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Abstract: Predictive maintenance is increasingly popular in many branches, as well as in the mining
industry; however, there is a lack of spectacular examples of its practice efficiency. Close collaboration
between Omya Group and Wroclaw University of Science and Technology allowed investigation of the
failure of the inertial vibrator’s bearing. The signals of vibration are captured from the sieving screen
just before bearing failure and right after repair, when it was visually inspected after replacement. The
additional complication was introduced by the loss of stable attachment of the vibrator’s shield,
which produced great periodical excitation in each place of measurement on the machine. Such
anomalies in the signals, in addition to falling pieces of material, made impossible the diagnostics by
standard methods. However, the implementation of advanced signal processing techniques such as
time–frequency diagrams, envelope spectrum, cyclic spectral coherence, orbits analysis, and phase
space plots allowed to undermine defects (pitting on the inner ring). After repair, the amplitudes of
vibration from the damaged bearing side were reduced by five times, while sound pressure was only
two times lower. The quantitative parameters of vibrations showed significant changes: time series
RMS (−68%) median energy of spectrograms (89%), frequencies ratio of cyclic spectral coherence
(−85%), and average amplitude of harmonics in envelope spectrum (−80%). The orbits demonstrated
changes in inclination angle (16%) and sizes (−48 . . . −96%), as well as phase space plots sizes
(−28 . . . −67%). Directions of further research are considered.

Keywords: sieving screen; raw materials processing; vibrations; condition monitoring; bearings
diagnostics; failure

1. Introduction

Predictive maintenance based on advanced measurement tools and methods has
become more and more popular in many branches, as well as in the mining industry;
however, there is a lack of spectacular examples of its practice efficiency. Most examples of
diagnostic methods development and validation are related to laboratory test rigs, while the
rare cases are analyzed in different unique machines such as bucket wheel excavators [1],
wind turbines [2], compressors [3], conveyors [4], and crushers [5] working under variable
speed and load conditions, as well as excessive external disturbances.

Close collaboration between Omya Group and Wroclaw University of Science and
Technology allowed the representation of unique material showing results of the analysis
of vibration data captured from the industrial vibrating sieving screen just before and
right after its repair. To evaluate screen technical conditions, up-to-date signal processing
techniques are applied such as time–frequency methods, envelope spectrum, cyclic spectral
coherence, and orbits analysis, including phase space plots. It was found that one of the
bearings is damaged; moreover, the loss of stable attachment of the vibrators shield caused
great excitation in the machine, which was a significant anomaly in the signals negatively
influencing the results of diagnostics.
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Condition monitoring of bearings in the sieving screen is a specific problem. To assure
material classification (shaking of the screen), a serious unbalance is introduced to the
shafts of vibrators driven by electric motors. So, signal by definition is time–varying and
nonstationary. Moreover, the material stream feeding to the sieving screen consists of
various size particles from sand-like to oversized (tens of centimeters) pieces of rock [6–8].
It generates massive impulsive noise with strongly non-Gaussian properties.

In addition, the special series of roller bearings used in vibrating screens and other
types of heavy-duty industrial machines are always subjected to excessive shock impacts in
case of radial clearances (backlashes) appearing. In this case, the surface layer of both inner
and outer rings exhibits gradual alterations of microstructures that initiate microcracks
and subsequent pitting. Detailed multiscale modeling of rolling cyclic fatigue in bearing
elements is considered in [9]. Depending on the bearing design and its service time,
hardening can take place at a depth of nearly 450 µm, while the softened layer is observed at
500–700 µm depth. The enlarged clearances, in their turn, cause shaft beating, deterioration
of peripheral labyrinth sealing, and leak of lubrication. The machine maintenance staff of
the investigated screen reported exactly all of the above-mentioned symptoms: lubrication
oil leakage, wear of shaft neck, and excessive radial clearances, which were previously
measured by calibrated gauges (0.5–0.6 mm between the shaft and the inner ring, about
0.8–1.0 mm between the outer ring and housing).

The permanent monitoring of bearing temperature is not provided in this vibrating
screen, yet, instead, scheduled inspections with a manual pyrometer are conducted. The
slightly increased temperature on the lower bearing from the drive side was noted. This
bearing reached a temperature of approximately 11 ◦C higher than the upper shaft bearing.
In the following 5 days between inspections, the temperature difference decreased to
about 5 ◦C. On the opposite side of the screen, the temperature difference was 4 ◦C, and
it increased to about 8 ◦C in the following 5 days. In addition, the recent problem has
appeared in the form of bearing housing damage (unbalanced mass touching), which
complicated the measurement of vibration due to periodic strong impacts near the bearings
on the drive side.

Based on these observations, maintenance staff considered using more advanced
analysis to support decision making about shaft repair and bearing replacement. This
paper represents the results of the damaged bearing’s diagnostics by the vibration and
partial sound signal.

The paper is organized as follows. First, we recall the most frequent challenges in
sieving screen operation and the most popular techniques used to deal with them. Next,
we describe the experimental work and machine. We present the results of measurements
before and after replacement and the results of data analysis using the mentioned tech-
niques. The last parts of the paper contain a visual inspection of the replaced bearing with
race wear and discussion, as well as the final conclusion.

2. State of the Art

Predictive maintenance is rapidly growing, as well as in the raw material sector,
including mining machines for excavating, drilling, transporting, processing (sieving and
crushing), ventilation, and related technologies [10–19]. For example, the developments
in vibration-based diagnostics of gear and bearings used in belt conveyors are given in a
review [20]. The dynamics of tumbling mills and the energy efficiency analysis of copper
ore ball mill drive systems are represented in [21]. Modern systems of condition monitoring
can include such useful features as calculation of the remaining useful life of machine
elements [22–25] combined with process optimization and control [26–28].

The problems of impulsive noise cancellation for copper ore crusher vibration signal
enhancement are considered in [29]. Results of the development and industrial verification
of the diagnostic model for the vibrating sieving screen are represented in [30].

For the diagnostics of bearings, the author in [31] proposed an infogram as a method to
extract repetitive transients in the signals. Additional enhancement of this approach for non-
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Gaussian data is conducted in [32]. In [33], a new concept is proposed, called IESFOgram
(Improved Envelope Spectrum via Feature Optimization), which is a gram for rolling
element bearing diagnostics under nonstationary operating conditions. A comparison of
advanced bearing diagnostic techniques may be found in [34].

An analysis of the kurtogram data presentation method’s performance is given in [35]
in case of high-level non-Gaussian noise. An impulsive source separation technique based
on a combination of Non-negative Matrix Factorization of bifrequency map, spatial denois-
ing, and Monte Carlo simulation is proposed in [3]. The Second-Order Cyclostationary
(CS2) analysis in presence of non-Gaussian background noise–effect on traditional esti-
mators and resilience of log-envelope indicators is considered in [36]. Several advanced
techniques, such as spectral kurtosis, spectral L2/L1 norm, spectral smoothness index,
and spectral Gini index, for characterizing repetitive transients have been proposed by the
author in [37].

An important theoretical and practical problem is informative frequency band selec-
tion. This is because the falling pieces of sieved material generate heavy-tailed impulsive
non-Gaussian noise. A novel approach for this problem’s solution, based on the conditional
variance statistic with application to bearing fault diagnosis, is proposed in [38,39]. The
local damage detection method based on vibration data analysis in the presence of Gaussian
and heavy-tailed impulsive noise is developed in [40]. A relatively simple but reliable
method for condition monitoring of gearboxes operating in impulsive environments is
proposed in [41]. This method uses synchronous averaging for non-Gaussian noise re-
moval, however, the mean operator has been replaced by a median. It was also discovered
in [42] that the source of non-Gaussian behavior may be related to strong electromagnetic
interference. Bearing diagnostics under such conditions are resolved based on integrated
spectral coherence. The model for simulation of the impulsive signals in the sieving screen
is proposed in [43]. The procedures of identification, decomposition, and segmentation of
impulsive vibration signals with deterministic components for the case of sieving screen
are represented in [44].

The Teager–Kaiser energy operator (TKEO) and Hilbert Transform (HT) are widely
used to demodulate signals (envelope spectrum analysis). However, these methods are
sensitive to noise, hence have certain limitations in the vibrating screens. To address
the problems of bearings diagnostics in vibrating screens, an alternative energy operator
method named the envelope-derivative operator (EDO) is proposed in [45]. The authors
in [46] constructed a multimodal feature matrix composed of different types of entropy. The
early fault diagnosis of the screen exciter bearing is realized by using the support vector
machine (SVM) improved by the Aquila optimizer algorithm (AO-SVM). Variational mode
decomposition (VMD) and K-L divergence are applied in [47] to the bearing fault diagnosis
of vibrating screens.

Since the vibrating sieving screens work due to cyclic excitation from the rotating
unbalanced masses, they are categorized as cyclostationary systems. Hence, the modeling
of such signals plays an important role in diagnostics [48]. Regarding the design of exciters,
the main efforts are concentrated on obtaining the wider spectrum of vibration [49,50]
and dynamic parameters tuning concerning sieved material properties (fraction size and
humidity) [51]. However, the majority of heavy industrial horizontal sieving screens have
almost a similar design with inertial vibrators, and new developments are reported to be
only at the stage of laboratory testing, e.g., electromagnetic or hydraulic excitation actuators
allowing easier process regulation; magnetorheological supports for the stiffness control;
and multimotor inertial exciters.

The relationship between spectral correlation and envelope analysis in the diagnostics
of bearing faults and other cyclostationary machine signals is described in [52]. Periodically
impulsive behavior detection in noisy observation based on a generalized fractional-order
dependency map is developed in [53]. A generalized spectral coherence is proposed
in [54,55] for the detection of cyclostationarity in the signals with the alpha-stable distri-
bution. Short-term spectral analysis and different modifications of discrete Fourier trans-
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form [56] is widely used as the most popular time–frequency representation [57]. A detailed
tutorial on rolling bearings diagnostics can be found in [58].

In the vibrating screening machines, the main parameter determining their perfor-
mance, energy consumption, and output product quality is the trajectory (orbit) of sieving
decks and bulk material particles’ movement. Additionally, orbits can also react to certain
failures in bearings or supporting springs [59]. This parameter is used in the diagnostics
of many rotating machines [60–64]. Reconstructing the shaft orbit using Instantaneous
Angular Speed (IAS) measurement to detect bearing faults is proposed in [65]. Rotating
machinery diagnostics using deep learning on orbit plot images is proposed in [66]. Ex-
perimental observations in the shaft orbits with different faults related to the rotor are
represented in [67,68].

Due to using two orthogonal axes for screen motion measurement and following the
integration of vibration accelerometers’ signals, the Phase Space Plots (PSP) can be built
as a whole portrait of the dynamic system. In particular, PSP is useful for analysis of the
bifurcations in nonlinear systems when they are susceptible to minor changes in parameters
associated with fault development [69,70]. The application of the PSP technique needs the
development of qualitative measures of trajectories topology [71]. In this paper, PSP is used
to assess the faults in the bearings of vibrators.

According to our previous experience and investigation of industrial plants, the most
frequently occurring failures in the vibrating screens are as follows:

• Vibrators’ bearings (heat and fatigue);
• Supporting springs (stiffness and cracks);
• Bolted joints (cracks and cyclic fatigue);
• Screening decks (abrasive wear);
• Inertial vibrators (rotation synchronization);
• Unbalanced masses (angular mismatch);
• Strengthening beams (cyclic fatigue);
• Electric drives (uneven load, starting resonances, and belts).

Currently, there are several condition monitoring systems in the market where options
for the diagnostics of vibrating machines are declared.

• CONIQ (Schenck) is based on six-dimensional vibration data measured with piezo-
electric accelerometers and bearings temperature.

• FAG SmartCheck (Schaeffler) recognizes such damages in a filled screen as loosening
and breakage of springs; the monitored parameters are vibrations, temperature, and a
load of drives.

• ScreenWatch (Check) (Metso) uses wireless self-powered vibration sensors and detects
a deviation in screen motion caused by damaged springs and bearings, as well as the
settings of unbalanced masses.

• Copperhead (SKF) detects the faults of gears, bearings, screen structure, and sieving decks.

All these systems are based on the standard algorithms of vibration monitoring aimed
at the detection of local defects in the bearings. However, the falling copper ore is a source of
random impulsive noise in vibration signals. The recently completed joint research project
OPMO (Operation monitoring of mineral crushing machinery) funded by EIT RawMaterials
resulted in an innovative condition monitoring system specialized for vibrating screen
application, where the above-mentioned methods of nonstationary signals processing have
been implemented for the diagnostics of bearings and supporting springs.

3. Methodology

The scheme of the research methodology is depicted in Figure 1. It includes vibration
measurement, with accelerometers on the bearings of the vibrating screen taking signals
in two orthogonal directions. Then, several methods are applied to the raw data, namely
visual analysis of time series, short FFT, cyclo-maps, and orbits with phase space plots
building. The envelope function is also appropriate for data analysis. Based on the results
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obtained in the frequency domain, the diagnostics frequency band is determined to contain
different ranges, including the characteristic frequencies of bearings defects. After that,
the conclusion about the sources of high-amplitude components is derived and the final
diagnosis is formulated. Until the dismounting and inspection of machine units, the
diagnosis remains to be a hypothesis.

Figure 1. The scheme of diagnostics methodology: STFT—short FFT; CSC—cyclic spectral coherence;
PSP—phase space plot; DFB—diagnostic frequency band.

3.1. Spectrogram

Short-Time Fourier Transform (STFT), which for one-dimensional discrete data
sm = (s(m)

1 , . . . , s(m)
N ), with m ∈ 1, . . . , M is given by the formula [56]:

STFT(i, k) =
L−1

∑
f=0

s[k + f ]w[ f ]e−j2πi f /I , (1)

where j is the imaginary operator, 0 ≤ i ≤ I− 1 is the frequency bin for the I total frequency
bins, k = 0, . . . , K− 1 is the time point for the K total time points, and w[.] is the window
of length L. One can observe that in STFT for each time point the Fourier Transform is
calculated using Fast Fourier Transform (FFT). Furthermore, the spectrogram is an absolute
value of the STFT:

Y(i, k) = Spec(i, k) = |STFT(i, k)|. (2)

3.2. Envelope Spectrum Analysis

The procedure of diagnostic signal amplitude demodulation supposes that the mod-
ulating signal is carrying information about the damage. This is one of the simplest and
most popular signal processing techniques for the detection of local faults. The idea of
demodulation consists of appropriate frequency band selection, performing band-pass
filtering for this band, and then using the Hilbert Transform to determine the envelope
signal, in which the spectrum is then analyzed.
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The Hilbert Transform (HT) of the real signal x(t) can be computed using such formula:

h(t) = H{x(t)} = 1
π

∞∫
−∞

x(τ)
t− τ

dτ. (3)

The magnitude of the analytical signal from the Hilbert Transform is as follows:

xht(t) = |x(t) + j · h(t)| =
√

x2(t) + h2(t). (4)

A Fourier Transform is then applied to this analytical signal:

E(t) = |FT(xht(t))|. (5)

3.3. Cyclic Spectral Coherence

The Cyclic Spectral Coherence (CSC) is the bifrequency representation. It depends on
the carrier frequency ( f ) and the modulation frequency (α). It was introduced by Antoni in
2007 [72]. The Cyclic Power Spectrum (CPS) SX( f ; α) of the signal x can be described by
the following formula:

SX( f ; α) = lim
L→∞

1
L
E
(
Fx,L

(
f +

α

2

)
Fx,L

(
f − α

2

))
, (6)

where Fx,L( f ) is the Fourier transform of the signal x calculated on the interval of
length L. In the cyclostationary signal, for some of the modulation frequency α 6= 0, the CPS
is expected to meet the condition |SX( f ; α)| > 0. Based on the Equation (6), the formula of
CSC can be introduced [72]:

CSC( f ; α) = |γX( f ; α)|2 =
|SX( f ; α)|2

SX( f + α
2 ; 0)SX( f − α

2 ; 0)
. (7)

The CSC is a useful tool to analyze the cyclostationarity of the signal. It allows for
determining the strength of the cyclic spectral autocorrelation of the signal. The CSC
statistic is normalized and its values range between 0 and 1. When the |γX( f ; α)|2 is
significantly higher than 0, then the signal reveals the cyclostationarity property at carrier
frequency f , with a modulation period equal to T = 1/α.

Following the Equation (7), the CSC estimation is performed with an estimator of
CPS. The estimator of SC is given by the formula:

|γ̂X( f ; α)|2 =

∣∣ŜX( f ; α)
∣∣2

ŜX( f + α
2 ; 0)ŜX( f − α

2 ; 0)
, (8)

where ŜX( f ; α) is an estimator of the CPS [72].

3.4. Orbits and Phase Space Plots

Orbit analysis is a necessary tool for the analysis of vibrating rotating machinery. The
process is essentially an extension of time waveform analysis plotting time-domain data
from a pair of orthogonal probes on an orbit graph with consideration for the physical
location of the sensors (accelerometers or proximity probes).

In our case of acceleration measurements by the orthogonal vibration sensors, the
original signals are sequentially integrated to obtain velocity and displacement signals.
Since the integration accumulates the bias in the signals, this operation needs its removal by
linear or nonlinear detrending operations. The final graph is constructed in the coordinates
of Horizontal Displacement (abscissa X) and Vertical Displacement (ordinate Y).

In addition to orbits analysis, the Phase Space Plots (PSP) are also considered in
this paper as a possible tool for measurement data analysis in diagnostic procedures. In
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distinction to orbits, the final graph is constructed in the coordinates of Displacement
(abscissa X) and Velocity (ordinate Y).

4. Experiments

The whole view of the investigated vibrating sieving screen is shown in Figure 2. It
consists of shafts with bearings (1, 3); Cardan couplings (4); spring supports (2); grizzly
deck (5); side walls with protection (6); and reinforced bars (7). Electric motors of 30 kW
power and 1470 RPM rotation speed (situated on the opposite side) are connected with
two unbalanced vibrators by the Cardan shafts, providing technological excitation of the
screen. The vibrators are dynamically synchronized without kinematic links between them.
This is the most typical design of vibrating screens used in the calcium carbonate plant of
Omya Group and other enterprises of the mineral processing industry. The only difference
there can be is belt drives instead of Cardan shafts. The overall top view of the screen with
sensors placement is shown in Figure 3.

Figure 2. The overall side view of the vibrating sieving screen.

Figure 3. The overall top view with sensors placement and position of damaged bearing and
vibrator shield.

The special series SKF 22234 VAJ spherical roller bearings (see Figure 4) installed on
the vibrators’ shafts can accommodate heavy loads in both directions. They are self-aligning
and compensate shaft misalignment and deflections, with virtually no increase in friction
or temperature. Nevertheless, these elements of vibrators are subjected to high loads and
cyclic fatigue. By the specification of the producer (SKF), bearings for the vibrating sieving
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screen have greater than normal clearances, which play the most important role in their
durability [73,74].

Figure 4. The special series spherical roller bearings (SKF22324VAJ): basic static load—1120 kN;
dynamic load—850 kN; and limiting speed—2000 RPM.

The experiments were conducted twice in one of the plants in the Omya Group. The
first measurement trial was carried out just before the planned replacement of rolling
element bearings, and the second one was right after the new bearings were installed.

Measurements were made using the Kistler LabAmp 5165A data acquisition system,
Kistler 8702B500 accelerometers, and Bruel & Kjaer 4189 microphone. The places and
directions of the accelerometers’ installation on both sides of the screen are shown in
Figure 5. The sampling frequency of both vibration and sound signals was 50 kHz. The
acoustic signal contains all effects from the loudest environmental sources. For this reason,
the audio record is only used to validate the main machine operation cycles of shaft
rotation observed in the vibration data, since the rotation sensors were not used in these
experiments. The raw signals collected on the machine (before bearings replacement—with
expected bearings problems—and after bearings replacement with new bearings installed)
are presented in Figures 6 and 7. The measurements were taken on the left and right sides
of the screen, in two directions.

Figure 5. Vibration sensors’ (accelerometers) placement on the upper and lower shafts of the vibrat-
ing screen.
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(a) Raw signals, left side before repair. (b) Raw signals, right side before repair.
Figure 6. Raw signals : left and right side before repair.

(a) Raw signals: left side after repair. (b) Raw signals: right side after repair.
Figure 7. Raw signals: left and right side after repair.

5. Data Analysis

Signals from the screen are highly nonstationary, thus time–frequency analysis is a
reasonable approach to understanding the properties of the signal. In Figure 8, signals
and the corresponding spectrograms of these signals are presented. It is seen that signals
from the left side (both horizontal and vertical directions of the upper left bearing) are
highly dominated by cyclic impulses. The period of these impulses is related to rotational
frequency, and the reasons for these impulses are mechanical shocks. It is also seen on the
upper bearing on the right side (vibration transmission effect), as well as on the lower left
bearing. This phenomenon is barely observed on the lower right bearing, as the distance
between excitation and the sensor is the biggest in all cases. It is worth noticing that the
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lower left bearing generates a lot of noise (in the sense of amplitude as well as spectral
content—it is more wide-band than other signals).

Figure 8. Signals and spectrograms before repair.

To compare signals before (Figure 8) and after repair with damaged bearing replace-
ment (Figure 9), in the latter case, all time series are similar; there are some minor differences
in time–frequency maps, but one may approximately conclude they are almost the same
(level and spectral structure).

Figure 9. Signals and spectrograms after repair.

The time–frequency map allows us to understand spectral content and its variation
over time, but to identify nonlinear modulation between components, it is better to use
the CSC map presented in Figures 10 and 11. In Figure 10, by analogy to spectrograms,
one may see a family of modulating harmonics, however, there are two sources of
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modulation. First, it is seen that cyclic impulses in the time domain cause amplitude
modulation. The carrier band is really wide, and modulating frequency is related to shaft
rotation. This signature is present in each CSC map, the most significant modulation is
visible in pictures related to the left upper bearing. The second source of modulation is
related to the faulty bearing. The fault frequency is equal to 141 Hz. The clearest picture
is related to the lower bearing in the vertical direction. The fundamental frequency and
two harmonics are seen. As the fault signature is rather weak, it is not visible on other
maps (from other sensors).

Figure 10. Cyclic spectral coherence (CSC) before repair.

Figure 11. Cyclic spectral coherence (CSC) after repair.

The situation completely changes after the replacement of the bearings. Additionally,
the problem of cyclic shocks was also solved. So, in Figure 11, there are almost empty
maps and no modulation (just fundamental rotating frequency). This is evidence for the
no-damage case.

The CSC maps are very advanced and frequently used by scientists, however, in engi-
neering practice, the envelope spectrum is preferred. As was shown by Randall et al. [52],
the Envelope Spectrum is equivalent to an integrated CSC map.

In Figures 12 and 13, envelope spectra for each sensor (the same layout) are presented.
Envelope spectra for the upper left bearing contain a family of harmonics corresponding to
rotating frequency. As we present all spectra in the same scale (Y axis), the right side of the
screen has almost nothing in the envelope spectrum (shocks are transmitted but with much
lower amplitudes). The spectrum for an envelope from the lower left bearing contains
some components, so detection of the damage is possible, but they are not so clear for the
CSC map.
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Figure 12. Envelope spectrum before repair.

Figure 13. Envelope spectrum after repair.

The results of statistical data analysis by different methods in the frequency domain
are represented in Table 1. The quantitative parameter for time series RMS value is taken;
for spectrograms, the median energy; for CSC, the ratio of the amplitude of modulating
component at fundamental frequency ( fd) to the amplitude at the fundamental frequency of
the main operating cycle ( fc) at the resonant center frequency; and for envelope spectrum,
the average amplitudes of the 2nd and 3rd harmonics of the main frequency. The time series
showed changes in RMS by −68%; median energy of Spectrogram by 89%; amplitudes
ratio of CSC by −85%; and average amplitude of harmonics in envelope spectrum by
−80%. Hence, the most sensitive method in the frequency domain is based on spectrogram
and CSC analysis. These parameters can be used as the “health indicators” in condition
monitoring systems of vibrating machines.

The orbits in Figures 14 and 15 with PSP in Figures 16 and 17 are built by the vibration
signals recorded before bearing replacement and right after repair, respectively. The
difference is visible between the trajectories of shaft motion affected by the damaged shield
on the upper left support and the bearing damage on the lower left bearing. Since all
corresponding graphs have the same scales on both axes, we can conclude that external
excitation from the vibrator’s impacts on the shield affects both the orbit and PSP of the
upper shaft, while the bearing defect has less effect in the orbit but significantly changes
the PSP. The numerical values of orbits and PSP geometry parameters are summarized
in Table 2 for the damaged bearing (left side of the lower shaft). The form factor of PSP
and angle of orbit inclination are both less sensitive to either the external excitation or the
internal bearing defect, because these parameters of dynamics are mainly determined by the
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screen design (total vibrating mass, supporting springs stiffness, and vibrators’ positions).
The size parameters of orbits and PSP were significantly changed due to bearing defect.

Table 1. Changes in parameters for different methods on the left side of the lower shaft (dam-
aged bearing).

Methods and Parameters before Repair after Repair Relative Change

Time Series
RMS Value, g 11.71 3.77 −68%

Time–Frequency Spectrogram
Median energy, dB −27.8 −52.5 89%

Cyclic Spectral Coherence
Amplitudes ratio ( fd/ fc) 1.08 0.16 −85%

Envelope spectrum
Avg. amplitude, g2 0.005 0.001 −80%

Figure 14. Orbits before repair.

Figure 15. Cont.
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Figure 15. Orbits after repair.

Figure 16. Phase space plots (PSP) before repair.

Figure 17. Phase space plots (PSP) after repair.
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Table 2. Geometric parameters of orbit and PSP on the left side of the lower shaft (damaged bearing).

Geometry Parameters before Repair after Repair Relative Change

Orbit
Angle, grad 40.22 46.65 16%
Length, mm 6.3 3.3 −48%
Width, mm 2.6 0.1 −96%
PSP
Horizontal size, mm 5.84 2.38 −59%
Vertical size, m/s 0.09 0.03 −67%
Form factor (V/H), 1/s 15.3 11.0 −28%

After shaft repair and damaged bearing replacement, the orbits and PSP graphs on
both sides and both shafts of the screen have no differences in forms and amplitudes of
trajectories. Hence, such methods as orbits and PSP can be assumed and easily realized as
reliable health indicators in the condition monitoring systems of vibrating machines (not
only in sieving screens). It is worth noting that the orbits method needs two orthogonal
signals, but PSP needs only one sensor on each bearing.

6. Validation

After bearing replacement, we were able to visually investigate the real condition of
the bearing elements. According to our findings, the problem is related to the inner race. In
Figure 18, pictures of the inner race surface are shown. It is clearly seen that a lot of pits are
preset. Definitely, the surface of the inner race is worn. This picture confirms our findings.

Figure 18. Picture of damaged inner race.

The condition of the raceway is also confirmed by the effect observed in the signals:
if the damage was of a more local nature (e.g., a transverse fracture), the rolling elements
would interact with the failure ones at a time, and we would see distinct short spikes in
the time domain in the signals. However, in the case of distributed damage to the surface,
several rolling elements are in contact with the damaged surface at any moment in time, so
the effect is much more “smoothed” in time than we observed in the signals. Despite this,
it did not prevent the identification of the cycle of interaction, and thus the indication of
the damaged element.

Figure 19 (left) shows the part of the ring in the healthy condition, which allows
comparing its condition with the previous photos (see Figure 18) where pitting occurred
over the entire width of the raceway (under both rows of rolling elements). The angular
size of pitting is approximately 120◦.
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Figure 19. Picture of the not-damaged surface of the inner race and pitting angular size over the
ring perimeter.

The second bearing (the same shaft on the other side), according to the results of the
analysis of the signals measured on it, showed no defects, although a thorough inspection
of the inner race was complicated due to a different (much more built-in) type of rolling
element separator. In the case of the damaged bearing, the situation was much more
comfortable, because the type of separator made it possible to remove the barrel with
fingers, using the slot provided on the side surface of the raceway. Therefore, no interference
with the use of any tools was necessary, and the structure and surface of any of the elements
were not affected.

7. Discussion

The online calculator available on the SKF website confirms the values of the observed
frequencies (see Table 3). The detected defect frequency of about 141 Hz is related to the
rolling of the barrels on the inner race, which indicates local damage to the inner race. The
replaced (lower) bearing on the day of the second measurement showed noise with energy
39% higher than the upper shaft bearing, which confirms the presence of the temperature
difference. Visual inspection confirmed the presence of significant damage to the inner
race of the bearing. The damage is in the form of degeneration of the raceway surface
(so-called pitting) in the angular range of approximately 1/3 of the entire circumference
(almost exactly 120◦).

Table 3. Characteristic frequencies for SKF 22324 bearing operating at 1000 RPM.

Designation Frequency [Hz]

Inner ring 16.667
Outer ring 0
Rolling element set and cage 6.853
Rolling element about its axis 44.29
Point on inner ring 147.208
Point on outer ring 102.792
Rolling element 88.579

The measurement of the temperature during scheduled inspections can detect the
defect in bearings only at late stages of degradation, since it can be related to lubrication oil
leaks or jamming.

The measurement of radial clearances in bearings is a time-consuming procedure. The
effect of radial clearances is observable at the main frequency of vibrators’ rotation and
higher harmonics. Their diagnostics by the vibration signals require further research based
on data accumulated during a long period of machine operation.
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Future research is aimed at the development of a permanent vibration monitoring
system on this vibrating screen. As an additional feature, temperature measurement with
contact sensors is recommended, as well as the monitoring of the power (current) of electric
motors. The continuous accumulation of vibration data allows for finding trends in health
indicators’ progression and adopting diagnostic procedures to detect damages and estimate
their sizes more accurately.

8. Conclusions

In this paper, an industrial case study related to an inertial vibrator’s bearing fault
detection is presented. Thanks to close collaboration with an industrial partner, our research
group was lucky to conduct two experiments. We performed vibration measurements in
the days before and after the bearing replacement. The reason for maintenance action was
related to a slightly higher temperature of the bearings.

A convincing industrial example of the benefits of condition monitoring is not a
frequent case in the research literature. Mostly, diagnostic procedures are validated by data
from test rigs and seeded defects. Moreover, in very rare cases, authors can present pictures
of real damage in bearings.

The data were collected and a comparative analysis was performed by different meth-
ods (spectrogram, CSC, envelope spectrum, orbits, and PSP) to highlight the applicability
between faulty and healthy machine states.

We were lucky to test advanced signal processing techniques in conditions when extra
disturbances (shocks provided by an unbalanced shaft on the damaged shield) are present
in measured data before bearing replacement. This phenomenon had a significant impact
on signal properties, and consequently proved the reliability of the diagnosis.

Due to advanced methods of data analysis (time–frequency representation, cyclosta-
tionary analysis, orbits, and PSP), we were able to identify both high-amplitude cyclic
disturbance related to shocks caused by the unbalanced shaft as well as weak cyclic im-
pulses related to the faulty bearing.

After repair, the amplitudes of vibration from the damaged bearing side were reduced
by about five times, while sound pressure was only two times lower. This is because the
sieving screen itself produces high-level background noise. The quantitative parameters
of vibrations showed significant changes: time series RMS (−68%), median energy of
spectrograms (89%), frequencies ratio of cyclic spectral coherence (−85%), and average
amplitude of harmonics in envelope spectrum (−80%). The orbits demonstrated changes in
inclination angle (16%) and sizes (−48 . . . −96%), as well as PSP sizes (−28 . . . −67%). the
most sensitive method in the frequency domain is based on spectrogram and CSC analysis.
These parameters can be used as the "health indicators" in the condition monitoring systems
of vibrating machines.

Although amplitude of vibration in time domain showed significant change, the stan-
dard spectrum analysis did not allow to localize the defect due to periodic and impulsive
noise in the machine. In distinction from previous studies, the quantitative parameters of
vibration are calculated, and the corresponding size of the bearing defect is determined.
Exceptional satisfaction is related to the visual inspection of the damaged bearing after
replacement. Indeed, we identified faulty bearings correctly. Almost 30% of the inner race
surface was worn.

The study of this case of bearing failure in the vibrating screen showed that, even under
severe periodic disturbances from the vibrators and stochastic impacts from the pieces of
sieved material having non-Gaussian distribution (impulsive noise), the concentrated spots
of pitting and other local defects in the case of their appearance can be reliably detected.

The main message to the reader is related to the industrial confirmation of the applied
diagnostic methods’ efficiency. It is worth investing in condition monitoring systems and
advanced signal processing techniques developed by researchers.

The next steps will be in the direction of other defects’ identification and their sizes’
association with quantitative parameters of signals for damage detection at early stages.
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boom dynamic performance and its reconstruction. Eksploatacja i Niezawodność = Maint. Reliab. 2014, 16, 188–197.
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20. Obuchowski, J.; Wylomańska, A.; Zimroz, R. Recent developments in vibration based diagnostics of gear and bearings used in
belt conveyors. Appl. Mech. Mater. 2014, 683, 171–176. [CrossRef]

21. Bortnowski, P.; Gładysiewicz, L.; Król, R.; Ozdoba, M. Energy Efficiency Analysis of Copper Ore Ball Mill Drive Systems. Energies
2021, 14, 1786. [CrossRef]

22. Krot, P.; Prykhodko, I.; Raznosilin, V.; Zimroz, R. Model Based Monitoring of Dynamic Loads and Remaining Useful Life
Prediction in Rolling Mills and Heavy Machinery. In Proceedings of the Advances in Asset Management and Condition Monitoring;
Ball, A., Gelman, L., Rao, B.K.N., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 399–416.

23. Krot, P.; Zimroz, R.; Sliwinski, P.; Gomolla, N. Safe Operation of Underground Mining Vehicles Based on Cyclic Fatigue
Monitoring of Powertrains. In Proceedings of the Structural Integrity and Fatigue Failure Analysis; Lesiuk, G., Szata, M., Blazejewski,
W., Jesus, A.M.D., Correia, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 283–292.

24. Doroszuk, B.; Król, R. Analysis of conveyor belt wear caused by material acceleration in transfer stations. Min. Sci. 2019,
26, 189–201. [CrossRef]

25. Król, R. Studies of The Durability of Belt Conveyor Idlers with Working Loads Taken into Account. IOP Conf. Ser. Earth Environ.
Sci. 2017, 95, 042054. [CrossRef]

26. Shumelchyk, Y.; Semenov, Y.; Horupakha, V.; Krot, P.; Hulina, I. Model-Based Decision Support System for the Blast Furnace
Charge of Burden Materials. In Proceedings of the Nonstationary Systems: Theory and Applications, Grodek nad Dunajcem,
Poland, 3–5 February 2020; Chaari, F., Leskow, J., Wylomanska, A., Zimroz, R., Napolitano, A., Eds.; Springer International
Publishing: Cham, Switzerland, 2022; pp. 340–351.

27. Khudyakov, A.; Vashchenko, S.; Baiul, K.; Semenov, Y.; Krot, P. Optimization of briquetting technology of fine-grained
metallurgical materials based on statistical models of compressibility. Powder Technol. 2022, 412, 118025. [CrossRef]

28. Baiul, K.; Vashchenko, S.; Khudyakov, A.; Krot, P.; Solodka, N. Optimization of Wastes Compaction Parameters in Case of
Gradual Wear of the Briquetting Press Rolls. In Structural Integrity; Springer International Publishing: Cham, Switzerland, 2022;
pp. 293–302. [CrossRef]
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