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Abstract: In recent years, basalt-fiber-reinforced polymers (BFRPs) have been widely used in the
field of corrosive aging resistance. In this paper, BFRPs are made into composite laminates, and
the flexural properties of BFRPs modified with different types of silane coupling agents, KH550
(aminopropyl-triethoxysilane), KH560 (glycidyletheroxypropyl-trimethoxysilane), and A171 (vinyl-
trimethoxysilane), immersed at 20 ◦C, 40 ◦C, and 60 ◦C in a 3.5% NaCl concentration artificial seawater,
a 10% NaCl high-concentration artificial seawater, 10% H2SO4, or 10% NaOH are investigated. The
results show that the flexural strength decreased with increasing exposure time in corrosive aging
environments at different temperatures. The temperature greatly influences flexural strength, and the
flexural strength decreases rapidly in high-temperature acidic and alkaline environments. In addition,
we found that the flexural retention in the seawater environment did not change much compared
to that in the water environment, indicating that BFRPs have relatively good resistance to seawater
corrosion. The silane coupling agent modification enhances flexural strength and flexural strength
retention by enhancing the interfacial bonding property of the BFRPs. Considering the experimental
results, the three silane coupling agents modified the corrosive aging performance of the composites
in the order of KH550 > KH560 > A171. This will provide theoretical support for the application of
silane-coupling-agent-modified BFRPs in corrosive aging environments.

Keywords: BFRP; silane coupling agent; environmental degradation; interface property; flexu-
ral properties

1. Introduction

Due to the advantages of high specific strength and modulus and low weight com-
pared with traditional metal and non-metal materials, fiber-reinforced polymers (FRPs)
are widely used in automotive, railroad, aerospace, wind energy, and marine fields [1–8].
However, FRPs face challenges in different environments such as moisture, high tempera-
ture, seawater, acidic and alkaline, UV, and other corrosive aging environments [9,10]. The
physical, chemical, and mechanical properties of FRPs are often degraded after moisture
absorption in a corrosive aging environment [11]. During the degradation of compos-
ite properties, the resin matrix undergoes plasticization, swelling, macromolecular chain
breakage, and hydrolysis, resulting in internal stresses at the composite interface that dete-
riorates the interfacial bonding conditions [12,13]. In addition, chemical damage caused by
hydrolysis reactions at the substrate and interface can weaken the interfacial adhesion prop-
erties [14,15]. The debonding of the interface provides a favorable site for the occurrence of
capillary phenomena, which accelerate the penetration and diffusion of water molecules
into the interior of the material and promote the expansion of microcracks in the interface
and matrix, which likewise accelerates the degradation and performance degradation of
the composite material [16,17].
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Many scholars have conducted many studies on the property changes of FRPs under
corrosive aging environments. Yan et al. [18] revealed the changes in the properties of
flax-fiber-reinforced resin matrix composites after corrosive aging in alkali, seawater, and
water environments. The results showed that all aging solutions resulted in the composites
experiencing severe degradation and a significant decrease in the tensile/flexural properties
of the flax fabric/epoxy composites. Bazlie et al. [19] investigated the changes in the me-
chanical properties of GFRP under corrosion in seawater, acidic, and alkaline environments.
It was found that the mechanical strength of composites immersed in alkaline solutions
decreased more compared to seawater and acidic solutions. Feng et al. [20] investigated
the long-term performance changes of GFRP in highly corrosive environments. GFRP
samples were exposed to different concentrations of alkaline, saline, and acidic solutions
at 60 ◦C. In addition, the effect of acidic solutions at high temperatures (90 ◦C) was also
investigated. The results showed that the flexural strength of acidic and alkaline solutions
decreased with increasing exposure time. The flexural properties decreased significantly at
high concentrations of acidity and high temperatures.

The durability and reliability of FRPs in corrosive aging environments are very im-
portant practical issues for this material. The structural integrity and lifetime performance
of the composites strongly depend on the stability of the fiber–resin matrix interface re-
gion [21]. FRPs prepared from fibers treated with silane coupling agents have been reported
to exhibit less degradation in performance than untreated composites after long-term ex-
posure to corrosive environments [22]. The use of silane coupling agents improves the
mechanical interlocking and chemical interactions between fibers and the resin matrix,
effectively enhancing the interfacial bonding between fibers and the resin matrix. Wang
et al. [23] reported that the water resistance and damping properties of the composite
were improved by treating the flax-fiber-reinforced resin matrix composites with a silane
coupling agent. Hill et al. [24] reported that acetylation and silylation can protect nonwoven
or oil palm hollow-fruit-bundle-fiber-mat-reinforced polyester matrix composites from
the deterioration of mechanical properties after exposure to corrosive environments. Tual
et al. [25] observed that the mechanical properties of carbon/epoxy composites are reduced
during accelerated seawater aging. Mittal et al. [26] found that the mechanical proper-
ties of seawater-aged composites were improved using 3-aminopropyltriethoxysiliane-
treated MMT compared to untreated MMT-modified glass-fiber-reinforced vinyl ester
resin composites.

The results of existing studies provide many insights into the properties of composites
under corrosive aging environments, especially for glass-fiber and natural-fiber-reinforced
composites, but relatively few studies have been conducted on the long-term performance
changes of basalt-fiber-reinforced resin matrix composites under corrosive aging environ-
ments. Basalt fibers are one of the most widely used high-performance green inorganic
fibers in various industries [27]. Due to its unique corrosion resistance, high fire per-
formance, heat and sound insulation, environmental protection, high toughness, etc., it
occupies an important position in civil, agricultural, defense industries, and aviation ap-
plications, and basalt fiber can be selected to replace glass fiber in many engineering
applications to make composite materials [28,29]. Therefore, in this paper, the effect of
corrosive aging time and immersion temperature in water, seawater, high-concentration
seawater, acid, and alkali environments on the flexural properties of silane coupling agents
modified BFRPs were investigated.

2. Materials and Methods
2.1. Materials

The sample used is basalt fiber plain fabric, with a warp and weft density of
50 pieces/10 cm, a surface density of 300 g/m2, and a surface presenting a similar black-
gold color, produced by Haining Anjie Composites Co. (Jiaxing, China). Polyimide film
was produced by Shenzhen Runhai Electronics Co. (Shenzhen, China). Vinyl ester resin
was produced by Shangwei New Material Technology Co. (Shanghai, China). Acetone was
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produced by Xilong Science Co. (Shanghai, China). Silane coupling agents KH550, KH560,
and A171, anhydrous ethanol, deionized water, sodium chloride, 10% dilute sulfuric acid,
and 10% sodium hydroxide were produced by Hangzhou High Crystal Fine Chemical Co.
(Hangzhou, China).

2.2. Preparation of BFRPs

The preparation process of BFRP samples is shown in Figure 1. Firstly, the basalt fibers
were pretreated, and the basalt fiber plain fabrics were soaked in acetone solution for 48 h
to remove the surface sizing agent and then washed with deionized water several times
and put into a vacuum oven at 80 ◦C to dry them thoroughly [30]. Then, we used the silane
coupling agents KH550, KH560, and A171 to modify the basalt fibers, with anhydrous
ethanol and deionized water as a solvent in a ratio of 8:2, mixed to prepare a mass fraction
of 1% of the alcohol solution to the silane coupling agent. The above treatments of the
fabrics were placed in it at room temperature. After 5 h of reaction, anhydrous ethanol was
used to wash away the unreacted silane coupling agent, and then the samples were put
into a vacuum oven at 80 ◦C. The chemical structures of the silane coupling agents KH550,
KH560, and A171 are shown in Figure 2 [31]. Finally, six layers of basalt fiber plain fabric
were molded with vinyl ester resin using a semi-automatic flat vulcanizer. The curing
conditions were set as follows: 30 ◦C, 60 min, 2 MPa pressure, 50% fiber mass fraction in
the composite, and 2 mm sheet thickness.
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2.3. Immersion Experiment

This study used deionized water, 3.5% NaCl concentration artificial seawater, 10% NaCl
high-concentration artificial seawater, 10% H2SO4 acid, and 10% NaOH alkali as the five
corrosive aging environments selected (refer to Table 1). First, the samples were completely
immersed in the test conditions. When the temperature reached the required level for
each test condition, the samples were inserted, and the start of the immersion period
was recorded. In addition, these conditions needed to remain constant throughout the
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immersion period. Samples were removed from each solution and tested, and the diagram
of the immersion experiment is shown in Figure 3.

Table 1. Immersion conditions for five groups.

Group. Immersion Environment Temperature (◦C) Duration (Days)

1 Water 20, 40, 60 7, 14, 21, 28, 42, 56
2 3.5%NaCI 20, 40, 60 7, 14, 21, 28, 42, 56
3 10%NaCI 20, 40, 60 7, 14, 21, 28, 42, 56
4 10%H2SO4 20, 40, 60 7, 14, 21, 28, 42, 56
5 10%NaOH 20, 40, 60 7, 14, 21, 28, 42, 56
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2.4. SEM Imaging

The section morphology of BFRPs modified with different types of silane coupling
agents was observed by GeminiSEM-500 field emission scanning electron microscopy with
a magnification of 3000.

2.5. Mass Change

Before the immersion of the samples in corrosive aging environments, all BFRP sam-
ples were dried in an oven at 60 ◦C for 48 h until the weight no longer changed. The mass
change was detected by periodically weighing the samples in the immersion bath. Residual
water trapped on the surface of the samples was wiped with a paper towel before weighing.
After that, the weight of the samples was recorded at different time intervals during aging
using an electronic balance with an accuracy of 0.1 mg. Five samples were measured for
each condition. The mass change of the BFRPs test was defined as:

Mt(%) =
Wt−W0

W0
× 100

where W0 is the initial weight of the sample and W0 is the weight of the sample after
immersion.

2.6. Three-Point Flexural Test

Samples of 60 × 15 × 2 mm were cut out from the middle of each group of BFRPs
and a total of five samples were obtained. The samples were placed on a universal testing
machine (M.T.S. landmark 370.10, Eden Prairie, MN, USA) to test the three-point flexural
performance (shown in Figure 4). The span was set to 32 mm, and the upper indenter
remained stationary. The lower indenter is loaded upwards at a speed of 5 mm/min so
that the samples were stressed at three points, and finally, a fracture occurred in the middle
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of the sample. The test was carried out under the conditions of a temperature of 25 ◦C and
a humidity of 50%. The flexural strength was calculated as follows:

δ f =
3P× l
2b× h2

where δ f is the flexural strength in MPa (MPa); P is the failure load in Newtons (N); l is the
span in mm; h is the thickness of the sample in mm; and b is the width of the sample in mm,
taking the average of five samples. The flexural strength retention rate was calculated as:

R(%) =
H
H0

where H is the flexural strength of the BFRPs after immersion, H0 is the flexural strength of
the BFRP before immersion in MPa, and five samples are taken for the average value.
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3. Results and Discussion
3.1. SEM Imaging

As can be seen from Figure 5, the interfacial bonding effect of the BFRPs was improved
after the modification treatment with silane coupling agents KH550, KH560, and A171.
When the BFRPs were not modified with silane coupling agents, there was a large gap
between the fibers and the resin matrix, and the interfacial bonding effect was poor. A
silane coupling agent is a compound that connects hydrolysis group X and organic group
Y with different chemical properties to the same silicon atom. After modification with
silane coupling agents KH550, KH560, and A171, the silane coupling agent hydrolysis of
the formation of siloxane will be grafted and adsorbed on the surface of basalt fibers and
form covalent bonds, and the organic polymer molecules of vinyl ester resin will react with
the organic groups of siloxanes to make fiber–resin matrix bonds. Meanwhile, the silane
coupling agent modification enhances the interfacial adhesion between fiber and resin and
makes the basalt fiber and vinyl ester resin matrix more closely bonded to each other. The
mechanism of action is shown in Figure 6 [31].
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Figure 6. Mechanism of action of a silane-coupling-agent-modified BFRP.

3.2. Change in Appearance

As shown in Figures 7–11 for the samples immersed in different temperatures and
different environments after 56 days of appearance change, the appearance of the samples
immersed in 20 ◦C environments was almost unchanged; for samples immersed in 50 ◦C
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acidic and alkaline environments, the color of the sample began to change; and in 80 ◦C
acidic and alkaline environments, with the dissolution of the surface resin matrix, the
color changed more obviously. Soaked in different temperatures of water and seawater
environments, the sample appearance changes were very small, indicating that the samples
had good resistance to heat, moisture, and seawater’s corrosive aging properties. The
appearance of the samples immersed in acidic and alkaline environments changed most
obviously, and a large number of white patches appeared on the samples. Different silane
coupling agent modifications did not have much effect on the sample appearances. This
paper will further explore the effect of different environments and temperatures on the
flexural properties of silane-coupling-agent-modified samples and explore the corrosion
and aging mechanism.
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3.3. MASS Changes in Different Immersion Environments

From Figure 12, it can be seen that the mass change of BFRPs immersed in water
environments at different temperatures follows a two-stage rule. The mass of the BFRPs
grew rapidly in the initial stage of immersion, and the mass of the BFRPs still grew in the
subsequent stage, but the growth rate kept decreasing. After 56 days of immersion in water
environments at 20 ◦C, the mass change of unmodified and KH550, KH560, and A171 silane-
coupling-agent-modified BFRPs was 0.244%, 0.193%, 0.204%, and 0.215%; after 56 days of
immersion in water environments at 40 ◦C, the mass change of unmodified and KH550,
KH560, and A171 silane-coupling-agent-modified BFRPs was 0.425%, 0.337%, 0.356%, and
0.375%. For the unmodified and KH550, KH560, and A171 silane-coupling-agent-modified
BFRPs after 56 days of immersion in water environments at 60 ◦C, the mass change was
0.635%, 0.504%, 0.533%, and 0.561%. In general, the mass growth or loss of the BFRPs
under different corrosive aging environments accumulates and the rate of change gradually
decreases with the increase in time. The mass change of BFRPs is mainly affected by the
water absorption and hydrolysis of vinyl ester resin, which is hydrolyzed and decomposed
into a low-molecular-weight polymer [32]. When the mass increase due to water absorption
exceeds the mass loss due to the hydrolytic decomposition of the resin matrix, an overall
mass increase is observed. The mass change of BFRPs modified by silane coupling agents
KH550, KH560, and A171 is low compared to the unmodified BFRP. This is because, when
modified with a silane coupling agent, the hydroxyl group of the hydrophilic group on the
fiber surface reacts with siloxane and reduces its hydrophilicity, and the organic polymer
molecules of vinyl ester also react with the organic group of siloxanes and connect, and
the fiber–resin matrix bonding can reduce the water absorption of BFRPs [33]. In addition,
the silane coupling agent modification helps to improve the adhesion between the fibers
and the matrix, and the gap in the interfacial region is reduced, resulting in lower water
absorption. When the temperature is increased, the mass growth rate of BFRPs in water
environments increases significantly, which may be due to the more intense movement of
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water molecules at higher temperatures and the higher void pressure due to the increase in
gas volume within BFRPs [34]. The increase in pressure favors the extension of microcracks,
thus increasing the free volume inside the sample, which can be filled by the surrounding
solution, thus allowing the resin matrix to absorb more water [35].
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The mass changes of BFRPs under different temperatures in 3.5% NaCl seawater
environments are shown in Figure 13. The mass growth was rapid at the early stage of
immersion, and the mass growth rate leveled off in the middle of immersion but showed
an overall increasing trend. After soaking for 56 days in 20 ◦C seawater environments,
the mass of unmodified and KH550, KH560, and A171 silane-coupling-agent-modified
BFRPs increased by 0.231%, 0.182%, 0.193%, and 0.204%; after soaking for 56 days in 40 ◦C
seawater environments, the mass of unmodified and KH550, KH560, and A171 silane-
coupling-agent-modified BFRPs increased by 0.403%, 0.320%, 0.338%, and 0.356%. The
mass of BFRPs modified with KH550, KH560, and A171 silane coupling agents increased by
0.603%, 0.478%, 0.505%, and 0.532% after 56 days of immersion in seawater environments
at 60 ◦C. As shown in Figure 14, the mass change of BFRPs under immersion in 10% NaCl
high-concentration seawater environments at different temperatures followed a two-stage
pattern. The mass of the BFRPs grew rapidly in the initial stage of immersion, and the mass
of BFRPs still grew in the subsequent stages, but the growth rate kept decreasing. After
56 days of immersion in 20 ◦C seawater environments, the mass of unmodified and KH550,
KH560, and A171 silane-coupling-agent-modified BFRPs increased by 0.216%, 0.171%,
0.181%, and 0.189%; after 56 days of immersion in a seawater environment at 40 ◦C, the
masses of the unmodified and KH550, KH560, and A171 silane-coupling-agent-modified
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composites increased by 0.376%, 0.298%, 0.315%, and 0.332%; after 56 days of immersion
in a seawater environment at 60 ◦C, the masses of the unmodified and KH550, KH560,
and A171 silane-coupling-agent-modified composites increased by 0.562%, 0.445%, 0.470%,
and 0.494%.

Materials 2023, 16, x FOR PEER REVIEW 10 of 26 
 

 

a seawater environment at 60 °C, the masses of the unmodified and KH550, KH560, and 
A171 silane-coupling-agent-modified composites increased by 0.562%, 0.445%, 0.470%, and 
0.494%. 

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 
(a) 20 °C (b) 40 °C 

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 
(c) 60 °C 

Figure 13. Mass change in a 3.5% NaCl seawater environment. 

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 
(a) 20 °C (b) 40 °C 

Figure 13. Mass change in a 3.5% NaCl seawater environment.

Materials 2023, 16, x FOR PEER REVIEW 10 of 26 
 

 

a seawater environment at 60 °C, the masses of the unmodified and KH550, KH560, and 
A171 silane-coupling-agent-modified composites increased by 0.562%, 0.445%, 0.470%, and 
0.494%. 

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 
(a) 20 °C (b) 40 °C 

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 
(c) 60 °C 

Figure 13. Mass change in a 3.5% NaCl seawater environment. 

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 
(a) 20 °C (b) 40 °C 

Figure 14. Cont.



Materials 2023, 16, 1543 11 of 26Materials 2023, 16, x FOR PEER REVIEW 11 of 26 
 

 

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
as

s 
ch

an
ge

 (%
)

Exposure time (days)

 Unmodified
 KH550
 KH560
 A171

 
(c) 60 °C 

Figure 14. Mass change in a 10% NaCl high-concentration seawater environment. 

The mass growth rate of BFRPs after immersion in seawater is less than that after 
water immersion. This is because the presence of salt in seawater reduces the activity of 
water molecules since salt particles appearing in seawater are less absorbable than water. 
This leads to the accumulation of salt particles on the sample surface, making the 
concentration of salt particles in seawater inside the sample smaller than that in seawater, 
which creates an osmotic pressure that further inhibits water absorption [36]. 

The mass change of BFRPs after soaking in 10% H2SO4 acidic environments at 
different temperatures is shown in Figure 15. When the immersion temperature was 20 
°C, the mass of BFRPs increased rapidly in the first period with the soaking time, while 
the growth was relatively slow in the later period. After 56 days of immersion in acidic 
environments at 20 °C, the mass of unmodified and KH550, KH560, and A171 silane-
coupling-agent-modified BFRPs increased by 0.267%, 0.216%, 0.228%, and 0.239%; when 
the immersion temperature was further increased to 40 °C and 60 °C, the mass of BFRPs 
decreased rapidly with the increase in the immersion time in the first period, while the 
later decrease was relatively slow. The mass of unmodified and KH550, KH560, and A171 
silane-coupling-agent-modified BFRPs decreased by 0.246%, 0.200%, 0.210%, and 0.220% 
after 56 days of immersion in 40 °C seawater environments; after 56 days of immersion in 
60 °C seawater environments, the mass of unmodified and KH550, KH560, and A171 
silane-coupling-agent-modified BFRPs decreased by 0.514%, 0.417%, 0.438%, and 0.460%. 
It could be found that the mass of BFRPs showed a decrease when the temperature was 
increased to 40 °C and 60 °C. This is due to the intense movement of water molecules after 
the temperature increase, and the overall mass decrease in BFRPs is observed when the 
mass increase due to water absorption is smaller than the mass loss due to the leaching of 
low-molecular-weight polymers [37]. 

Figure 14. Mass change in a 10% NaCl high-concentration seawater environment.

The mass growth rate of BFRPs after immersion in seawater is less than that after water
immersion. This is because the presence of salt in seawater reduces the activity of water
molecules since salt particles appearing in seawater are less absorbable than water. This
leads to the accumulation of salt particles on the sample surface, making the concentration
of salt particles in seawater inside the sample smaller than that in seawater, which creates
an osmotic pressure that further inhibits water absorption [36].

The mass change of BFRPs after soaking in 10% H2SO4 acidic environments at different
temperatures is shown in Figure 15. When the immersion temperature was 20 ◦C, the mass
of BFRPs increased rapidly in the first period with the soaking time, while the growth
was relatively slow in the later period. After 56 days of immersion in acidic environments
at 20 ◦C, the mass of unmodified and KH550, KH560, and A171 silane-coupling-agent-
modified BFRPs increased by 0.267%, 0.216%, 0.228%, and 0.239%; when the immersion
temperature was further increased to 40 ◦C and 60 ◦C, the mass of BFRPs decreased rapidly
with the increase in the immersion time in the first period, while the later decrease was
relatively slow. The mass of unmodified and KH550, KH560, and A171 silane-coupling-
agent-modified BFRPs decreased by 0.246%, 0.200%, 0.210%, and 0.220% after 56 days of
immersion in 40 ◦C seawater environments; after 56 days of immersion in 60 ◦C seawater
environments, the mass of unmodified and KH550, KH560, and A171 silane-coupling-
agent-modified BFRPs decreased by 0.514%, 0.417%, 0.438%, and 0.460%. It could be found
that the mass of BFRPs showed a decrease when the temperature was increased to 40 ◦C
and 60 ◦C. This is due to the intense movement of water molecules after the temperature
increase, and the overall mass decrease in BFRPs is observed when the mass increase due to
water absorption is smaller than the mass loss due to the leaching of low-molecular-weight
polymers [37].

As can be seen from Figure 16, the mass change of BFRPs soaked in 10% NaOH
alkaline environments at different temperatures increased very rapidly at the initial stage
of soaking, and the mass of the BFRPs still increased at the later stage of soaking, but the
growth rate slowed down. After 56 days of immersion in alkaline environments at 20 ◦C,
the mass of BFRPs unmodified and modified by KH550, KH560, and A171 silane coupling
agents increased by 0.328%, 0.260%, 0.275%, and 0.290%; after 56 days of immersion in
alkaline environments at 40 ◦C, the mass of unmodified and KH550, KH560, and A171
silane-coupling-agent-modified BFRPs increased by 0.698%, 0.555%, 0.587%, and 0.619%;
the masses of BFRPs unmodified and modified by KH550, KH560, and A171 silane coupling
agents increased by 1.579%, 1.256%, 1.331%, and 1.402% after 56 days of immersion in
alkaline environments at 60 ◦C. The mass change of BFRPs immersed in the alkaline
environments was greater than in all other corrosive aging environments. This may be
due to the penetration of the high pH solution, resulting in more microcracks and greater
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moisture uptake, which leads to greater weight gain. Similar results were reported by
Karbhari and Chu [38], who compared the weight gain of glass/vinyl ester composites
submerged in different solutions. When the composite samples were submerged in water,
seawater, and alkaline solutions, the water molecules in these solutions penetrated the
composites, increasing the mass of the samples.
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Figure 16. Mass change in a 10% NaOH alkaline environment. 
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immersion leads to the release of residual stresses in the matrix and the acceleration of 
post-curing, both of which slow down the rate of decline in the flexural strength of the 
BFRPs [39]. With the growth of soaking time, water molecules penetrate further and 
diffuse into the interior of the BFRPs, but the difference in the degree of moisture 
absorption and expansion of the matrix and fibers will lead to shear stress at the interface. 
When the shear stress exceeds the interface bonding force, cracks will occur, resulting in 
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3.4. Flexural Properties in Different Immersion Environments

The effects of water environments at different temperatures on the flexural strength
and flexural strength retention of the samples are shown in Figures 17 and 18. The flexural
strength and retention of samples immersed in water environments at different temper-
atures showed a decreasing trend with time. After 56 days of immersion in 20 ◦C water
environments, the flexural strengths of unmodified and KH550, KH560, and A171 silane-
coupling-agent-modified BFRPs were 246.20 MPa, 291.03 MPa, 285.60 MPa, and 281.21 MPa,
which decreased by 6.32%, 5.12%, 5.47%, and 5.80% compared with the flexural strength
before immersion. The flexural strengths of the unmodified BFRPs and those modified with
KH550, KH560, and A171 silane coupling agents were 238.84 MPa, 284.27 MPa, 278.42 MPa,
and 273.65 MPa after 56 days of immersion in water at 40 ◦C, which were 9.12%, 7.32%,
7.84%, and 8.34% lower than the flexural strengths before immersion; after 56 days of
immersion in water at 60 ◦C, the flexural strengths of the unmodified and KH550, KH560,
and A171 silane-coupling-agent-modified BFRPs were 224.62 MPa, 271.30 MPa, 264.59 MPa,
and 258.93 MPa, which decreased by 14.53%, 11.55%, 12.42%, and 13.27%. The entry of
water into the resin matrix at the beginning of the immersion leads to the release of residual
stresses in the matrix and the acceleration of post-curing, both of which slow down the rate
of decline in the flexural strength of the BFRPs [39]. With the growth of soaking time, water
molecules penetrate further and diffuse into the interior of the BFRPs, but the difference
in the degree of moisture absorption and expansion of the matrix and fibers will lead to
shear stress at the interface. When the shear stress exceeds the interface bonding force,
cracks will occur, resulting in interface damage, which will reduce the efficiency of stress
transfer between the resin and fibers, resulting in a decrease in the flexural strength of the
samples [40,41]. When water comes into contact with the matrix, it undergoes a hydrolysis
reaction. This decreases the density of the matrix, increases the number of pores, and
reduces the adhesion to the fibers, which can affect the flexural properties of the BFRPs [42].

When the temperature increases, the flexural strength of the BFRPs decreases signifi-
cantly, because the increase in temperature accelerates the hydrolysis reaction, generates
higher void pressure, facilitates the expansion of microcracks in the BFRPs, and promotes
more water entry. However, the increase in temperature also promotes the plasticization
of the matrix by water. The long molecular chains of the resin matrix are hydrolyzed and
decomposed and the bonding at the interface is weakened, which reduces the flexural
strength of the BFRPs [43,44]. In addition, the flexural strength does not decrease linearly
with time, and the rate of loss of flexural strength tends to decrease with increasing time.
This may be due to the rapid hydrolysis reaction of the BFRPs at the early stage of immer-
sion; the degradation reaction decreases with the increase in immersion time and the loss
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rate of flexural strength is initially higher, which is consistent with the findings of many
studies [45].
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Figure 17. Flexural strength in a water environment.
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Figure 19 shows the moisture absorption mechanism of BFRPs. In composite laminates,
it is mainly the resin matrix and the interface that absorb water. The matrix swells and
plasticizes after absorbing water, but the mismatch of moisture expansion between the
fibers and the resin matrix causes the interface to debond, while the resin matrix starts to
degrade and microcracks appear [46]. Studies have shown that basalt fiber has good water
resistance, but its reaction with corrosive media in acidic and alkaline environments makes
a large number of cracks appear on the fiber surface, which promotes the debonding of the
interface [47].
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Figure 20 shows the interface of the BFRPs. During the manufacturing process of the
composite laminates, air bubbles are inevitably generated. None of the air bubbles can be
removed during the solidification process. The solidification process also gives off a lot of
heat inside the composite laminates. Heat dissipation further leads to geometric defects
such as cracks and voids [48,49]. The free water molecules enter the defects in the resin
matrix and form stress concentrations, making the micro-cracks and voids in the matrix
spread out. At the same time, the appearance of cracks and voids makes water molecules
spread in the matrix, and the gathering of water molecules at the cracks and voids will
increase the swelling of the nearby matrix, which leads to greater internal stress, resulting
in the debonding of the interface [50].
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The three silane coupling agents improve the flexural properties of the BFRPs in
the order of KH550, KH560, and A171, which is due to the differences in the mechanical
properties of the BFRPs caused by the different organic groups in the side chains of the
three silane coupling agents. KH550 contains amino groups, which are highly polar and
have high surface energy and can react with the hydroxyl groups of the vinyl ester resin
and form covalent bonds with each other. The unsaturated carbon–carbon double bond in
A171 can react with the unsaturated double bond of vinyl ester resin and connect, but the
overall modification effect is not as good as KH550 and KH560 [51,52]. The modification
with silane coupling agent not only increases the flexural strength of the BFRPs but also
slows down the degradation of its flexural properties in a corrosive aging environment,
which can also be attributed to the increased interfacial bonding of the fibers to the resin
and the tighter adhesion of the fibers to the resin, helping to reduce the volume occupied
by cracks and voids formed during the fabrication and solidification of the composite [53].
Meanwhile, the hydroxyl group on the fiber surface reacts with the silicone, reducing its
hydrophilicity and helping to slow down the debonding of the interface in corrosive aging
environments [54].

The effects of different temperatures of 3.5% NaCl seawater environments on the flex-
ural strength and flexural strength retention of the samples are shown in Figures 21 and 22.
After 56 days of immersion in seawater environments at 20 ◦C, the flexural strengths of
the unmodified BFRPs and KH550, KH560, and A171 silane-coupling-agent- modified
composites were 244.54 MPa, 289.71 Mpa, 284.12 Mpa, and 279.56 Mpa, which decreased
by 6.95%, 5.55%, 5.96%, and 6.35% compared with the flexural strengths before immersion.
The flexural strengths of the unmodified BFRPs and those modified with KH550, KH560,
and A171 silane coupling agents were 236.44 MPa, 282.42 MPa, 276.33 MPa, and 271.31 MPa
after 56 days of immersion in seawater environments at 40 ◦C, which were 10.03%, 7.93%,
8.54%, and 9.12% lower than the flexural strengths before immersion; after 56 days of
immersion in seawater environments at 60 ◦C, the flexural strengths of the unmodified
and KH550, KH560, and A171 silane-coupling-agent-modified BFRPs were 220.81 MPa,
268.44 MPa, 261.27 MPa, and 255.21 MPa, which decreased by 15.98%, 12.48%, 13.52%, and
14.51%. The effects of different temperatures of 10% NaCl high-concentration seawater
environments on the flexural strengths and flexural strength retentions of the samples are
shown in Figures 23 and 24. After 56 days of immersion in high-concentration seawater
environments at 20 ◦C, the flexural strengths of the unmodified and KH550, KH560, and
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A171 silane-coupling-agent-modified BFRPs were 242.55 MPa, 288.16 MPa, 282.41 MPa,
and 277.70 MPa, which decreased by 7.71%, 6.05%, 6.52%, and 6.98% compared to the
flexural strengths before immersion The flexural strengths of the unmodified BFRPs and
those modified with KH550, KH560, and A171 silane coupling agents were 233.57 MPa,
280.28 MPa, 273.95 MPa, and 268.67 MPa after 56 days of immersion in high-concentration
seawater environments at 40 ◦C, which were 11.13%, 8.62%, 9.32%, and 10.00% lower than
the flexural strengths before immersion; after 56 days of immersion in high-concentration
seawater environments at 60 ◦C, the flexural strengths of the unmodified and KH550,
KH560, and A171 silane-coupling-agent-modified BFRPs were 216.22 MPa, 265.19 MPa,
257.67 MPa, and 251.22 MPa, which decreased by 17.73%, 13.54%, 14.71%, and 15.85%. The
flexural strength of the samples in seawater environments gradually decreases with time,
which is due to the presence of NaCl in the dissolved state in the form of cations and anions,
since ions will penetrate the composite material together with water molecules. A large
number of corrosive ions and water molecules gather on the surface of the fiber and matrix,
which will generate pressure, constantly acting on the surface of the fiber and matrix and
causing damage to the fiber, resin matrix, and its interface [55]. It can be found that the
flexural strength retention of the samples in seawater environments does not change much
compared to that in water environments, which indicates that BFRPs have relatively good
corrosion resistance to seawater environments.
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Figure 22. Flexural strength retention in a 3.5% NaCl seawater environment. 
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Figure 24. Flexural strength retention in a 10% NaCl high-concentration seawater environment.

Figures 25 and 26 show that the flexural strength and flexural strength retention of
samples immersed in a 10% H2SO4 acid environment at different temperatures decreased
significantly with time. The flexural strengths of the unmodified and KH550, KH560, and



Materials 2023, 16, 1543 20 of 26

A171 silane-coupling-agent-modified BFRPs were 214.82 MPa, 263.88 MPa, 256.06 MPa, and
249.47 MPa after 56 days of immersion in the acid environments at 20 ◦C, which decreased
by 18.26%, 13.97%, 15.25%, and 16.43% compared to the bending strength before immersion.
The flexural strengths of unmodified and KH550, KH560, and A171 silane-coupling-agent-
modified BFRPs were 186.20 MPa, 239.40 MPa, 229.82 MPa, and 220.82 MPa after 56 days
of immersion in acidic environments at 40 ◦C, which decreased by 29.15%, 21.95%, 23.93%,
and 26.03% compared to the flexural strength before immersion. The flexural strengths
of the unmodified and KH550, KH560, and A171 silane-coupling-agent-modified BFRPs
were 141.02 MPa, 201.69 MPa, 187.74 MPa, and 175.27 MPa after 56 days of immersion in
acidic environments at 60 ◦C, which decreased by 46.34%, 34.25%, 37.86%, and 41.29%. The
flexural strength retention of the samples in the acidic environment was lower than in the
other corrosive aging environments but slightly higher than in the alkaline environment.
This is because basalt fiber and vinyl ester resin are hydrolyzed under acidic conditions, by
the resin hydrolysis formula as shown in Equation (1) [56], and resin ester group hydrolysis
under acidic conditions is a reversible reaction, so the reaction is not complete. The SiO2
mesh structure of basalt fiber is more stable to acidic reagents, and the acid resistance of
basalt fiber is stronger than the alkali resistance [57]. This results in higher retention of the
flexural strength of the composite under acidic immersion than in alkaline environments.
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Hydrolysis of resin matrix under acidic conditions.

ROOR∗ + H2O H+

↔ RCOOH + R∗OH (1)

Figures 27 and 28 show that the flexural strength and bending strength retention of
BFRPs showed a significant decrease with time under different temperatures of 10% NaOH
alkaline environment immersion. The flexural strengths of the unmodified and KH550,
KH560, and A171 silane-coupling-agent-modified BFRPs were 193.66 MPa, 245.80 MPa,
236.30 MPa, and 228.08 MPa after 56 days of soaking in alkaline environments at 20 ◦C,
which decreased by 26.31%, 19.86%, 21.78%, and 23.60% compared with those before soak-
ing. The flexural strengths of unmodified and KH550, KH560, and A171 silane-coupling-
agent-modified BFRPs were 149.83 MPa, 208.89 MPa, 195.88 MPa, and 184.31 MPa after
56 days of immersion in alkaline environments at 40 ◦C, which decreased by 42.99%, 31.90%,
35.17%, and 38.26% compared to the flexural strength before immersion. After 56 days
of soaking in alkaline environments at 60 ◦C, the flexural strengths of the unmodified
and KH550, KH560, and A171 silane-coupling-agent-modified BFRPs were 80.84 MPa,
152.33 MPa, 133.10 MPa, and 115.60 MPa, which decreased by 69.24%, 50.34%, 55.95%, and
61.28%. The flexural strength retention of the BFRPs in alkaline environments is lower
than in other corrosive aging environments. This is because the alkaline corrosive medium
penetrates the interface by hygroscopic diffusion and reacts with the metal oxides of the
basalt fibers, and the alkali solution destroys the Si-O-Si structure of the basalt fiber, as
shown in Equation (2) [56], which causes significant damage to the fiber and accelerates
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the debonding of the interface [58]. On the other hand, the vinyl ester resin undergoes a hy-
drolysis reaction that damages the resin matrix, and the reaction is completely irreversible,
as shown in Equation (3) [56]. These result in the lowest flexural strength retentions of the
BFRPs in alkaline environments.
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Figure 27. Flexural strength in a 10% NaOH alkaline environment. 
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4. Conclusions 
In this paper, the changes in the flexural properties of different types of silane 

coupling agent KH550-, KH560-, and A171-modified basalt-fiber-reinforced composites 
immersed in water at 20 °C, 40 °C, and 60 °C and 3.5% NaCl seawater, 10% NaCl high-
concentration seawater, 10% H2SO4 acidic, and 10% NaOH alkaline environments were 
studied, and the following conclusions were drawn: 
(a) The modification by silane coupling agents KH550, KH560, and A171 improved the 

interfacial bonding effect of BFRPs. Without the modification by silane coupling 
agents, there were large gaps between the fibers and the matrix, and the interfacial 
bonding effect was poor. 

(b) The appearance of BFRPs varied greatly in different soaking environments. The 
samples soaked in water, 3.5% NaCl seawater, and 10% NaCl seawater environments 
did not show large changes, while the appearances of the samples soaked in acidic 
and alkaline environments showed great changes. Meanwhile, the appearance of 
BFRPs was greatly affected by the ambient temperature and soaking time, and a large 
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ROOR∗ + NaOH→ RCOONa + R∗OH (2)

Reaction of Si-O-Si structure with alkaline environments.

Si−O− Si + OH− → SiOH + SiO− (3)

4. Conclusions

In this paper, the changes in the flexural properties of different types of silane coupling
agent KH550-, KH560-, and A171-modified basalt-fiber-reinforced composites immersed in
water at 20 ◦C, 40 ◦C, and 60 ◦C and 3.5% NaCl seawater, 10% NaCl high-concentration
seawater, 10% H2SO4 acidic, and 10% NaOH alkaline environments were studied, and the
following conclusions were drawn:

(a) The modification by silane coupling agents KH550, KH560, and A171 improved the
interfacial bonding effect of BFRPs. Without the modification by silane coupling
agents, there were large gaps between the fibers and the matrix, and the interfacial
bonding effect was poor.

(b) The appearance of BFRPs varied greatly in different soaking environments. The
samples soaked in water, 3.5% NaCl seawater, and 10% NaCl seawater environments
did not show large changes, while the appearances of the samples soaked in acidic
and alkaline environments showed great changes. Meanwhile, the appearance of
BFRPs was greatly affected by the ambient temperature and soaking time, and a large
number of white spots appeared on the surface of the samples after 56 days of soaking
in the acidic and alkaline environments at 60 ◦C.

(c) The mass change of BFRPs accumulates gradually with soaking time, but the mass
change rate decreases gradually with time. Temperature substantially enhances the
mass change of BFRPs. The mass change of BFRPs in water at 20 ◦C, 40 ◦C, and 60 ◦C
and 3.5% NaCl seawater, 10% NaCl seawater, and an alkaline environment mainly
increased the mass. BFRPs exhibited mass gain in the acid environment at 20 ◦C, but
a mass loss in the acid environments at 40 ◦C and 60 ◦C. The silane coupling agent
modification reduced the mass change rate of BFRPs by forming a strong chemical
bond connecting the fiber–resin matrix and enhancing the interfacial adhesion.

(d) The rate of the decrease in the flexural strength of BFRPs was positively correlated
with the rate of mass change. The flexural strength gradually decreased with the
increase in submergence time, but the decrease rate gradually slowed down with the
increase in time. When the temperature increased, the flexural strength of the BFRPs
decreased significantly. The alkaline environments had the greatest effect on the
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flexural properties of BFRPs compared to the water, seawater, and acid environments.
The silane coupling agent modification improved the flexural properties of BFRPs by
enhancing the interfacial bonding properties of the BFRPs and reduced the degrada-
tion of the flexural properties of BFRPs in corrosive aging environments. Considering
the experimental results, the three silane coupling agents modified the corrosive aging
performance of the composites in the order of KH550 > KH560 > A171.
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