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Abstract: We adopted a simple one-step electrochemical deposition to acquire an efficient nickel cobalt
phosphorus (NiCoP) catalyst, which avoided the high temperature phosphatization engineering
involved in the traditional synthesis method. The effects of electrolyte composition and deposition
time on electrocatalytic performance were studied systematically. The as-prepared NiCoP achieved
the lowest overpotential (η10 = 111 mV in the acidic condition and η10 = 120 mV in the alkaline
condition) for the hydrogen evolution reaction (HER). Under 1 M KOH conditions, optimal oxygen
evolution reaction (OER) activity (η10 = 276 mV) was also observed. Furthermore, the bifunctional
NiCoP catalyst enabled a high-efficiency overall water-splitting by applying an external potential of
1.69 V. The surface valence and structural evolution of NiCoP samples with slowly decaying stability
under alkaline conditions are revealed by XPS. The NiCoP is reconstructed into the Ni(Co)(OH)2 (for
HER) and Ni(Co)OOH (for OER) on the surface with P element loss, acting as real “active sites”.
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1. Introduction

Since the policy of “carbon peak and carbon neutrality” was advocated, energy conser-
vation and emission reduction have become the consensus of all mankind. The development
of green energy technology is extremely critical to reduce carbon dioxide emissions [1].
The preparation of green hydrogen occupies an important strategic position in the future.
Electrolysis of water to hydrogen has the potential to transfer a large amount of renewable
energy electricity to the decarbonized green hydrogen industrial sector [2,3].

Conventional water electrolysis reactions involve two electrochemical semi-reactions
at the anode and cathode, in which electrochemical kinetics are controlled by HER and
OER, respectively. The theoretical decomposition voltage of electrolytic water is 1.23 V.
Nevertheless, in practical electrolytic cells, higher energy supply is inevitably required
owing to the slow kinetic limiting step of HER and OER [4]. Therefore, the development of
various highly active electrolytic water catalysts to reduce the reaction activation energy
can significantly reduce the cost of hydrogen production.

In terms of catalytic activity, the commercial market tends to prefer mature noble
metal catalysts (Pt, Ir, and Ru), but their high cost, limited reserves, and easy aggregation
characteristics urge the development of non-noble metal catalysts [5–8]. Transition-metal-
based electrocatalysts have shown great potential for overall water splitting over the past
few years. Various oxides (MoOx) [9], hydroxides (Ni(OH)2) [10,11], sulfides (MoS2) [12],
selenides (MoSe2) [13], nitrides (VN) [14], and carbides (MXene) [15,16] materials have
been extensively reported as water splitting electrocatalysts. Among the aforementioned
catalysts, transition metal phosphides (TMPs) possess a hydrogenase-like structure, and
are regarded as promising nonprecious electrocatalysts for overall water splitting [17–22].
Single metal phosphides have been widely reported in the field of water electrolysis [23].
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Liu et al. [24] employed NiS2 single-crystal octahedrons as a precursor and designed a 6 nm
thin-wall hollow metallic Ni2P and metalloid NiP2 polymorph through phosphorization.
Hierarchically porous W-doped CoP nanoflake arrays on carbon cloth (W-CoP NAs/CC)
were synthesized for pH-universal HER [25]. In addition, bimetallic phosphides can im-
prove the electronic states of single metal and highly extend catalytic performance as a
result of a synergetic effect. Lin et al. [19] proposed a novel in situ doping-induced lattice
strain strategy to synthesize NiCoP/S nanocrystals (NCs), which significantly improved
HER performance in a wide pH range. Ye et al. [20] constructed porous NiCoP heterostruc-
tures on Ni foam using the hydrothermal and phosphating method. However, the present
phosphide preparation process almost always involves high temperature phosphating
aftertreatment of transition metal species. The complexity of the multi-step process and the
dangerous volatile PH3 gas hinder the reproducibility and green friendliness of large-scale
catalyst preparation [26,27].

Based on the above considerations, we synthesized highly active NiCoP microspheres
on a self-supported conductive carbon cloth by employing a simple one-step electrochem-
ical deposition method. Electrochemical deposition is an effective strategy for catalyst
synthesis because of its advantages of being green, safe, controllable, and efficient. Com-
pared with the post-treatment high-temperature phosphating process, we can directly
obtain NiCoP active substances by skipping this tedious step. We systematically evaluated
the differences between the catalytic properties of single metal (NiP and CoP) and double
transition metal phosphide (NiCoP), and optimized the electrochemical deposition time of
NiCoP synthesis. Through compositional optimization, NiCoP achieved the lowest overpo-
tential (η10 = 111 mV in the acidic condition and η10 = 120 mV in the alkaline condition) for
HER. Under alkaline conditions, excellent OER activity (η10 = 276 mV) was also observed.
The overall water splitting device composed of NiCoP/NiCoP was assembled with an
initial cell voltage of 1.69 V to achieve a current density of 10 mA cm−2 in 1.0 M KOH. Ex
situ XPS characterization captured the dynamic structure evolution and surface remodeling
during water electrolysis catalysis, indicating that the dissolution of P from the surface of
NiCoP to form hydroxide (HER) and oxyhydroxide (OER) remodelers slowly inhibited the
electrolysis reaction. Based on these investigations, we believe that rapid electrochemical
synthesis of low-cost NiCoP is expected to show potential in the field of water splitting. In
addition, our insight into the structural evolution of phosphide after prolonged electrolysis
helps to reveal the true active site.

2. Methodology

The carbon cloth (CC) was pretreated with acetone, ethyl alcohol, and ultrapure water;
subjected to ultrasonic treatment for 20 min; and dried in an oven at 60 ◦C for 24 h. As
shown in Figure 1, the NiCoP catalyst was obtained by one-step electrochemical deposition
at room temperature without any heat-treatment steps. Specifically, the configuration
scheme of the precursor solution was as follows: 2 mM CoCl2·6H2O, 2 mM NiCl2·6H2O,
and 10 mM NaH2PO2·H2O were dissolved in 20 mL of water. The evenly mixed solution
was transferred to an electrolytic cell. A three-electrode system was used for electrochemical
deposition. The working electrode was carbon cloth (1 cm × 1 cm size), with a carbon rod as
the counter electrode and a saturated calomel electrode (Hg/HgCl2, SCE) as the reference
electrode. We applied a constant voltage (−1 V vs. SCE) and different times (30, 60, and
90 min) for electrochemical deposition to determine the optimal catalyst performance. As a
comparison, the corresponding precursor salts can be removed for the synthesis process
of NiP and CoP. The electrodeposition time was 60 min. For electrochemical deposition
associated with NiCoP catalysts, the specific quality load is provided in Table 1. Specific
reagent information, physical characterization, and electrochemical tests are provided in
the Supporting Information.
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Figure 1. Electrodeposition synthesis procedure of NiCoP. 

Table 1. The mass load of the relevant catalyst. 

Catalysts Mass Loading (mg cm−2) 
NiP 1.8 ± 0.2 
CoP 1.5 ± 0.2 
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NiCoP 1.5 h 4.2 ± 0.2 

3. Results and Discussion 
3.1. Physicochemical Characterization 

First, XRD characterization (Figure 2a) was used to determine the composition of the 
phase. Except for the two broad peaks (∼25° and 44°) attributed to the conductive substrate 
carbon cloth, there was no obvious NiCoP diffraction peak in the NiCoP catalyst after 
electrochemical deposition 1 h. For CoP and NiP samples, the XRD peak shape and peak 
position were roughly the same as those of NiCoP. The XRD results showed that the phos-
phating compounds obtained by electrochemistry are amorphous, which was quite dif-
ferent from the samples obtained by phosphides at a high temperature. The morphology 
of the catalyst is shown in Figure 2b–d and Figures S1–S3, which demonstrated the suc-
cessful electrochemical growth of relevant phosphides on carbon cloth substrates. Under 
the same electrodeposition conditions of 1 h, NiP, CoP, and NiCoP particles have a slightly 
different shape. For NiP, micron-sized spherical particles were bound together and evenly 
attached to the surface of the CC, and the average size of NiP particles was close to 3 µm. 
This demonstrated the close contact between the electrochemically deposited NiP and the 
carbon cloth substrate, implying mechanical stability of the catalyst but a limited contact 
area with the electrolyte. As for CoP, relatively dispersed nanosheets and stacked flower-
like particles were observed in CoP. In addition, large patches of bare and smooth carbon 
cloth indicated that the catalytically active site of growing active nanocrystals is limited 
on the surface of CC under the same conditions of electrochemical deposition. Small uni-
form NiCoP nanoparticles were closely arranged on the CC. As shown in Figure S1–S3, 
the EDS results displayed that the relevant elements were uniformly distributed in NiP, 
CoP, and NiCoP, and the atomic ratio (Table S1) of Ni/P was 4:1, that of Co/P was 5.93:1, 
and that of Ni/Co/P was 2.64:10.64:1. 

Figure 1. Electrodeposition synthesis procedure of NiCoP.

Table 1. The mass load of the relevant catalyst.

Catalysts Mass Loading (mg cm−2)

NiP 1.8 ± 0.2
CoP 1.5 ± 0.2

NiCoP 0.5 h 0.7 ± 0.2
NiCoP 1 h 2.0 ± 0.2

NiCoP 1.5 h 4.2 ± 0.2

3. Results and Discussion
3.1. Physicochemical Characterization

First, XRD characterization (Figure 2a) was used to determine the composition of
the phase. Except for the two broad peaks (~25◦ and 44◦) attributed to the conductive
substrate carbon cloth, there was no obvious NiCoP diffraction peak in the NiCoP catalyst
after electrochemical deposition 1 h. For CoP and NiP samples, the XRD peak shape
and peak position were roughly the same as those of NiCoP. The XRD results showed
that the phosphating compounds obtained by electrochemistry are amorphous, which
was quite different from the samples obtained by phosphides at a high temperature. The
morphology of the catalyst is shown in Figure 2b–d and Figures S1–S3, which demonstrated
the successful electrochemical growth of relevant phosphides on carbon cloth substrates.
Under the same electrodeposition conditions of 1 h, NiP, CoP, and NiCoP particles have a
slightly different shape. For NiP, micron-sized spherical particles were bound together and
evenly attached to the surface of the CC, and the average size of NiP particles was close to
3 µm. This demonstrated the close contact between the electrochemically deposited NiP
and the carbon cloth substrate, implying mechanical stability of the catalyst but a limited
contact area with the electrolyte. As for CoP, relatively dispersed nanosheets and stacked
flower-like particles were observed in CoP. In addition, large patches of bare and smooth
carbon cloth indicated that the catalytically active site of growing active nanocrystals is
limited on the surface of CC under the same conditions of electrochemical deposition.
Small uniform NiCoP nanoparticles were closely arranged on the CC. As shown in Figures
S1–S3, the EDS results displayed that the relevant elements were uniformly distributed in
NiP, CoP, and NiCoP, and the atomic ratio (Table S1) of Ni/P was 4:1, that of Co/P was
5.93:1, and that of Ni/Co/P was 2.64:10.64:1.
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Figure 2. (a) XRD of CC, NiP, CoP, and NiCoP. SEM images of (b) NiP, (c) CoP, and (d) NiCoP. 
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Figure 2. (a) XRD of CC, NiP, CoP, and NiCoP. SEM images of (b) NiP, (c) CoP, and (d) NiCoP.

X-ray photoelectron spectroscopy (XPS) characterization was also carried out to further
illustrate the species information and surface valence of each element in electrochemically
deposited phosphating compounds. The survey spectra (Figure S4) of NiCoP showed
the existence of Ni, Co, P, and O peaks. For the Ni 2p spectrum (Figure 3a), it can be
fitted into six peaks. The peaks of 873.1 eV and 855.3 eV are attributed to Ni2+ 2p1/2 and
Ni2+ 2p3/2, respectively. Another pair of peak binding energies of 874.4 eV and 856.4 eV
belong to Ni3+ 2p1/2 and Ni3+ 2p3/2, respectively [28,29]. The final pair of diffraction
peaks of 879.6 eV and 861.5 eV are assigned as satellite characteristic peaks of Ni 2p1/2
and Ni 2p3/2 components, respectively [29]. For the Co 2p spectrum (Figure 3b), there
are four decoupled peaks. The binding energies of 780.9 eV and 796.5 eV are certified as
Co 2p3/2 and Co 2p1/2, respectively. Likewise, two shake-up satellite peaks are centered
at 803.3 and 786.0 eV [23,30]. The existence of Ni2+ and Co2+ can accelerate electrolytic
water reaction by weakening the O-H bond. Furthermore, the P 2p region (Figure 3c)
consists of P-O (132.9 eV) and M-P (129.9 eV) bonds and the O 1s peak (Figure 3d) is
centered at 531.2 eV, which suggests the coexistence of the metal phosphides and the
oxide species on the NiCoP surface [25,31]. Therefore, the above results just confirm that
one-step electrochemical deposition can obtain NiCoP, avoiding the tedious operation steps
brought by high-temperature phosphating. A large number of works in the literature have
suggested that positively charged Niδ + /Coδ+ and negatively charged Pδ- active sites are
formed in phosphating compounds, accelerating charge transfer and reducing internal
resistance, and thus are favorable to HER and OER activity [28]. Regarding the NiP XPS
spectrum (Figure S5), the Ni 2p spectrum can be fitted by the doublet characteristic of
Ni2+ (855.3 eV and 873.1 eV) and Ni3+ (856.5 eV and 874.5 eV) as well as two shake-up
satellites (861.6 eV and 879.7 eV). For the CoP sample, there are two shake-up satellite
peaks (785.2 eV and 803.3 eV), Co 2p1/2 (796.2 eV), and Co 2p3/2 (780.2 eV) in the XPS
spectrum of Co. In addition, the presence of P elements in both NiP and CoP XPS confirms
the formation of mono-metal phosphates.
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Figure 3. XPS spectra of (a) Ni 2p, (b) Co 2p, (c) P 2p, and (d) O 1 s of NiCoP.

3.2. Electrochemical Measurements

Subsequently, HER activities of mono-metal NiP and CoP and bimetallic NiCoP
during 1 h of electrochemical deposition were evaluated in an acidic three-electrode system
(0.5 M H2SO4). As shown in Figure 4a, on the LSV curve, except for PtC, NiCoP for
1 h was the optimal HER catalytic activity (as low as 110 mV vs. RHE overpotential
at 10 mA cm−2), superior to NiP (154 mV vs. RHE) and CoP (189 mV vs. RHE). The
electrochemical deposition time also had a significant effect on the performance of the
NiCoP catalyst. In order to obtain 10 mA cm−2 current density, an overpotential of 140 mV
versus RHE needs to be applied for NiCoP for 0.5 h. For 1 h and 1.5 h, there is little
difference in their catalytic performance in NiCoP. A sharp increase in current (Figure S6)
during the 1 h electrodeposition showed that the precursor transforms into NiCoP. After
1 h, the current density was generally stable because the increase in the thickness of the
catalyst layer affected its conductivity instead. Therefore, from the perspective of catalytic
activity and time efficiency, 1 h of electrochemical deposition of NiCoP was determined for
the follow-up study. Notably, in order to reveal the kinetics of the electrochemical reaction,
the Tafel slope of related catalysts was determined and is presented in Figure 4b. The Tafel
slopes of NiP, CoP, and NiCoP 1 h were 74.73, 80.96, and 69.49 mV dec−1, respectively,
which verified the lowest kinetic energy barrier as well as a fast reaction speed in NiCoP,
and meant that HER complied with the Volmer–Heyrovsky mechanism. Further, the Tafel
slope of NiCoP decreased with the increase in deposition time from 0.5 to 1.5 h. The
NiCoP 1.5 h (51.06 mV dec−1) sample even showed reaction kinetics similar to that of
PtC (56.01 mV dec−1). The electrochemically effective surface area (ECSA) represented the
number of active sites of electrocatalysts, estimated via the cyclic voltammetry (CV) method
(Figure S7). As shown in Figure 4c, the double-layer capacitance (Cdl) value of NiP, CoP,
NiCoP 0.5 h, NiCoP 1 h, and NiCoP 1.5 h was 9.98, 1.06, 19.67, 37.10, and 33.27 mF cm−2,
respectively, in which the value of the NiCoP 1 h was obviously the largest and manifested
more active sites. The electrochemical impedance spectra (EIS) of the catalysts (Figure 4d)
in the region of high and low frequencies were then investigated to elucidate charge transfer
resistance (Rct). It can be seen that the value of fitting Rct of NiCoP 1 h was 8.14 Ω (Table S2)
based on an equivalent circuit model (Figure S8), which indicates a faster electron transfer
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rate. It was much lower than that of NiP (30.19 Ω), CoP (371.00 Ω), NiCoP 0.5 h (326.00 Ω),
and NiCoP 1.5 h (20.58 Ω). The above results all confirmed that the bitransition metal
phosphide promoted the electrochemical HER catalytic reaction compared with NiP or CoP
alone. The electron transfer rate and reactive site of NiCoP can be further regulated by an
appropriate electrochemical deposition time.
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(d) EIS Nyquist plot of NiP, CoP, and NiCoP 0.5−1.5 h in 0.5 M H2SO4 for HER; the inset presents the
plot enlarged over the high frequency range.

Similarly, in order to show the universality of the catalyst in different electrolytes, we
also evaluated the HER performance of NiCoP under alkaline conditions of 1 M KOH.
Three phosphides, including NiP, CoP, and NiCoP, under the same 1 h deposition time
were tested for HER activity (Figure 5a). Similar to acidic conditions, NiCoP showed the
best performance of 120 mV overpotential, even better than commercial PtC (173 mV). The
Tafel slopes (Figure 5b) for NiP, CoP, and NiCoP are 110.39, 148.12, and 118.42 mV dec−1,
respectively. These values suggest that the HER of these catalyst proceeds according to the
Volmer–Heyrovsky reaction under alkaline conditions. Unsurprisingly, the fitting curve is
roughly linear; the highest Cdl of 32.90 mF cm−2 is still displayed by NiCoP, followed by
NiP (13.92 mF cm−2) and CoP (0.28 mF cm−2) in that order (Figures 5c and S9). According
to the Rct value (Figures 5d and S3) of the EIS fitting circuit, NiCoP exhibited the lowest
Rct of 44.55 Ω among NiP (578.50 Ω) and CoP (2419.00 Ω) monometallic phosphides.
The remarkably different low frequency behavior of NiCoP may be attributable to the
electrochemical double layer at the surface, whereas the physical origin may be both a
single or double Schottky barrier in the substrate–catalyst heterojunction or a hydroxide
interface (NiCoP surface reconstruction in an alkaline environment) material created at
the boundary [32].
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In addition to excellent HER characteristics, the OER characteristics of materials also
have an important impact on the final water electrolysis efficiency. Compared with the sim-
ple HER reaction mechanism, it is often more difficult to break through the reaction barrier
of OER to develop an active catalyst. To illustrate the prospective of one-step electrochemi-
cal deposition of NiCoP in water electrolysis, the catalytic activity of OER at 1 M KOH was
studied. NiCoP presented an outstanding OER activity. It only required a low overpotential
of 276 mV to achieve a current density 10 mA cm−2 (Figure 6a), which was superior to
those of NiP (342 mV) and CoP (341 mV). The Tafel slopes based on polarization curves
are presented in Figure 6b. The Tafel slope for NiP, CoP, and NiCoP was 140.46, 132.87,
and 111.41 mV dec−1, respectively, which surpassed commercial IrO2 (178.20 mV dec−1)
toward OER. In an alkaline solution, the fitting curve (Figures 6c and S10) is roughly linear.
The Cdl value of NiCoP is up to 22.70 mF cm−2, higher than that of NiP (13.04 mF cm−2)
and CoP (1.24 mF cm−2). Similarly, NiCoP has the fastest electron transfer capability, with
Rct as low as 1.43 Ω (Figure 6d and Table S4). All electrochemical data are provided in
Tables S5 and S6.
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In view of the excellent HER and OER performance of NiCoP, we assembled an overall
water splitting device, in which NiCoP served as both the anode and cathode in 1 M
KOH. Impressively, NiCoP/NiCoP afforded current densities of 10 mA cm−2 when the
cell voltage was 1.69 V (Figure 7), with combined overpotentials of 460 mV. Impressively,
symmetrical NiCoP/NiCoP catalysts were superior to the commercial PtC/IrO2 couple. It
is comparable to the conventional transition metal phosphide reported recently (Table S7).
The stability evaluation of catalysts is of great significance for the application of water
splitting. As is illustrated in Figure 7a, NiCoP/NiCoP showed superior durability in the
overall water splitting reaction with slight overpotential fluctuation at 36 h of continuous
electrolysis. In the absence of continuous N2 injection to eliminate the electrode bubble
operation, the overpotential at 10 mA cm−2 current density increased by about 70 mV
after a long period of electrolysis. The chronopotentiometry curve clearly indicated that
commercial PtC/IrO2 catalysts deactivated significantly after 12 h of the stability test as a
result of the formation of large bubbles. In order to confirm this speculation, the commercial
catalyst can also remain stable during continuous electrolysis when N2 gas is introduced
continuously to eliminate bubbles. For NiCoP, the phenomenon is less pronounced. This is
mainly because of the structure of the catalyst surface and the difference in hydrophilic and
hydrophobic properties. Thus, NiCoP still shows an advantage over commercial catalysts,
especially in the actual water electrolysis environment. The structural evolution of the
tested samples was also revealed by physical characterization in order to understand the
transformation of catalyst activity. The XRD (Figure S11a) of NiCoP as cathode after HER
durability still revealed no additional obvious phase formation, and the anodic NiCoP also
performed almost identically after the OER cycle. According to SEM images in Figure S11b,
the NiCoP of the cathode was transformed into an agglomerated nanoflowers morphology.
For the anode (Figure S11c), the particles were still spherical, but larger than the original
particle size of NiCoP. These results indicate that structural reconstruction of NiCoP may
occur, but the performance retention rate has not completely failed during the long-term
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operation of water splitting. According to the XPS test (Figure 7c–f and Figure S12), we can
obtain the change in valence state and structural reconstruction of NiCoP chemicals in the
cathode and anode of overall water splitting during a long time period of electrolysis. After
HER, there are no obvious peak position changes in the Ni and Co 2p peak of NiCoP cathode
(Figure 7c,d). Three groups of Ni 2p (Ni2 +: 873.1 eV and 855.4 eV, Ni3 +: 874.4 eV and
856.4 eV, satellite: 879.7 eV and 861.2 eV) and Co 2p (Co 2p1/2: 796.5 eV, Co 2p3/2: 780.9 eV,
and satellite: 803.1 eV and 788.4 eV) fitting peaks show that the transition metal element
valence state of NiCoP has no change in the process of HER. It is worth noting that the XPS
peak of P element (Figure S11b) after HER is almost invisible and the characteristic peak
(M-OH and M-O) of O 1s (Figure S11c) located at binding energies of 532.4 eV and 531.0 eV
appears. The above results indicate that the surface of NiCoP has been reconstructed to
Ni(OH)2 or Co(OH)2 with P loss of the pristine electrode after the HER test [33]. For the
anode of NiCoP, the valence state of Ni and Co has elevated compared with the original
sample according to the binding energy (Figure 7e,f) of Ni(Co) 2p. Specifically, the Ni 2p
distinct peak at 874.7/857.0 eV (Ni 2p1/2/Ni 2p3/2) and 881.7/862.9 eV (satellite), which
corresponds to NiOOH, underwent a complete positively shift after OER [34,35]. The XPS
location of Co 2p also appears to display an obvious positive shift, representing the existing
of CoOOH [36,37]. Similarly, the P peak also disappears and the O 1s peaks shift positively
to 532.8 eV (M-OH) and 532.0 eV (M-O) (Figure S11d,e). The above results demonstrate that
NiCoP can be reconstructed into high-valence NiCo oxyhydroxides by the electrochemical
OER process [26]. Thus, the evolution of surface hydroxides or oxyhydroxides can continue
to undergo electrocatalytic reactions in spite of the attenuation of water splitting activity
because of the absence of P element.
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Figure 7. (a) Water splitting stability test of NiCoP/NiCoP and PtC/IrO2. (b) LSV curves of
NiCoP/NiCoP and PtC/IrO2 before and after overall water splitting. High-resolution XPS spectra of
(c) Ni 2p and (d) Co 2p after HER in 1.0 M KOH. High-resolution XPS spectra of (e) Ni 2p and (f) Co
2p after OER in 1.0 M KOH.
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4. Conclusions

Highly active phosphides (NiP, CoP, and NiCoP) were obtained through a simple
one-step electrodeposition method. Compared with the late high temperature phosphating
treatment, a new scheme was added for the preparation of phosphide materials. The effects
of electrolyte composition and deposition time on electrocatalytic performance were studied
systematically. Through compositional optimization, NiCoP achieved the high catalytic
activity for HER in different pH solutions, only requiring an overpotential of 111 mV in
0.5 M H2SO4 and 120 mV in 1 M KOH at 10 mA cm−2. Under alkaline conditions, excellent
OER activity was also observed, with an overpotential of 276 mV at 10 mA cm−2 without IR
correction. The overall water splitting device composed of NiCoP/NiCoP was assembled
with an initial cell voltage of 1.69 V to achieve 10 mA cm−2 current density in 1.0 M KOH.
Subsequently, the surface valence and structural evolution of NiCoP samples with slowly
decaying stability under alkaline conditions are revealed. NiCoP is reconstructed into
Ni(Co)(OH)2 hydroxides (for HER) and Ni(Co)OOH oxyhydroxides (for OER) on the
surface with P element loss, acting as real “active sites”.
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of NiP, Figure S2: SEM and EDS elemental mapping of nanoparticle CoP, Figure S3: SEM and EDS
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High resolution NiP XPS spectra of (a) Ni 2p and (c) P 2p. High resolution CoP XPS spectra of
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after electrocatalytic reaction (HER and OER) in 1 M KOH. SEM images of NiCoP after (b) HER and
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Summary of the HER performance of all electrocatalysts, Table S6: Summary of the OER performance
of all electrocatalysts, Table S7: Comparison of the catalytic activity of NiCoP with recently reported
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