC percentage [78,79].
The development of LCU with multiple-emssion LEDs allows a correct match with new
photoinitiators system sensitive to the violet wavelength range, which are often combined
with CQ. The spectral emission of single- or multiple-emission LCU must be selected to
stimulate the initiator system [80]. Studies have shown that dual-cured resin cements have
higher DC percentages than those of light-cured cements [81,82]. Comparing two dual-
cured resin cements, RelyX ARCTM (3M ESPE) showed a DC percentage of 72.8% (3.7 a)
and Variolink IITM (Ivoclar Vivadent) showed a DC percentage of 65.7% (2.9 a). Assessing
only the paste containing the photoinitiator, RelyX ARCTM showed a DC percentage of
57.5% (4.4 c) and Variolink II showed a DC percentage of 58.3% (2.1 c). The DC percentage
of a light-cured resin-matrix cement (VariolinkTM) was recorded at 48.6% (4.1 a). The
polymerization was performed through a 1 mm-thick felspar-based ceramic with visible
light at 800 mW/cm2 from a QTH LCU for 40 s. The DC percentage was measured by
Fourier transform infrared spectroscopy (FTIR) [74] (Table 1).
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Table 1. Relevant data retrieved from previous studies on resin-matrix cements and their degree of conversion.

Author (Year) Purpose Resin-Matrix Cement Light-Curing Procedures Degree of Conversion (%)

Turp et al. (2015)
[36]

Evaluation of the effect of the
thickness of zirconia on the

curing efficiency of
resin cements.

10- MDP, DMA, Bis-MPEPP (25%); silanized barium glass
(75%) (Panavia F 2.0, Kuraray, Japan)

LED (Elipar S10, 3M, ESPE,
Saint Paul, MN, USA) for 20 s,

430–480 nm, 1200 W/cm2

(G0) 69.95; 62.67; 53.15
(G1) 65.26; 58; 49

(G2) 62.8; 54.15; 43.64
(G3) 52.1; 49.33; 39.41

Lopes et al. (2015)
[83]

Evaluation of the degree of
conversion (DC), Vickers
microhardness (VH), and

elastic modulus (E) of
resin cements

Bis-GMA, Bis-EMA, TEGDMA (35%); barium
alumo-silicate glass, silicon dioxide (66%); (Allcem,

FGM, Brazil)
Bis-GMA, urethane dimethacrylate, and triethylene

glycol dimethacrylate. (56.4%); barium glass, ytterbium
trifluoride, ba-Al-fluorosilicate glass, and spheroid mixed

oxide (43.6%); (Variolink II, Ivoclar Vicadent,
Liechsteintein)

Methacrylate monomers (28%); silanated fillers, alkaline
fillers. (72%); (RelyX U200, 3M ESPE, USA)

Bis-GMA, UDMA, Bis-EMA, HEMA (60.3%); barium
glass, ytterbium trifluoride, spheroid mixed oxide

(39.7%); (Multilink, Ivoclar Vicadent, Liechsteintein)

Conventional halogen
light-curing (Optilux) for
120 s; 501–650 mW/cm2

(G0) 74.4; (G1) 71.1
(G0) 60.7; (G1) 67.9
(G0) 70; (G1) 76.2
(G0) 44; (G1) 43.7

Sulaiman et al. (2015)
[84]

Evaluation of the influence of
material thickness on light

irradiance, radiant exposure,
and the DC of two

dual-polymerizing resin
cements light-polymerized
through different brands of

monolithic zirconia

Methacrylate monomers (57%); Silanated fillers (43%);
(RelyX Ultimate, 3M ESPE, USA)

Bis-GMA, urethane dimethacrylate, and triethylene
glycol dimethacrylate. (56.4%); Barium glass, ytterbium
trifluoride, Ba-Al-fluorosilicate glass, and spheroid mixed

oxide (43.6%); (Variolink II, Ivoclar Vicadent,
Liechsteintein)

(G1) LED (Elipar S10) for 20 s;
1200 mw/cm2; 430–480 nm.

(G2) LED (Elipar S10) for 40 s;
1200 mw/cm2; 430–480 nm.

(G1) 63.1
(G2) 66
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Table 1. Cont.

Author (Year) Purpose Resin-Matrix Cement Light-Curing Procedures Degree of Conversion (%)

Gültekin et al. (2015)
[34]

Evaluation of the
polymerization efficiency of a

dual-cured resin cement
cured with two different light
curing units under zirconia

structures with differing
thicknesses

10- MDP, DMA, Bis-MPEPP (25%); silanized barium glass
(75%); (Panavia F 2.0, Kuraray, Japan)

LED (Elipar S10, 3M ESPE,
Seefeld, Germany) for 20 s

(5 s rmp, 15 s full cure);
430–480 nm; 1200 mW/cm2

QTH (Hilux 200, Benlioglu,
Istanbul, Turkey) for 40 s

(time in continuous mode);
410–500 nm; 600 mW/cm2

QTH:
(Z) 66.7; 60; 48.7

(Z1) 58.8; 54.3; 44.1
(Z2) 52.7; 48.2; 41.3
(Z3) 49.3; 46.2; 37.8

LED:
(Z) 69.9; 62; 53

(Z1) 65.2; 58; 49
(Z2) 62.8; 54.1; 43.6
(Z3) 52.1; 49.3; 39.4

Shim et al. (2017)
[50]

Evaluation of the
polymerization mode of
self-adhesive, dual-cured
resin cements light-cured

through overlying materials
with different degrees of

translucency by measuring
the DC.

UDMA; fluoro alumino silicate glass; (G-CEM Link ACE,
GC Corp, USA)

Bis-GMA; Fluoro aluminio silicate glass, fumed silica,
barium glass, ytterbium fluoride (Maxcem Elite, Kerr

Dental, USA)
Bis-GMA; dental glass; (BisCem, Bisco, USA)

LED (Dr’s Light; Good
Doctors Co., Incheon, Korea)

for 40 s; 718 mW/cm2
50–75

Caprak et al. (2018)
[85]

Evaluation of the influence of
the translucency parameters
(TPs) of current monolithic
CAD/CAM blocks on the

microhardness of light-cured
or dual-cured resin cements.

Bis-GMA, UDMA, TEGDMA; glass fillers; (Bisco
Duo-Link, Bisco, USA)

LED (HS-LED1500; Henry
Schein, Ontario, Canada) for
40 s; 1500 mW; 450–470 nm

Dual-cured:
(G0) 59; (G1) 53
(G0) 57; (G1) 52
(G0) 56; (G1) 49
(G0) 56; (G1) 48

Light-cured:
(G0) 56; (G1) 48
(G0) 54; (G1) 46
(G0) 53; (G1) 45
(G0) 53; (G1) 43
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The light-curing process of dual- and light-cured resin-matrix cements remains crucial
to the overall DC efficacy. As previously noted, the DC directly influences the physical
properties of resin-matrix cements [86,87]. The DC and shrinkage behavior are important
factors in the clinical selection of resin-matrix cements [48,88]. The DC percentage of a
resin-matrix cement through an indirect restoration is typically measured to be between
55 and 75%, as seen in Table 1 [2,65]. An insufficient DC percentage of monomers can
increase the solubility, causing microleakage at margin restorations [89]. Thus, a high
DC and an efficient polymerization depend on several factors such as (i) light irradiance,
(ii) exposure time [90], (iii) visible light wavelength, (iv) organic matrix type, size, and
content of inorganic fillers, (v) distance between the LCU and resin-matrix cement [91], and
(vi) the refraction index of the organic and inorganic components [40,92]. The amount of
light received by the resin-matrix cement is dependent on the LCU. Failures during the
light curing process may lead to indirect restoration debonding, toxicity, increased marginal
wear, and bacterial accumulation [80].

Light attenuation and scattering phenomena are dependent on the filler volume
fraction, particle size, fillers shape, and the refractive indices of the materials, as illustrated
in Figure 2 [7,93]. A previous study [10] developed an experimental protocol in which
thiourethane was added to dual-cured cements, and the decreases in the contents of
two photoinitiators, namely Bis-acylphosphine oxide (BAPO) and p-Tolyldiethanolamine
(DHEPT), were measured. The resin cements showed an improved DC, a reduction in
polymerization stress, and had a long working time. Additionally, the delay in the light-
activation of the dual-cured cements did not affect the DC, the flexural strength, or the
polymerization stress, showing a limited effect on their elastic modulus [10]. In another
previous study, three resin-matrix cements were polymerized under different glass ceramics
and zirconia with an LED at 650 mW/cm2 for 60 s. The results revealed the following DC
percentages: 64.5% for VariolinkTM; 69.5% for RelyX U200TM; and 59.1% for MultilinkTM.
The lowest DC percentage was related to the chemical composition of the resin-matrix
cement, since the amount of chemical initiators was limited to allow a long working
time. DC measurements were performed by attenuated total reflectance/Fourier transform
infrared spectroscopy (ATR/FTIR) [83].
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3.3. The Influence of Indirect Restorative Materials

Ceramic materials provide a natural appearance, biocompatibility, chemical stability,
high compressive resistance, and thermal expansion similar to those of tooth structures [94].
Furthermore, high bond strength values have been reported on the assembly established
by indirect ceramic restorations, resin-matrix cement, and tooth hard tissues [95]. Among
ceramics, lithium disilicate-reinforced glass ceramics are the most frequently used due to
its excellent esthetic and improved mechanical properties [94]. A previous study compared
the light transmittance through different thickness (0.5, 1.0, 2.0, and 4.0 mm) of two glass-
ceramic materials: a high translucency (HT) leucite-reinforced glass ceramic (IPS Empress
HTTM, Ivoclar Vivadent) and a low translucency (LT) lithium disilicate glass ceramic
(IPS e.max LT CADTM, Ivoclar Vivadent) [4]. The light transmittance values of the HT
leucite-reinforced glass ceramic were higher when compared to the lithium disilicate-
reinfored glass ceramic. The DC values of resin-matrix cement were also higher for the HT
leucite-reinforced glass ceramic when compared with the LT lithium disilicate-reinforced
glass ceramic [4]. Those findings were corroborated by other studies [3,35,96–98]. Thus,
the chemical composition of lithium disilicate-reinforced glass ceramics (70 wt% lithium
disilicate crystal), consists of small, randomly oriented, interlocking, plate-like crystals.
Light transmittance is impaired by the plate-like crystals. Considering that the ceramic
type can cause a significant difference in light transmittance, such difference might have to
be considered when choosing the ceramic type for deep cavities, where light transmittance
is a major issue.

The shade and thickness of the indirect restoration also affect the translucency pa-
rameters and the light transmission towards the resin-matrix cement [3,5]. The chemical
composition and opacity of the restorative material attenuate light intensity and reduce the
number of photons reaching the resin-matrix cement, possibly compromising the indirect
restoration prognosis [72,84,85,99–101]. In clinical applications, the light-curing parameters
should be controlled regarding the thickness and microstructure of opaque prosthetic
structures. For instance, the light-curing intensity and time should be increased for thick
and opaque zirconia, as shown in Figure 3 [4,19,102–104]. Zirconia ceramics are used as
frameworks for all ceramic crowns and multi-unit prosthetics and also as monolithic full
contour restorations [105] due to their physicochemical properties [106]. Yttria-stabilized
tetragonal zirconia powders (3 mol%) (3Y-TZP) are regarded as the first generation of
zirconia used for dental restorations, although 3Y-TZP has an opaque aspect [18,106]. The
thickness of zirconia veneers is highly important for a good esthetic outcome, as thick
zirconia negatively affects light transmission through the resin-matrix cement (Table 1).
That also leads to low DC values of the resin-matrix cement and consequently to color
instability and low microhardness values [19]. Based on the data of a previous study, a
decrease in the light transmission occurs through 3Y-TZP at variable thickness, although
the lowest decrease was recorded for a thickness of 0.2 mm and the highest one was for a
thickness of 1.65 mm [60]. Another study evaluated the effect of thickness and curing time
on the shear bond strength of a resin-matrix cement. Three different thicknesses of 1, 1.5,
and 2 mm were analyzed. The polymerization time varied from 20 up to 40 s. The thickness
of zirconia increased and the shear bond strength of the dual-cured cement decreased.
An increase in the polymerization time to 40 s led to a reliable bond, thicker than 2 mm,
between the ceramic and the dual-cured cement [107].
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However, the brittle nature of ceramic restorations remains a problem [108]. Resin-
matrix composites and PICN manufactured by CAD-CAM become alternative composites
to ceramic restorations. Such materials combine the positive features of ceramic materials
and resin-matrix composites, providing a hybrid material with adequate microhardness
which become less aggressive against teeth. However, composite materials have lower
fracture toughness when compared to glass ceramics [104]. The polymerization of resin-
matrix cements through composite blocks manufactured by CAD-CAM depends on the
restorative material thickness (1.5–2.7 mm), LCU type, and microstructure. Nevertheless,
a dual-cured resin cement is required for thicker restorations, as high irradiance LCU
has only a limited effect on the maximum thickness of resin-matrix composite blocks [7].
A previous study compared three different thickness (1, 2, and 3 mm) of three different
materials, including leucite-based-glass-ceramic, zirconium-reinforced lithium silicate
glass-ceramic, and PICN [109]. The findings were important for selecting the material and
the thickness that are highly important for clinical success when dual-cured resin-matrix
cements are used for cementation [109]. The use of light-cured resin cements is limited to
specific clinical cases such as veneer cementation or thin indirect restorations, i.e., indirect
restorations in which the thickness and restoration color do not interfere with the light-
curing process [110]. Thus, light-cured resin cements should not be used if the restoration
is thicker than 3 mm to prevent inadequate polymerization [36]. On the other hand, dual-
cured resin matrix cements are indicated for use in thicker indirect restorations [16,105,111].
For lithium disilicate glass ceramics with thicknesses between 0.6 and 1.5 mm, the use of
light-cured or dual-cured resin-matrix cements had no effect on the final DC for two tested
resin-matrix cements (NX3TM, Kerr, and Choice 2TM, Bisco). Regarding the thickness of
lithium disilicate-reinforced glass ceramics, the results showed that a thick layer did not
significantly attenuate the light transmission from LCU [38].

The light transmittance of dual-cured resin cements is affected by different factors,
including irradiation time, light irradiance, light transmission, and light-curing protocols,
as well as type, thickness, and shade of the materials, as shown in Figure 3 [16,112–114].
Regarding the light curing time for indirect restorations with 2 mm thickness or above,
a minimum of 40 s of light-curing is recommended [16,52,114]. A previous study con-
cluded that using a high LED irradiance for shorter times of light activation resulted in
the lowest DC and maximum polymerization rate of resin-matrix cements in ceramics [90].
The light-curing protocol is very important when luting ceramic veneers. The exposure
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time and the percentage of light transmitted through the material can affect the amount
of energy delivered through the resin cement. Consequently, that influences the DC and
the mechanical properties of the resin-matrix cements such as microhardness [52,115].
Regarding the light exposure time, a previous study reported differences between single-
and multi-emission LCUs through the analysis of two resin-matrix cements with different
photoinitiators (AllCemTM and VariolinkTM) [52]. The results revealed that the highest DC
and microhardness were achieved in both resin-matrix cements when the samples were
polymerized individually for 40 s [52]. In both resin-matrix cements with different pho-
toinitiators, the DC values were not significantly affected by the LCU [52]. Another study
analyzed the effect of single- and multiple-emission peak LCUs on the DC and microhard-
ness of two shades (A2 and A4) of resin-matrix cement (Variolink IITM) under a 1 mm-thick
Empress Esthetic ceramic A2. After light curing for 20 s, the resin-matrix cements were
polymerized either with a single- or multiple-emission peak light irradiance [116]. The
radiant exposure reaching the resin-matrix cement was determined by incident irradiance,
exposure time, ceramic type, and ceramic thickness. The exposure time was the most
consistent parameter affecting the mechanical properties of the resin-matrix cement. For
light curing resin-matrix cements, an exposure time of 20 s is recommended [117]. Two
resin-matrix cements (RelyX UltimateTM and VariolinkTM) were assessed in resin-matrix
composite restorations. Despite the dual-curing mechanism, the resin-matrix cements were
either self-cured or light-cured. The self-cured components were not able to compensate
the lower light irradiance and a decrease in the amount of resin-matrix composite overlay
was not effective for monomer conversion. The light irradiance guaranteed the mechanical
properties of resin-matrix cements [72].

A previous study measured the DC percentage and light irradiance of light-cured
and dual-cured cements. Four types of indirect restorative materials with 1.5 mm thick-
ness were assessed: Vita EnamicTM, Vita SuprinityTM, GC CerasmartTM, and Degudent
Prettau AnteriorTM. The DC of dual-cured and light-cured resin-matrix cements (RelyX
Ultimate ClikerTM) were analyzed after being light cured for 40 s with a LED LCU using
two polymerization modes, soft-start and pulse delay, or using a QTH LCU for 20 s. The
results showed a higher DC percentage of 62.9% for the dual-cured resin-matrix cement
polymerized by using the LED soft-start mode exposed to direct light 1 day after polymer-
ization. The dual-cured resin-matrix cement showed a DC of 63% with an LED LCU using
the soft-start method on 1.5 mm restorations. The DC percentage of all ceramic restorations
was affected by the amount, size, and type of crystal. Additionally, the microstructure
and chemical content of the resin-matrix luting cement and the type of curing light were
determinant factors for the DC [50,118]. Light scattering through ceramic restorations
and light reflection caused a reduction in light transmittance to the resin-matrix cement
below the restoration [90,119]. The use of light- and dual-cured resin cements is suitable
for cementation of restorations up to 1.0 mm thickness, while the use of a dual-cured
resin-matrix cement is recommended in restorations of over 1.0 mm thickness [120].

The light-curing parameters have limitations regarding the thickness and microstruc-
ture of different restorative structures, and therefore dual polymerization of resin-matrix
cements is recommended. The light-curing parameters must be adjusted to the different
restorative materials and equipment. Additionally, differences in light irradiance and
wavelength from light curing units affect the polymerization of traditional and novel
resin-matrix cements. The development of restorative materials, resin cements, and pho-
toinitiator systems should be correlated with an emphasis on the polymerization mode and
equipment used by clinicians. Details on the microstructure, chemical composition, and
thickness of onlays, inlays, and prosthetic crowns are missing in several previous studies.
A wealth of information on restorative materials and resin-matrix cements is crucial for the
long-term success of dental restorations. Future studies should be performed regarding
the chemical composition, thickness, and microstructure of indirect restorative interfaces
cemented with resin-matrix cements.
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4. Concluding Remarks

Within the limitations of the previous studies, the following conclusions can be drawn.
The degrees of conversion of dual-cured resin-matrix cements were higher than those
recorded for light-cured resin cements. The content, type, and size of inorganic fillers of
the resin-matrix cements affected their polymerization. Absorption and scattering within
the material are the main factors associated with light attenuation. The organic matrix
components, such as the photoinitiator systems, chemical composition and viscosity of
the methacrylate-based monomers, have a direct effect on the polymerization reaction.
Considering indirect restorations, high translucency materials allow light transmission
towards the resin-matrix cement, leading to a high degree of conversion of monomers. The
degree of conversion of monomers decreases for restorative opaque materials with thickness
higher than 1.5 mm. Light scattering through ceramic restorations causes a reduction in
light transmittance to the resin cement below the restoration. A high light irradiance
and exposure time must be selected for opaque materials such as traditional zirconia
to achieve the required energy for the polymerization of the resin-matrix cement. The
soft-start polymerization method showed the highest degree of conversion in dual-cured
cements when compared to light-cured cements. All these variables must be considered
in clinical practice, mainly when the clinicians select the type of resin-matrix cement, the
indirect restoration, and the light curing unit. The effects of light transmittance on the
polymerization of resin-matrix cements should be clarified in further studies concerning
their mechanical performance and biocompatibility.
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95. Öztürk, E.; Bolay, Ş.; Hickel, R.; Ilie, N. Effects of ceramic shade and thickness on the micro-mechanical properties of a light-cured

resin cement in different shades. Acta Odontol. Scand. 2015, 73, 503–507. [CrossRef] [PubMed]
96. Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative translucency of six

all-ceramic systems. Part I: Core materials. J. Prosthet. Dent. 2002, 88, 4–9. [CrossRef] [PubMed]
97. Rasetto, F.H.; Driscoll, C.F.; Prestipino, V.; Masri, R.; von Fraunhofer, J.A. Light transmission through all-ceramic dental materials:

A pilot study. J. Prosthet. Dent. 2004, 91, 441–446. [CrossRef] [PubMed]
98. Majumder, A.; Giri, T.K.; Mukherjee, S. An in vitro study to compare the influence of different all-ceramic systems on the

polymerization of dual-cure resin cement. J. Indian Prosthodont. Soc. 2019, 19, 58–65. [CrossRef]
99. Lührs, A.K.; Pongprueksa, P.; De Munck, J.; Geurtsen, W.; Van Meerbeek, B. Curing mode affects bond strength of adhesively

luted composite CAD/CAM restorations to dentin. Dent. Mater. 2014, 30, 281–291. [CrossRef]
100. Blumentritt, F.B.; Cancian, G.; Saporiti, J.M.; de Holanda, T.A.; Barbon, F.J.; Boscato, N. Influence of feldspar ceramic thickness on

the properties of resin cements and restorative set. Eur. J. Oral Sci. 2021, 129, e12765. [CrossRef]
101. Butterhof, M.; Ilie, N. Mathematical model for assessing true irradiance received by luting materials while curing through modern

CAD/CAM resin composites. Dent. Mater. 2020, 36, e255–e265. [CrossRef] [PubMed]
102. Turgut, S.; Bagis, B.; Ayaz, E.A. Achieving the desired colour in discoloured teeth, using leucite-based CAD-CAM laminate

systems. J. Dent. 2014, 42, 68–74. [CrossRef]
103. Kim, H.K.; Kim, S.H.; Lee, J.B.; Han, J.S.; Yeo, I.S.; Ha, S.R. Effect of the amount of thickness reduction on color and translucency

of dental monolithic zirconia ceramics. J. Adv. Prosthodont. 2016, 8, 37–42. [CrossRef]
104. Ongun, S.; Önöral, Ö.; Günal-Abduljalil, B. Evaluation of shade correspondence between current monolithic CAD/CAM blocks

and target shade tab by considering the influence of cement shade and restorative material thickness. Odontology 2021, 109,
393–402. [CrossRef] [PubMed]

105. Inokoshi, M.; Pongprueksa, P.; De Munck, J.; Zhang, F.; Vanmeensel, K.; Minakuchi, S.; Vleugels, J.; Naert, I.; Van Meerbeek, B.
Influence of Light Irradiation Through Zirconia on the Degree of Conversion of Composite Cements. J. Adhes. Dent. 2016, 18,
161–171. [CrossRef]

106. Lümkemann, N.; Pfefferle, R.; Jerman, E.; Sener, B.; Stawarczyk, B. Translucency, flexural strength, fracture toughness, fracture
load of 3-unit FDPs, Martens hardness parameter and grain size of 3Y-TZP materials. Dent. Mater. 2020, 36, 838–845. [CrossRef]

107. Lee, S.Y.; Cho, C.B.; Koak, J.Y.; Yang, S.E. The effect of zirconia thickness and curing time on shear bond strength of dual cure
resin cement. Dent. Mater. J. 2016, 35, 132–137. [CrossRef]

108. Gonzaga, C.C.; Cesar, P.F.; Miranda, W.G., Jr.; Yoshimura, H.N. Slow crack growth and reliability of dental ceramics. Dent. Mater.
2011, 27, 394–406. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/31074458
http://doi.org/10.1590/0103-6440201300180
http://www.ncbi.nlm.nih.gov/pubmed/26647933
http://doi.org/10.1016/j.prosdent.2015.02.007
http://doi.org/10.1111/jopr.12956
http://www.ncbi.nlm.nih.gov/pubmed/30039898
http://doi.org/10.1016/j.dental.2021.09.016
http://doi.org/10.1016/j.jpor.2019.06.002
http://doi.org/10.1007/s00784-021-04323-7
http://doi.org/10.1007/s00784-021-04091-4
http://doi.org/10.1016/j.prosdent.2016.12.013
http://doi.org/10.1590/S0103-64402010000200003
http://www.ncbi.nlm.nih.gov/pubmed/20640355
http://doi.org/10.1016/j.dental.2011.08.008
http://doi.org/10.1016/j.dental.2005.11.009
http://doi.org/10.1111/jopr.12910
http://doi.org/10.3109/00016357.2014.996185
http://www.ncbi.nlm.nih.gov/pubmed/25643983
http://doi.org/10.1067/mpr.2002.126794
http://www.ncbi.nlm.nih.gov/pubmed/12239472
http://doi.org/10.1016/j.prosdent.2004.02.019
http://www.ncbi.nlm.nih.gov/pubmed/15153851
http://doi.org/10.4103/jips.jips_262_18
http://doi.org/10.1016/j.dental.2013.11.016
http://doi.org/10.1111/eos.12765
http://doi.org/10.1016/j.dental.2020.04.018
http://www.ncbi.nlm.nih.gov/pubmed/32507323
http://doi.org/10.1016/j.jdent.2013.10.018
http://doi.org/10.4047/jap.2016.8.1.37
http://doi.org/10.1007/s10266-020-00554-4
http://www.ncbi.nlm.nih.gov/pubmed/32989521
http://doi.org/10.3290/j.jad.a35842
http://doi.org/10.1016/j.dental.2020.03.027
http://doi.org/10.4012/dmj.2015-181
http://doi.org/10.1016/j.dental.2010.10.025
http://www.ncbi.nlm.nih.gov/pubmed/21185074


Materials 2023, 16, 1560 18 of 18

109. Okutan, Y.; Kandemir, B.; Donmez, M.B.; Yucel, M.T. Effect of the thickness of CAD-CAM materials on the shear bond strength of
light-polymerized resin cement. Eur. J. Oral Sci. 2022, 130, e12892. [CrossRef] [PubMed]

110. Pegoraro, T.A.; da Silva, N.R.; Carvalho, R.M. Cements for use in esthetic dentistry. Dent. Clin. N. Am. 2007, 51, 453–471.
[CrossRef]

111. Araoka, D.; Hosaka, K.; Nakajima, M.; Foxton, R.; Thanatvarakorn, O.; Prasansuttiporn, T.; Chiba, A.; Sato, K.; Takahashi, M.;
Otsuki, M.; et al. The strategies used for curing universal adhesives affect the micro-bond strength of resin cement used to lute
indirect resin composites to human dentin. Dent. Mater. J. 2018, 37, 506–514. [CrossRef]

112. Ansarifard, E.; Panbehzan, Z.; Giti, R. Evaluation of microhardness and water sorption/solubility of dual-cure resin cement
through monolithic zirconia in different shades. J. Indian Prosthodont. Soc. 2021, 21, 50–56. [CrossRef]

113. Samimi, P.; Kaveh, S.; Khoroushi, M. Effect of Delayed Light-Curing Through a Zirconia Disc on Microhardness and Fracture
Toughness of Two Types of Dual-Cure Cement. J. Dent. 2018, 15, 339–350. [CrossRef]

114. Castellanos, M.; Delgado, A.J.; Sinhoreti, M.A.C.; de Oliveira, D.; Abdulhameed, N.; Geraldeli, S.; Roulet, J.F. Effect of Thickness of
Ceramic Veneers on Color Stability and Bond Strength of Resin Luting Cements Containing Alternative Photoinitiators. J. Adhes.
Dent. 2019, 21, 67–76. [CrossRef]

115. AlShaafi, M.M.; AlQahtani, M.Q.; Price, R.B. Effect of exposure time on the polymerization of resin cement through ceramic.
J. Adhes. Dent. 2014, 16, 129–135. [CrossRef]

116. AlQahtani, M.Q.; AlShaafi, M.M.; Price, R.B. Effects of single-peak vs polywave light-emitting diode curing lights on the
polymerization of resin cement. J. Adhes. Dent. 2013, 15, 547–551. [CrossRef]

117. Ilie, N. Transmitted irradiance through ceramics: Effect on the mechanical properties of a luting resin cement. Clin. Oral Investig.
2017, 21, 1183–1190. [CrossRef]
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