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Abstract: The constantly expanding civilization and construction industry pose new challenges for
a sustainable development economy. Aiming to protect the environment is often associated with
waste management, thereby reducing the number of landfills. The management of recycled concrete
aggregate (RCA) from building demolition and its reuse in construction perfectly fits into this trend.
The characteristics of post-industrial and recycled materials are not homogeneous as is usually the
case with natural materials. This leads to a search for solutions to determine the parameters in
the simplest possible manner and with as few resources as possible, while eliminating estimation
risks. This task can be solved using machine learning, whose algorithms are increasingly used and
developed in many areas of life and industry. The research in this study is aimed at comparing
the effectiveness of k-Nearest Neighbors (k-NN) and Artificial Neural Network (ANN) algorithms
in determining the permeability coefficient to a linear regression model. This parameter has an
important role from the perspective of the application of RCA in civil engineering, particularly in
earth construction. Two different RCA materials with different origins and properties were used in
the study. The filtration test for each sample was pre-prepared using different compaction energies of
0.17 and 0.59 J/cm3 and for loosely packed samples. Differences in the structures of the test results
are presented for both materials. The lowest prediction errors were obtained for the k-NN model.
This algorithm obtained for the training sample a coefficient of determination (R2) equal to 0.947
and for the test sample an R2 equal to 0.980. In the case of ANN, the coefficient of determination
was in the range of 0.877–0.936. An important part of the study was the interpretation with SHAP
of the obtained models, allowing insight into which parameters influenced the predictions. That is
significant and novel, considering the heterogeneity of the materials studied, and provides a rationale
for further research in this area.

Keywords: permeability coefficient; recycled aggregates; prediction; machine learning; k-Nearest
Neighbors; artificial neural network; SHAP

1. Introduction

The construction industry is one of the largest and most active industrial sectors in
the world, using more raw materials and energy than any other economic activity. As a
result, the waste generated by this activity accounts for a significant portion of the total
waste generated [1,2]. To curtail the disposal of demolition waste, concrete aggregate is
crushed and reused as a substitute for natural aggregates [3]. Recycled aggregates used
in earth structures are usually cheaper than natural aggregates, which is important when
deciding on the construction process. Reusing construction waste is also an environmentally
sustainable solution [2,4–8].

Recycled construction aggregate frequently represents waste generated during con-
struction and demolition (C&D) and arises throughout the life cycle of buildings, including
during the planning and design phases [1]. In recent decades, it has gained attention,
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and an economic model—circular economy—has its foundations in better management of
resources [9], whose goal is to keep materials in a closed circle at their highest value [1,10].

The properties of anthropogenic aggregates differ from those of natural aggregates
and are related, among other things, to the considerable diversity in the composition
of these materials [11,12]. This influences the constant search for solutions related to
supporting the determination of parameters of anthropogenic aggregates. However, one
parameter of particular importance in the planning of earth structures is the coefficient
of permeability, which depends on the grain size, structure, and porosity of the material.
Filtration properties affect foundation conditions in the design and implementation of
geotechnical structures. Previously, the coefficient of permeability was determined mainly
by statistical linear and non-linear prediction methods and based on the principles of
Darcy’s law [13–15].

The original purpose of machine learning was to automate information extraction
processes that would allow quicker and simpler access to expert knowledge [16]. Practi-
cal applications of machine learning techniques and algorithms differ significantly from
empirical or theoretical studies, involving aspects of data collection and organization, as
well as the selection of adequate algorithms [17,18]. Over the years, many algorithms have
been developed to solve various complicated research problems of both regression and
classification [16,19,20]. Machine learning methods have been extensively used in recent
decades to generate predictive models of material properties [18,21,22]. Support vector
regression (SVR) was used by Mishra et al., (2021) to predict the probabilistic design of
a retaining wall [23], and Amin et al., (2021) used an artificial neural network (ANN) to
design the optimal portions content of RHAC [24]. Lechowicz and Sulewska (2023) applied
ANN to develop empirical relationships used in a preliminary design to evaluate the settle-
ment and unconfined shear strength of embankment-loaded organic soil [25], while Chou
et al., (2016), among others, used data mining including linear regression, classification,
and regression tree analysis (CART) to identify factors affecting the shear strength and
predict the peak FRS friction angle [26]. This could have generated a new problem of
selecting appropriate algorithms for solving specific engineering problems. However, the
development and availability of machine learning techniques provided an opportunity to
test their usefulness in determining the parameter of the coefficient of permeability.

The solution to predictive problems began with linear regression based on the method
of least squares, which was introduced by Legendre in 1805 [27]. The rapid expansion of
computer performance has gradually become an important factor propelling the develop-
ment of artificial intelligence (AI). The concept of AI debuted at the Dartmouth Conference
in 1955, presented by several computational scientists including John McCarthy, Marvin
Minsky, and Claude Shannon. Their original idea was to use machines to imitate human
learning [28].

The perceptron, which was invented in 1958, by Professor Frank Rosenblatt [29], was
used to develop artificial neural networks, which are a popular machine learning technique
for analyzing data through a network of decision layers. A typical neural network consists
of an input layer, a hidden layer, and an output layer. The data are first received by the
input layer, where features are detected. The hidden layer or layers then analyze and
process the input features, and the final result is presented as an output layer [30–35].

The k-Nearest Neighbors (k-NN) algorithm is a type of supervised machine learning
algorithm. k-NN is extremely easy to implement in its most basic form, yet it performs quite
complex classification tasks. k-NN is a non-parametric learning algorithm, which means
that it assumes nothing about the underlying data. This is extremely useful because most
real-world data do not meet theoretical assumptions, e.g., linear separation and uniform
distribution [36–39].

Two recycled concrete aggregate materials of different origins and compositions were
used for the research in this article. The authors aimed to verify the suitability of the k-NN
and ANN algorithms for the prediction of an optimized and reliable model for determining
the coefficient of permeability in recycled concrete aggregate, taking into account the



Materials 2023, 16, 1500 3 of 16

risks associated with the estimated model. The interaction of the properties of the two
materials was analyzed. An important and novel element of the work was the analysis of
the interaction of the properties of the two materials in the context of their influence on the
estimated models. For this purpose, SHAP has been used to provide better insight into the
performance of individual models and the impact of individual parameters on the models.

The database was implemented into Orange software, where selected algorithms were
applied. The R programming language was used for the calculations and the presentation
of the analysis results.

2. Materials and Methods
2.1. Materials and Filtration Study Method

The constant head method was used to test the permeability characteristics for RCA.
The method is characterized by simplicity and unchanging test conditions, and the constant
head method alone is one of the most reliable techniques for measuring permeability in
non-cohesive soil [15].

Two types of recycled aggregate obtained from crushed demolition concrete were used
in the permeability coefficient study. The materials originated from different demolitions.
The grain size curves of the two materials are presented in Figure 1.
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Figure 1. Grain size curve of tested materials.

The parameters describing the aggregates that were taken for further analysis were
compaction energy (0.00 (control), 0.17, and 0.59 [J/cm3]), grain size (particle sizes d5, d10,
d20, d30, d60, and d90 [mm]), dry density, specific density, porosity, and void ratio. The
average values of these parameters are presented in Table 1.
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Table 1. Average values of parameters of physical properties of materials.

Description Mean Value

Particle size d5 [mm] 0.27
Particle size d10 [mm] 0.60
Particle size d20 [mm] 1.78
Particle size d30 [mm] 3.38
Particle size d60 [mm] 11.06
Particle size d90 [mm] 23.38
Dry density [g/cm3] 1.35
Porosity [-] 0.465
Void ratio [-] 0.902

2.2. Data Preparation and Overall Methodology for the Applied Machine Learning Algorithms

The application of machine learning algorithms requires the consideration of many
issues related not only to the appropriate preparation of the database but also to the
selection of the sampling method, the mechanism for learning models and the form of their
operation, the ability to handle missing values, noisy or numerical data, the computational
complexity of the algorithm, or learner–user interaction [40–43]. The selection of algorithms
for further analysis was motivated by a comparison of the well-known and widely used for
predictive tasks artificial neural network algorithm with the equally versatile, newer, but
also less recognized for activity in the field of engineering analysis k-Nearest Neighbors
algorithm. The following sections present brief characteristics of the analyzed algorithms.

The first stage of the analysis was to collect the data, analyze them, and verify any
erroneous or blank data for elimination or completion. This was one of the most important
elements of the analysis as a reliable and well-prepared database was the basis for further
calculations and inference. The general scheme of the procedure for modeling with machine
learning algorithms is shown in Figure 2.
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The k-fold cross validation technique (Figure 3) was chosen as the method for sampling
and validating the model, a technique that minimized the drawbacks of the holdout. The
k-fold cross validation produced more stable and reliable results since training and testing
were performed on several different parts of the data set; in this case, 10 folds were included
to test the model on many different subsets of the data [44,45].
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2.3. Artificial Neural Networks

The Artificial Neural Networks algorithm is an information processing system formed
by processing units named neurons. A neuron, which allows various inputs to be mapped
to the output, is the most basic element in any Artificial Neural Network. They are a stack of
computational units that result in a model with the required level of generic and overfitting
error. When building a network within the implemented framework, assumptions were
taken into consideration, such as topology, that is, the layout of connections between
neurons. The training algorithm analyzed the obtained weights on the connections and
selected the activation function.

2.4. k-Nearest Neighbors

k-Nearest Neighbors (k-NN) is an algorithm that is used in both classification and
regression problems. In the analysis, it was used a variant of regression. The value of the k
means, the calculated distances to find the neighbors for a given input, and proper matching
of the number of classes affected the accuracy of the model. In the k-NN regression, the
output was the average value of k-Nearest Neighbors.

Previous research did not use k-NN regression to determine the filter coefficient,
and this algorithm has been weakly recognized in geoengineering solutions. The data
preprocessing analysis was used to identify optimal k values. Through it, the number of k
for the model was tuned to 2.

2.5. Error Analysis

The evaluation included the k-NN and neural network algorithm; linear regression
was used as a reference and control algorithm. The results were verified with the use of
error analysis, and the following values were estimated for individual models:
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• Mean square error (MSE) represents the mean squared difference between the raw
and predicted values in a data set. It measures the variance of the residuals.

MSE =
1
N

N

∑
i=1

(yi − ŷ)2 (1)

• Root mean square error (RMSE) is the square root of the mean squared error. It
measures the standard deviation of the residuals.

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (2)

• Mean absolute error (MAE) represents the average absolute difference between the
observed and predicted values in a data set. It measures the average of the residuals
in a data set.

MAE =
1
N

N

∑
i=1
|yi − ŷ| (3)

• Coefficient of determination (R2) represents the portion of the variance of the depen-
dent variable that is explained by the linear regression model. This is a scale-free
result, i.e., whether the values are small or large, the R2 value will be less than one.

R2 =
∑N

i=1(ŷi − y)2

∑N
i=1(yi − y)2 (4)

3. Results and Discussion

The material before testing was compacted at energies of 0.17 and 0.59, and some
samples were tested without applying additional energy (control samples). The data
collected from the tests were analyzed for their dependence on the applied compaction
energy. The structure of the distribution of test results in relation to the applied compaction
energy is presented in Figure 4. The scatter between the minimum and maximum values
obtained from the tests was much larger when the material was compacted “freely” than in
the cases of tests where the compaction energies of 0.17 and 0.59 J/cm3 were applied.

The characterization of the test results from the perspective of the given material al-
lowed us to observe significant differences in the test results, which could be seen especially
for specimens compacted with additional compaction energy. It should be added that the
two materials tested retained different flow characteristics (coefficients of permeability)
after compaction. However, the range of results obtained was similar. Factors such as the
cement content, aggregate composition, or mineral composition could have influenced
this [46–48].

Figure 5 presents the correlations of the various properties with each other and the
filtration coefficient. The heat map allows a preliminary assessment of the relevance
and suitability of individual parameters for estimation purposes. The highest positive
correlation with the permeability coefficient was obtained for porosity, void ratio (0.9),
and particle size d60 (0.8), while at the opposite extreme were dry density (−0.9) and
compaction energy (−0.8).
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Figure 5. Correlation analyzed.

In Figure 6, there is a hierarchical grouping of the properties of the tested materials based
on the distance matrix between normalized data within each parameter. The analysis presents
them as a dendrogram. This is a confirmation of the previously demonstrated number of
clusters that occurred. It also provides insight into the distribution of the parameters across
the clusters. This allows us to see how individual clusters interrelate and influence the
estimate [39,49]. In Figure 6, we identify the presence of two main clusters. The parameters at
the top of the hierarchical cluster analysis are gradient and particle size d60.



Materials 2023, 16, 1500 8 of 16

Materials 2023, 16, x FOR PEER REVIEW 8 of 18 
 

 

demonstrated number of clusters that occurred. It also provides insight into the distribu-

tion of the parameters across the clusters. This allows us to see how individual clusters 

interrelate and influence the estimate [39,49]. In Figure 6, we identify the presence of two 

main clusters. The parameters at the top of the hierarchical cluster analysis are gradient 

and particle size d60. 

 

Figure 6. Hierarchical clustering. 

Table 2 shows the estimation results for the training sample. The best fit of the model 

estimation results to the training data was obtained for the k-NN algorithm. The coeffi-

cient of determination for this model was 0.947. For the neural network algorithm, an R2 

result similar to that for linear regression was obtained, 0.877 and 0.829, respectively.  

Table 2. Performance results of using the various algorithms to predict the permeability coefficient. 

Trial Set 

Model MSE RMSE MAE R2 

kNN 0.000 0.004 0.002 0.947 

Neural network 0.000 0.006 0.004 0.877 

Linear regresion 0.000 0.007 0.005 0.829 

For the test sample (Table 3), the results of the estimation model fit analysis for the 

k-NN algorithm were similar and even slightly better than for the training sample. Simi-

larly, for linear regression whose fit coefficient was 0.844, the neural network algorithm 

obtained better results and an R2 of 0.936. 

Table 3. Performance results of using the various algorithms to predict the permeability coefficient. 

Test Set 

Model MSE RMSE MAE R2 

kNN 0.000 0.003 0.002 0.980 

Neural network 0.000 0.005 0.003 0.936 

Linear regresion 0.000 0.007 0.006 0.844 

The estimation results versus the raw data for the different algorithms and the stud-

ied compaction energies are presented in Figure 7. In Figure 7a, the compiled estimation 

results for the k-NN models can be observed with a very high convergence of the esti-

mated results for all three compaction energies. The resultant r for this comparison was 

0.99. At the opposite extreme were the results for the linear regression, which did not 

give good predictive results in particular for the compaction energies of 0.17 and 0.59 

Figure 6. Hierarchical clustering.

Table 2 shows the estimation results for the training sample. The best fit of the model
estimation results to the training data was obtained for the k-NN algorithm. The coefficient
of determination for this model was 0.947. For the neural network algorithm, an R2 result
similar to that for linear regression was obtained, 0.877 and 0.829, respectively.

Table 2. Performance results of using the various algorithms to predict the permeability coefficient.

Trial Set
Model MSE RMSE MAE R2

kNN 0.000 0.004 0.002 0.947
Neural network 0.000 0.006 0.004 0.877
Linear regresion 0.000 0.007 0.005 0.829

For the test sample (Table 3), the results of the estimation model fit analysis for the
k-NN algorithm were similar and even slightly better than for the training sample. Similarly,
for linear regression whose fit coefficient was 0.844, the neural network algorithm obtained
better results and an R2 of 0.936.

Table 3. Performance results of using the various algorithms to predict the permeability coefficient.

Test Set
Model MSE RMSE MAE R2

kNN 0.000 0.003 0.002 0.980
Neural network 0.000 0.005 0.003 0.936
Linear regresion 0.000 0.007 0.006 0.844

The estimation results versus the raw data for the different algorithms and the studied
compaction energies are presented in Figure 7. In Figure 7a, the compiled estimation results
for the k-NN models can be observed with a very high convergence of the estimated
results for all three compaction energies. The resultant r for this comparison was 0.99. At
the opposite extreme were the results for the linear regression, which did not give good
predictive results in particular for the compaction energies of 0.17 and 0.59 J/cm3. Since the
predictive results for the linear regression canceled each other out, better final R2 (overall)
results were obtained than the data analysis based on the compaction energies allows.
The partial results for this algorithm were as follows: for samples without additional
compaction energy, r = 0.84; with the compaction energy of 0.17 J/cm3, r was −0.34; and
with 0.59 J/cm3, r was 0.33. The resultant r was 0.92.
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To explain the prediction results, SHAP was used, which is based on Shapley values.
These determine the importance of each feature to the model or prediction in the same way
that Shapley determines each player’s contribution to the game because Shapley theory is
based on game theory. Game theory for a model can refer to a single observation of the
model [50,51]. In the case of the machine learning models analyzed, which were regression
models, it predicted the filtration coefficient using the material’s grain size, porosity, and
density characteristics. Shapley values consider each possible feature score to determine
the significance of a single feature [52]. SHAP as a method of explaining the results of
the obtained machine learning models concerning civil engineering applications was also
applied by Quan Tran et al., (2022) [53].

Figure 8 shows the results of the significance of each feature explaining the regression
models, which were created based on the input data of the learned model and the reference
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data from the research. The analysis used these data to calculate the contribution of each
feature to the model’s prediction, measuring the increase in error after the permutation
of feature values for each model. The graphs indicate the 10 most significant features of
each model. For the k-NN and linear regression models, the number of significant features
was significantly smaller than for the neural network model. This may have affected the
model’s robustness to changes in model parameters.
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If we relate this result to the earlier hierarchical analysis of the clusters (Figure 6), it
is easy to see that the model considered the parameters at the top of each cluster to be
the most significant and influential: gradient and particle size d60. The linear regression
considered significant the parameters having the highest correlation with the filtered
coefficient (Figure 5): porosity and void ratio. The situation was different with artificial
neural networks, where a significant effect on R2 was observed for parameters both strongly
and weakly correlated with the permeability coefficient, which may indicate the high
robustness of the model to outliers, for example, dry density correlation of −0.9 and
specific density of 0.1.

Figure 9 combines the meaning of the feature with the outcomes of the feature. Each
point on the graph is a Shapley value for the feature and the item instance. The position on
the y-axis is determined by the feature, and the position on the x-axis is determined by the
impact on the model output (SHAP value). The color represents the value of the trait from
low to high. Overlapping points are separated in the y-axis direction to give the impression
of a distribution of Shapley values for each feature.

The features are ordered by their importance. Figure 9 shows that higher values and
importance of features have higher SHAP values, which means that higher values for
features correspond to a positive class prediction in the model.

Figure 9 provides a better insight into the situation of the influence of individual data
within a given material characteristic on the predictive ability of the model. Comparing the
feature cluster membership results (Figure 6) and the results of Figure 9a, we observed that
both focused on the significance of the influence of two material properties: particle size
d60 and hydraulic gradient. The neural network algorithm (Figure 9b) featured a different
parameter structure than the k-NN algorithm; the “impact on model output” values also
had a larger spread. The contribution of linear regression presented in Figure 9c also shows
that at least the first six features have a significant impact on model predictions. The high
polarity of the impact on the model output relative to the height of the feature value may
indicate the weak resistance of the model to feature changes caused by material type.

In general, SHAP provided many detailed solutions for each instance and a global
interpretation of the model. This allowed for a better understanding of the characteristics
of each model, its functioning, and its estimation. It also allowed us to better understand
the relationships and factors influencing the studied parameter. SHAP interpreted the
internal approach of machine learning models. Local explanations and influences for
individual models allowed for achieving the objective of explaining the reasoning behind
the prediction.

The analysis of the influential variables (Figure 10) did not isolate values that had a
significant impact on the models in either the training or test sets.

As a limitation of the presented study, it should be recognized that although the study
used SHAP for interpretation, there are other methods for interpreting models obtained
from machine learning algorithms. The study focused on the estimation of the coefficient
of permeability, but the algorithms analyzed in the study as well as the methods of model
interpretation may be applied to other geotechnical parameters. To predict the permeability
coefficient for other anthropogenic materials, machine learning algorithms combined with
explanatory methods can be helpful. Based on the analysis, extended by a larger database
including other materials, it will be possible to identify influencing parameters that can be
applied already at the design stage in engineering practice.
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4. Conclusions

The main conclusions drawn from the research presented in this article are presented
below:

1. The results of the study suggest that the methods of machine learning algorithms may
be applicable for the prediction of the coefficient of permeability and, more broadly,
geotechnical parameters.

2. To ensure the quality and reliability of the estimated model, a sufficiently large
database should be provided and continuously developed. Also important is the
proper preparation of the database for analysis, which is the basis for the determina-
tion of reliable models.

3. The results of the post-prediction error analysis obtained for the k-NN algorithm may
indicate the correct choice of the model for estimating the coefficient of permeability
for recycled anthropogenic aggregates. Error analysis for the training sample showed
an RMSE error of 0.004, while the MAE was 0.002. The coefficients of determination
for both the training and test sets were accordingly 0.947 and 0.980. However, taking
into consideration the analysis of significant characteristics impacting the explanation
of the model (Figures 8 and 9), one should take into account the lower resistance of
the model to changes in the characteristics of materials.

4. Given the above conclusions, the neural network model should also be considered.
Admittedly, the model performs worse when analyzing errors (RMSE: 0.005–0.006
and MAE: 0.003–0.004) and R2 (0.877 for the trial set and 0.936 for the test set) than the
model based on the k-NN algorithm, but it takes into account more features that affect
the prediction of the model. As a result, it can affect lower errors when estimating the
coefficient of permeability for other materials.

5. According to Darcy’s law, the dependence of gradient and filtration velocity is linear,
and most of the empirical equations formed based on this relation are linear regression.
The research presented in this article proves that this model is not suitable for general-
izing predictions based on the features and parameters of anthropogenic materials
and allowing at the same time the consideration that machine learning algorithms are
better suited to these prediction tasks.

6. From the perspective of the k-NN algorithm, it is necessary to recognize the impor-
tance of the clustered hierarchical analysis (Figure 6) since the parameters occupying
the leading positions here have a significant impact (Figure 8) on the formation of the
model.

7. The analysis should be repeated for other anthropogenic and post-industrial materials
used in civil engineering to validate the usefulness of the analyzed algorithms.

8. The use of interpretive methods such as SHAP allows for better insight into the
performance of the model and provides valuable information about parameters that
have an important impact on the final model and are a significant part of the study.
We suggest using interpretive machine learning methods to support decision criteria
in civil engineering applications.
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