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Abstract: Surface-enhanced Raman scattering (SERS) is considered an efficient technique providing
high sensitivity and fingerprint specificity for the detection of pesticide residues. Recent develop-
ments in SERS-based detection aim to create flexible plasmonic substrates that meet the requirements
for non-destructive analysis of contaminants on curved surfaces by simply wrapping or wiping.
Herein, we reported a flexible SERS substrate based on cellulose fiber (CF) modified with silver
nanostructures (AgNS). A silver film was fabricated on the membrane surface with an in situ silver
mirror reaction leading to the formation of a AgNS–CF substrate. Then, the substrate was decorated
through in situ synthesis of raspberry-like silver nanostructures (rAgNS). The SERS performance
of the prepared substrate was tested using 4-mercaptobenzoic acid (4-MBA) as a Raman probe and
compared with that of the CF-based plasmonic substrates. The sensitivity of the rAgNS/AgNS–CF
substrate was evaluated by determining the detection limit of 4-MBA and an analytical enhancement
factor, which were 10 nM and ~107, respectively. Further, the proposed flexible rAgNS/AgNS–CF
substrate was applied for SERS detection of malathion. The detection limit for malathion reached
0.15 mg/L, which meets the requirements about its maximum residue level in food. Thus, the
characteristics of the rAgNS/AgNS–CF substrate demonstrate the potential of its application as a
label-free and ready-to-use sensing platform for the SERS detection of trace hazardous substances.

Keywords: Surface-enhanced Raman scattering (SERS); cellulose fiber; silver nanoparticles; silver
nanostructures; silver mirror reaction; raspberry-like silver nanostructures; flexible SERS substrate;
organophosphorus pesticide; malathion

1. Introduction

Surface-enhanced Raman scattering (SERS) is currently receiving much attention as a
promising sensing platform for the non-destructive detection of food contaminants because
of its high specificity and sensitivity [1,2]. Along with current testing techniques, including
high-performance liquid chromatography (HPLC) and gas chromatography–mass spec-
trometry (GC-MS), SERS detection, in which a long and complex sample pretreatment
is offset by extremely low detection limits, is a promising approach for detecting trace
hazardous substances [3]. The enhancement of Raman scattering is due to the contribution
of both electromagnetic and chemical enhancement effects. The electromagnetic mechanism
is based on the local field enhancement of plasmonic nanostructures, which usually have
a broad spectral band resulting in nonlinear scaling of Raman intensity [4]. It is worth
noting that, in the case of the coincidence of optical excitation with a localized surface
plasmon resonance for special nanostructures and configurations, so-called “hot spots”
are formed, which can lead to SERS enhancement up to 108 or more [5–7]. In contrast,
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the chemical-enhancement effect provided by the charge transfer mechanism between the
substrate and the analyte is generally much smaller and estimated to be in the range of
10–103 [8]. Much effort has been made to fabricate plasmonic substrates with a pronounced
SERS effect [9]. Common SERS substrates are colloidal noble metal solutions (typically Ag,
Au, and Cu) prepared with bottom-up techniques or rigid substrates fabricated using self-
assembly, e-beam lithography, nanolithography, as well as the templating method [10,11].
Rigid substrates benefit over suspension systems due to prolonged storage stability and
uniformity, and facilitate to a high concentration of coupled nanoparticles with a dramati-
cally increased SERS effect [9,12]. However, the process of fabricating rigid substrates is
most often complex and time-consuming [13]. In addition, the restricted compatibility of
rigid substrates with sampling and the need for additional preparation procedures before
analysis limits their practical application. Therefore, the fabrication of ready-to-use, SERS-
active substrates in combination with portable models of Raman spectrometers [14,15] has
great potential for the realization of routine analysis.

In the past few years, a new trend has appeared in the development of flexible SERS-
active substrates that combine the ease and cost-effectiveness of the fabrication process
with the adaptability to non-planar sample surfaces, which simplifies the sampling pro-
cedures [16–19]. To date, many flexible materials have been proposed as supports for
SERS-active substrates, including cellulose preparations [20,21], adhesive tapes [22,23],
flexible polymers [24–26], and others [27,28]. To decorate flexible materials with noble
metal nanostructures, printing technology, a self-assembling technique, and lithography
were successfully applied [29–33]. The advantages of such flexible substrates over rigid
SERS substrates include simply an adjustable size and shape of the substrate, swab or
wrap sampling, and tunable SERS activity that, when combined with portable Raman
devices, opens up new possibilities for non-destructive testing. Currently, the pros and
cons of various types of flexible SERS substrates for the detection of pesticides in fruits and
vegetables [34–36], antibiotics in food [37,38], as well as biomarkers in human serum [39,40]
were demonstrated. Despite the advances in SERS detection, the development of new
reproducible SERS-active substrates with a simple and cost-effective fabrication process
remains relevant for the sensitive sensing of analytes.

Since the SERS efficiency of the substrate strongly depends on the morphology of
the plasmonic layer, we propose an approach for the fabrication of a flexible SERS-active
substrate formed by various plasmonic silver structures on a cellulose fiber (CF) support
(Scheme 1). The selection of this flexible support was based on the advantages of cellulose
materials, such as wide availability, excellent flexibility, and high surface area, which
promotes the high density of “hot spots” [21]. In addition, the very weak SERS response
of cellulose has a low contribution to the background signal of the substrate [20]. In
the first step, the CF was embedded with silver nanostructures (AgNS) as a result of an
in situ silver mirror reaction to obtain an AgNS–CF substrate. In order to improve the
performance of the AgNS–CF substrate, hierarchical raspberry-like silver nanostructures
(rAgNS) were assembled at the second stage to obtain a rAgNS/AgNS–CF substrate. The
growth of rAgNS was carried out in the presence of the AgNS–CF substrate by reducing
silver nitrate with ascorbic acid without any surfactants. Hierarchical silver structures
with sizes from 500 nm to 2 µm have a rough surface with a high surface density of
“hot spots”, in which the SERS effect exceeds the analogous effect formed by the “hot
spots” between two spherical nanoparticles [41]. Thus, the efficiency of structures with
raspberry-like morphology was shown for the SERS detection of melamine adsorbed on the
surface of particles [42]. In this study, the dimensional characteristics of the raspberry-like
nanostructures assembled on the CF support were comparable to those in the referred
study. The efficacy of the rAgNS/AgNS–CF substrate was demonstrated on the basis of
a multifaceted characterization including the SERS performance for the common Raman
probe 4-mercaptobenzoic acid (4-MBA). The feasibility of using the rAgNS/AgNS-CF
substrate as a sensing platform for sensitive detection of malathion, an insecticide that is
still used worldwide, was evaluated. This study is the first to fabricate and characterize a
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flexible CF-based plasmonic substrate combining the ease of fabrication and superior SERS
performance afforded by silver nanostructures of various morphologies that, together with
adaptability to non-planar sample surfaces and a shortened pretreatment procedure, offer
great potential for pesticide detection.
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Scheme 1. Schematic illustration of the steps for fabricating the rAgNS/AgNS–CF substrate and
SERS measurement.

2. Materials and Methods
2.1. Materials

Silver nitrate (AgNO3), 4-mercaptobenzoic acid (4-MBA), trisodium citrate (TSC),
ascorbic acid, sodium borohydride (NaBH4), glucose, and citric acid were obtained from
Sigma Aldrich (St. Louis, MO, USA). Ammonia solution (NH3) 28% and ethanol were
provided by Chimmed (Moscow, Russia). Malathion was purchased from LLC Chrom-
Lab (Moscow, Russia). Milli-Q water (17.8 MΩ.cm) collected from a Milli-Q ultrapure
water system (Millipore, Billerica, MA, USA) was used for the syntheses of the plasmonic
nanostructures. All chemicals were of analytical grade and applied in the experiments
without further purification. Cellulose fiber CFSP223000 was purchased from Millipore
(Merck, Buchs, Switzerland). Before synthesis, all glassware was washed with aqua regia
(HCl:HNO3 = 3:1) and rinsed with Milli-Q water.

2.2. Preparation of Plasmonic Nanostructures
2.2.1. Synthesis of Ag Nanoparticles (AgNP)

Citrate-stabilized silver nanoparticles were prepared using the seed-mediated method.
At the first stage, a seed solution of AgNP was synthesized as follows [43]. A total of 600 µL
of sodium borohydride (6 µmol) was added to 20 mL of an aqueous solution containing
both silver nitrate (5 µmol) and sodium citrate (5 µmol) with vigorous magnetic stirring.
After the mixture turned bright yellow, stirring was stopped. The seed solution was left to
age for 2 h. At the second stage of the synthesis [44], 10 mL of silver nitrate (10 µmol) was
added to 90 mL of Milli-Q water and brought to a boil with vigorous stirring. Then, 2 mL
of sodium citrate (0.3 mmol) and 4 mL of the prepared AgNP seed solution were added to
synthesize the final AgNP preparation. The total volume of the solution was 106 mL. After
boiling for 1 h, the colloidal suspension was cooled to room temperature and stored at 4 ◦C.

2.2.2. Synthesis of Raspberry-like Ag Nanostructures (rAgNS)

Raspberry-like silver nanostructures were synthesized according to the previously
described approach [42]. To prepare the rAgNS, 176 mg of solid ascorbic acid was rapidly
added with vigorous stirring to 30 mL of an aqueous solution containing 57 mg silver
nitrate and 640 mg citric acid. The formation of rAgNS occurred within 30 min as evidenced
by the appearance of a gray color of the solution.
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2.2.3. Synthesis of Ag Nanostructures with Silver Mirror Reaction (AgNS)

In accordance with a typical silver mirror reaction to obtain AgNS [45], 10 mL of silver
nitrate (0.7 mmol) was placed in a 20 mL glass flask. A total of 333 µL of sodium hydroxide
(0.3 mmol) was added to the reaction mixture with vigorous stirring to form a dark brown
precipitate. Then, 28% ammonium hydroxide was added dropwise until the precipitate
was completely dissolved. After that, 10 mL of an aqueous glucose solution (5 mmol)
was added followed by heating the mixture at 55 ◦C for 5 min with stirring until a silver
film formed.

2.3. Fabrication of CF-Based Plasmonic Substrates

To compare the SERS effectiveness of the individual silver nanostructures as well
as their combination on a cellulose fiber, the following plasmonic substrates were pre-
pared in this study: CF, modified with silver nanoparticles (AgNP–CF) or raspberry-like
nanostructures (rAgNS–CF); and CF, modified with silver nanostructures (AgNS–CF) and
rAgNS/AgNS–CF. To fabricate the substrates of AgNP–CF, rAgNS–CF, and AgNS–CF,
the pieces of CF (2 cm × 2 cm) were placed in a glass vial, and in situ synthesis of silver
nanoparticles and raspberry-shaped nanostructures as well as a silver mirror reaction (see
Section 2.2) were performed, respectively. Before further assembly of rAgNS, the AgNS–CF
substrate was washed three times with Milli-Q water and dried at a temperature of 65 ◦C
for 30 min in an oven. To fabricate the rAgNS/AgNS–CF substrate, the AgNS–CF substrate
was placed in a reaction flask, and the synthesis of rAgNS was carried out in the presence
of the substrate. Then, the as-prepared CFs were washed 3 times with Milli-Q water and
left to dry at a temperature of 65 ◦C for 30 min in an oven.

2.4. Characterization of CF-Based Plasmonic Substrates

The morphologies of the as-prepared plasmonic substrates were analyzed using scan-
ning electron microscopy (SEM). The SEM images were recorded using a scanning electron
microscope (Prisma E, Thermo Fisher Scientific, Waltham, MA, USA) with accelerating
voltages in the range of 2–20 kV. Energy-dispersive X-ray spectroscopy (EDX) detectors
equipped with SEM (Prisma E, Thermo Fisher Scientific, USA) have yielded information
about the type, abundance, and distribution of elements. The absorption spectra were
measured using an UV–vis spectrophotometer (UV-3600, Shimadzu, Japan). UV–vis re-
flectance measurements were carried out using a Y-shaped optical fiber. The flange of
the fiber was placed over the studied sample; one of the flanges was connected to the
collimator (EKSMA Optics, Vilnius, Lithuania) in the front of the mercury–xenon lamp
source (MKS Instruments, Inc. Andover, MA, USA), and the other was connected to the
spectrometer SE2030-010-DUVN (OtO Photonics, Hsinchu, Taiwan). A sample of bare CF
was used as the mirror reflection reference. Laser scanning microscope (LSM) studies were
performed on the LSM-980 multicolor laser scanning microscope (Zeiss, Berlin, Germany).
The measurements were made using a sensitive GaAsP PMT detector with laser powers of
sub-milliwatt scale and multiple accumulations. The excitation wavelength was chosen to
be 639 nm.

2.5. SERS Measurements

To estimate the SERS effectiveness of the fabricated CF-based plasmonic substrates,
4-MBA stock ethanol solution of standard concentrations was prepared. For the study,
10 µL of 4-MBA was dropped onto a substrate of the same size (5 mm × 5 mm) and dried
in air before recording the Raman spectra.

To assess the applicability of the proposed substrate for the determination of pesticide
residues, malathion–ethanol solutions of various concentrations were prepared. For analy-
sis, the rAgNS/AgNS-CF substrate (5 mm × 5 mm) was dipped into 20 µL of a malathion
standard solution. After 10 min, the substrate was removed from the solution and dried at
room temperature.
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SERS measurements for 4-MBA and the malathion standard solutions were accom-
plished on the basis of a Senterra Raman microspectrometer (Bruker, Germany) with 180º
backscatter geometry and the following parameters: (1) an operating wavelength of 785 nm,
which is generally suitable for the SERS of coupled and structured plasmonic nanoparticles;
(2) a customized lens with a focal length of 20 cm for the efficient integration of the trans-
verse and longitudinal heterogeneities of the CF-based substrates at the submillimeter level;
(3) an acquisition time of 20 s; and (4) an output laser power of 10 mW to prevent bleaching
effects on the timescale of data acquisition (bleaching curves for various output powers
are presented in Figure S1). The Raman spectra were recorded at 10 randomly selected
spots across the substrate. To quantify the results, the average intensity of the characteristic
peak in the spectrum (signal intensity) was plotted against the analyte concentration. The
SERS measurements of malathion excluded the conditions of analyte decomposition, in
particular, alkaline hydrolysis of malathion [46].

3. Results and Discussion
3.1. Morphological Characterization of CF-Based Plasmonic Substrates

The fabrication of efficient flexible SERS substrates exhibiting high electromagnetic
enhancement, stability, and reproducibility is a primary task and still remains a major
challenge in the development of SERS sensors. In this study, CF-based SERS substrates
of different plasmonic morphologies, namely AgNP, AgNS, and rAgNS, were prepared
by self-assembly via in situ synthesis and tested for SERS performance. To characterize
the silver nanostructures obtained with the procedures described in the Materials and
Methods section, the absorption spectra of colloidal solutions of AgNP and rAgNS in the
absence of CF in the reaction medium were measured. The absorption spectra of AgNP are
attributed to intraband electronic excitations of conduction electrons (plasmon oscillations)
and significantly depend on the dielectric properties of the surrounding medium and the
size, shape, and interaction between the nanoparticles. Smooth silver nanoparticles with
a distribution ratio close to 1 have one absorption peak at approximately 400 nm and
are redshifted depending on the particle size [47], which can be considered based on the
Mie theory [48]; in the case of particle sizes of 40–50 nm, the peak position is usually at
~420 nm [47] for aqueous solutions (Figure 1). Additional routines are usually required to
enhance the absorption efficiency in the VIS–NIR wavelength range for such AgNP. One
is aimed at aggregation of nanoparticles and can consider various aspects of the classical
DLVO (Deryagin–Landau–Verwey–Overbeck) theory for colloids resulting in equilibrium
between van der Waals attraction and electrostatic repulsion of nanoparticles [49]. The
aggregates usually contain a bunch of strongly coupled nanoparticles with the highest field
enhancement factors in the gap between the nanoparticles and a fairly broad absorption
shifted to the VIS–NIR range boundary. Another approach involves modifying the shape
and aspect ratio of nanoparticles, which leads to the appearance of polarization-dependent
plasmonic bands in different parts of the VIS range [50]. The highest field enhancement
factors for this case are usually located at the edges and tips of anisotropic nanoparticles [51].
The enhancement factors provided by both edges and gaps are intrinsically combined in
rAgNS, showing many “hot spots” on the surface [52]. The spectrum of rAgNS shows a
very broad absorption band (Figure 1) with the contribution of multiple dipole modes of
the structured surface, as well as quadrupole and higher multipole plasmon excitations
due to the overall submicron size of rAgNS.

Figure 1b demonstrates the UV–vis reflectance spectra of the CF-based SERS substrates.
The reflectance spectra of AgNP–CF, rAgNS–CF, and rAgNS/AgNS–CF showed the re-
flectance peaks at approximately 400 nm, which fall within the range of the characteristic
surface plasmon resonance of AgNP. Modification of the CF through the silver mirror
reaction forms a high-density coating that reflects on the color of the SERS substrate (insert
in the Figure 2C1) and matches the reflection data in Figures 1b and 2.
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The assembly and distribution of the plasmonic nanostructures on the CF support
were studied with SEM after the fabrication process of the SERS substrates, which included
in situ synthesis of AgNP, AgNS, and rAgNS. The SEM images of AgNP–CF (Figure 2A1,A2)
and AgNS–CF (Figure 2C1,C2) demonstrate that the surface of the CF is unevenly coated
with several layers of particles. Moreover, in some areas, there is an accumulation of
Ag agglomerates. The magnified image (Figure 2A2) shows that AgNP has an irregular
and nonspherical morphology. On the contrary, a coating with densely packed AgNS is
observed for AgNS–CF (Figure 2C2). Obviously, this fabrication technique contributes to
an increase in the surface roughness of the plasmonic substrate. The SEM images of the
rAgNS-decorated substrates are shown in Figure 2B1,B2,D1,D2. Comparison of these SEM
images shows that, when raspberry-like nanostructures are assembled on the AgNS—CF
substrate, an essentially denser coating is formed with a highly rough surface characterized
by many protrusions and naturally formed slots.

To characterize the composition and structure of the rAgNS/AgNS–CF substrate,
elemental mapping of the substrate was implemented using EDX. Figure 3 shows the
presence of elements C, O, and Ag, which correspond to the chemical composition of the
substrate. Thus, it can be argued that the silver nanostructures are successfully embedded
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in the CF support. At the same time, the SEM image of the substrate shows that the silver
nanostructures are uniformly and densely distributed over the CF, which contributes to the
formation of the SERS “hot spots”.
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Figure 3. EDX spectrum and elemental mapping of Ag, C, and O acquired for rAgNS/AgNS–CF.

3.2. SERS Performance of CF-Based Plasmonic Substrates

The SERS performance of the substrates was estimated using 4-MBA as a standard
Raman probe. For the study, the Raman spectra of 4-MBA (10–5 M) were recorded on
various CF-based plasmonic substrates under the same conditions, including laser power
and acquisition time. The strong peak at 1068 cm−1, attributed to the aromatic ring
breathing vibrations of 4-MBA, was used throughout this study. To compare the SERS
effect of the as-prepared substrates, analytical enhancement factors (AEF) were calculated
using the following expression:

AEF =
ISERS × CRS
IRS × CSERS

where CRS and CSERS are the concentrations of 4-MBA that produce the Raman and SERS
signals, respectively, while IRS and ISERS are the integrated intensities of the normal (spon-
taneous) Raman and SERS signals of 4-MBA, respectively.

Here, CRS probed in the normal Raman spectrum on the untreated CF was 10−3 M.
Table 1 summarizes the calculated AEF for the different substrates. The uneven and sparse
distribution of plasmonic AgNP and rAgNS observed in the SEM images is confirmed
by the low AEFs obtained for the AgNP–CF and rAgNS–CF substrates. The AEF for
rAgNS/AgNS–CF shows an order of magnitude enhancement compared to the AgNS–
CF substrate (see Table 1), which can be explained by dense loading of rAgNS on the
rAgNS/AgNS–CF substrates combining both enhancement factors of single and cou-
pled hierarchical raspberry-like nanostructures. For further sensitivity evaluation of the
rAgNS/AgNS–CF substrate, SERS spectra of a series of 4-MBA concentrations were ob-
tained. Figure 4A shows the averaged (N = 10) Raman spectra of 4-MBA in a concentration
range of 10−8–10−4 M. As follows from Figure 4B, the concentration dependence of the
SERS characteristic peak at 1068 cm−1 is approximated by the fitting dependence of the
Langmuir isotherm.
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Table 1. AEFs calculated for different CF-based plasmonic substrates.

CF-Based Plasmonic Substrate Analytical Enhancement Factor

AgNP–CF 1.3 × 103

rAgNS–CF 4.9 × 103

AgNS–CF 2.7 × 105

rAgNS/AgNS–CF 8.0 × 106
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Figure 4. (a) SERS spectra of 4-MBA with different concentrations from 10−8 to 10−4M acquired on the
rAgNS/AgNS–CF substrate at an excitation wavelength of 785 nm. (b) The dependence of the SERS
signal at 1068 cm−1 on the 4-MBA concentration. The data are fitted using the Langmuir isotherm.
The error bars represent the standard deviation of 10 measurements. Insert: linear dependence of the
SERS signal in the range of 4-MBA concentrations 10−8–10−6M.

However, in the range of 10−8–10−6 M, the dependence between the SERS sig-
nal and the concentration of the analyte is linear and is described with the equation:
ISERS = 0.94 + 94.8 × CMBA with R2 0.94. The detection limit of 4-MBA was 10 nM.

The uniformity and reproducibility of the SERS signal on the rAgNSs/AgNSs–CF sub-
strate are important parameters for quantitative SERS detection. For CF-based substrates,
which are porous multilayer structures with characteristic fiber diameters of ~20 µm, suffi-
cient reproducibility of the Raman signal can be achieved using relatively long-focus optics
and taking into account material irregularities. Figure 5a represents a macroscale LSM
image of the 1068 cm−1 4-MBA band for the rAgNS/AgNS–CF substrate, which combines
all CF layers involved in SERS. The image shows that submillimeter scale integration is
usually required. A fairly dense distribution of “hot spots” of the same 4-MBA band on the
microscale is shown in Figure 5b. The characteristic dimensions of the high intensity areas,
estimated within 400 nm, do not exceed the optical resolution of the image, which corre-
sponds to the submicron size of rAgNS determined with SEM measurements (Figure 2).
Thus, it can be assumed that the structured surface of rAgNS and the localization of these
structures contribute to the maximum SERS enhancement factors of the substrate. The
scale of the enhancement factors corresponding to the AEFs is given in Table 1. Further,
the reproducibility of the Raman signal was evaluated by recording the SERS spectra at
different sites of the substrate containing 4-MBA at a concentration of 10−5 M. As follows
from Figure 5C, the intensity of the peak at 1068 cm−1, measured in 10 spots of the substrate,
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demonstrates the signal deviation within 18%. The observed variation of intensity can also
be associated with a change in the orientation of the benzene ring of 4-MBA at different
spots of the plasmonic substrate. Storage of the rAgNS/AgNS–CF substrate containing
10−5 M 4-MBA under standard laboratory conditions (T = 20 ◦C and humidity approxi-
mately 40%) for 2 weeks showed a decrease in the intensity of the peak at 1068 cm−1 by no
more than 10%.
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3.3. Application of rAgNS/AgNS–CF Substrate for SERS Detection of Malathion

To further evaluate the applicability of the proposed rAgNS/AgNS–CF substrate,
malathion was tested. Malathion is one of the most common organophosphate pesticides
used in pest control [53,54]. Pesticide residues on crops can cause harmful effects on the
central and peripheral nervous system when ingested [55]. Therefore, the relevance of the
development of reliable, selective, and sensitive sensing systems for malathion detection
is obvious.

Prior to testing malathion, the Raman spectrum of a blank rAgNS/AgNS–CF sub-
strate was recorded. As can be seen in Figure S2a, the blank substrate exhibits very
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weak scattering characteristics and no spectral interference for the SERS measurements of
malathion. The immersion technique used to characterize the sensing performance of the
rAgNS/AgNS–CF substrate has been described in a number of works [56,57] and simu-
lates the analysis of real samples. The structure of malathion, consisting of fragments of
O,O-dimethylthiophospho- and thiobutanedioate moieties linked by a phosphorus–sulfur
bond, as well as the Raman and SERS spectra acquired on a Raman Grade CaF2 window
and rAgNS/AgNS–CF, respectively, are shown in Figure S2b. As can be seen, the SERS
spectrum undergoes significant changes compared to the Raman spectrum measured on
the CaF2 window. The shifts of the spectral bands and the enhancement of individual peaks
are explained by the proximity of the analyte to the surface of the plasmonic nanoparti-
cles [58]. To evaluate the performance of the flexible rAgNS/AgNS–CF substrate, the SERS
spectra of malathion standard solutions with concentrations from 0.25 to 50 mg/L were
recorded. Figure 6a shows three strong characteristic peaks at 895 cm−1, 1030 cm−1, and
1050 cm−1, which can be assigned as C–C stretching, P–O–C vibration, and P=O stretching,
respectively. The intensity of all characteristic peaks varied depending on the concentration
of the analyte. However, the most pronounced change in intensity was observed for the
dominant peak at 1030 cm−1, which made it possible to detect the lowest concentrations of
malathion. Therefore, the characteristic peak at 1030 cm−1 was used for the quantitative
analysis of malathion. As seen in Figure 6b, the curve of SERS intensity versus malathion
concentration also follows the non-linear Langmuir isotherm fit. The non-linear equation
was calculated as:

ISERS =
8295.9 × Cmalathion

Cmalathion + 14.8
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Figure 6. (a) SERS spectra of various malathion concentrations obtained on the rAgNS/AgNS–CF
substrate. (b) The dependence of the SERS signal at 1030 cm−1 on the malathion concentration. The
data are fitted using the Langmuir isotherm. The error bars represent the standard deviation of 10 mea-
surements. Insert: linear dependence of the SERS signal in the range of malathion concentrations of
0.1–2 mg/L.

At low analyte levels from 0.1 to 2 mg/L, there is a good linear relationship between
peak intensity and malathion concentration (insert in Figure 6b), which is described with
the following equation:

ISERS = 46.9 + 454 × Cmalathion

The detection limit was estimated to be 0.15 mg/L. Various SERS substrates applied
for the detection of malathion are compared in Table 2. Here, the proposed flexible SERS
substrate demonstrates the comparable performance. Moreover, it is important to note the
advantages of the rAgNS/AgNS–CF substrate, such as flexibility, ease of fabrication, and
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material porosity, which ensure a high sorption capacity and, accordingly, a low analyte
detection limit. As a whole, the mentioned benefits make the current study particularly
attractive for potential practical applications in pesticide detection. According to the Food
and Drug Administration (FDA) and the U.S. Environmental Protection Agency (EPA), the
maximum residue limit for malathion in food is 8 mg/L [59]. Despite the high sensitivity
of colorimetric [60–62] and electrochemical [63,64] sensors based on a specific aptamer–
pesticide binding, the characteristic of the proposed label-free, flexible substrate-based
SERS sensor meets the established requirements for the control of malathion in food.

Table 2. Comparison of different plasmonic substrates for SERS detection of malathion.

SERS Substrate Enhancement Factor Detection Limit of Malathion, mg/L References

Colloid of AgNP 1.98 × 108 1 × 10−4 [65]

Colloid of AgNP modified with spermine N/D ~0.2 [66]

Colloid of gold nanoparticles N/D 0.123 [67]

AgNP-coated filter membrane 3.0 × 105 0.062 [68]

Colloid of AgNP N/D 0.528 [69]

Poly-(dimethylsiloxane) chip with quasi-3D
gold plasmonic nanostructure arrays 1.6 × 106 0.001 [70]

PDMS modified with AgNP 1.64 × 105 0.041 [71]

rAgNS/AgNS-CF 8.0 × 106 0.15 This study

To further assess the reproducibility and uniformity of the signal from the rAgNS/
AgNS–CF substrate treated with the malathion at a concentration of 1 mg/L, the spectra
were measured in spot-to-spot and batch-to-batch modes. First, the spectra were obtained
in 40 randomly selected spots on the same substrate. Figure 7a reflects the good spot-to-
spot reproducibility of the SERS response. Then, the SERS spectra acquired on different
substrates made in three batches were studied. On each rAgNS/AgNS–CF substrate,
40 measurements were made in random spots. The intensity of the characteristic peak
at 1030 cm−1 was used to calculate the relative standard deviation of 120 measurements.
As follows from Figure 7b, combining silver nanostructures of different morphology on
a flexible CF support provides good SERS signal homogeneity with a relative standard
deviation estimated at 8.71%.

Materials 2023, 16, 1475 11 of 16 
 

 

  

(a) (b) 

Figure 6. (a) SERS spectra of various malathion concentrations obtained on the rAgNS/AgNS–CF 

substrate. (b) The dependence of the SERS signal at 1030 cm−1 on the malathion concentration. The 

data are fitted using the Langmuir isotherm. The error bars represent the standard deviation of 10 

measurements. Insert: linear dependence of the SERS signal in the range of malathion concentra-

tions of 0.1–2 mg/L. 

To further assess the reproducibility and uniformity of the signal from the 

rAgNS/AgNS–CF substrate treated with the malathion at a concentration of 1 mg/L, the 

spectra were measured in spot-to-spot and batch-to-batch modes. First, the spectra were 

obtained in 40 randomly selected spots on the same substrate. Figure 7a reflects the good 

spot-to-spot reproducibility of the SERS response. Then, the SERS spectra acquired on 

different substrates made in three batches were studied. On each rAgNS/AgNS–CF sub-

strate, 40 measurements were made in random spots. The intensity of the characteristic 

peak at 1030 cm−1 was used to calculate the relative standard deviation of 120 measure-

ments. As follows from Figure 7b, combining silver nanostructures of different morphol-

ogy on a flexible CF support provides good SERS signal homogeneity with a relative 

standard deviation estimated at 8.71%. 

  

(a) (b) 

Figure 7. (a) SERS spectra of 1 mg/L malathion obtained from spot-to-spot detection. (b) Reproduc-

ibility of the SERS signal at 1030 cm−1 obtained from batch-to-batch measurements. The SERS spectra 

were obtained in 40 random spots of the substrate. RSD was obtained for 120 measurements of the 

SERS signal at 1030 cm−1 from 3 batches of the substrate. 

Figure 7. (a) SERS spectra of 1 mg/L malathion obtained from spot-to-spot detection. (b) Repro-
ducibility of the SERS signal at 1030 cm−1 obtained from batch-to-batch measurements. The SERS
spectra were obtained in 40 random spots of the substrate. RSD was obtained for 120 measurements
of the SERS signal at 1030 cm−1 from 3 batches of the substrate.
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To further evaluate the applicability of the prepared flexible SERS substrate as a label-
free sensing platform for the detection of malathion, pesticide-contaminated tomatoes
were prepared according to procedure [57] with slight modifications. Ethanol solutions
of malathion at concentrations of 2 and 20 mg/L were applied to the tomato peel. After
complete drying at room temperature, the tomato peel was thoroughly swabbed using a
5 mm × 5 mm rAgNS/AgNS–CF substrate previously soaked in ethanol. Figure 8 shows
the SERS spectra of the swabbed tomato peel without malathion, as well as in the presence
of spiked malathion standard solutions. The presence of characteristic malathion peaks
in the SERS spectra indicates that the proposed SERS substrate has practical potential for
detecting pesticide residues.

Materials 2023, 16, 1475 12 of 16 
 

 

Table 2. Comparison of different plasmonic substrates for SERS detection of malathion. 

SERS Substrate Enhancement Factor Detection Limit of Malathion, mg/L References 

Colloid of AgNP 1.98 × 108 1 × 10−4 [65] 

Colloid of AgNP modified with spermine N/D ~0.2  [66] 

Colloid of gold nanoparticles N/D 0.123  [67] 

AgNP-coated filter membrane 3.0 × 105 0.062  [68] 

Colloid of AgNP N/D 0.528  [69] 

Poly-(dimethylsiloxane) chip with quasi-3D 

gold plasmonic nanostructure arrays 
1.6 × 106 0.001  [70] 

PDMS modified with AgNP 1.64 × 105 0.041  [71] 

rAgNS/AgNS-CF 8.0 × 106 0.15  This study 

To further evaluate the applicability of the prepared flexible SERS substrate as a la-

bel-free sensing platform for the detection of malathion, pesticide-contaminated tomatoes 

were prepared according to procedure [57] with slight modifications. Ethanol solutions of 

malathion at concentrations of 2 and 20 mg/L were applied to the tomato peel. After com-

plete drying at room temperature, the tomato peel was thoroughly swabbed using a 5 mm 

× 5 mm rAgNS/AgNS–CF substrate previously soaked in ethanol. Figure 8 shows the 

SERS spectra of the swabbed tomato peel without malathion, as well as in the presence of 

spiked malathion standard solutions. The presence of characteristic malathion peaks in 

the SERS spectra indicates that the proposed SERS substrate has practical potential for 

detecting pesticide residues. 

 

Figure 8. SERS spectrum of the swab collected from tomato peel (1) and SERS spectra of swabbed 

tomato peel spiked with 2 mg/L (2) and 20 mg/L (3) malathion standard solutions. 

4. Conclusions 

In summary, a novel flexible SERS-active substrate was fabricated by successive syn-

theses of silver nanostructures of various morphologies. The dense coating of the CF sub-

strate with hierarchical silver nanostructures naturally forming narrow gaps provides ex-

cellent SERS enhancement. Thus, high sensitivity with a detection limit of 10 nM was 

achieved for the determination of 4-MBA. The feasibility of the rAgNS/AgNS–CF sub-

strate for practical application was demonstrated with the SERS detection of malathion 

with a limit of detection well below the maximum residual limits established by the pro-

tection agencies. Further research on the CF-based plasmonic substrates will be aimed at 

testing the versatility of the SERS sensor to various pesticide residues, as well as the pos-

sibility of multiplex detection of common organophosphorus pesticides in fruits and 

Figure 8. SERS spectrum of the swab collected from tomato peel (1) and SERS spectra of swabbed
tomato peel spiked with 2 mg/L (2) and 20 mg/L (3) malathion standard solutions.

4. Conclusions

In summary, a novel flexible SERS-active substrate was fabricated by successive
syntheses of silver nanostructures of various morphologies. The dense coating of the CF
substrate with hierarchical silver nanostructures naturally forming narrow gaps provides
excellent SERS enhancement. Thus, high sensitivity with a detection limit of 10 nM was
achieved for the determination of 4-MBA. The feasibility of the rAgNS/AgNS–CF substrate
for practical application was demonstrated with the SERS detection of malathion with a
limit of detection well below the maximum residual limits established by the protection
agencies. Further research on the CF-based plasmonic substrates will be aimed at testing
the versatility of the SERS sensor to various pesticide residues, as well as the possibility
of multiplex detection of common organophosphorus pesticides in fruits and vegetables.
Taken together, a simple and convenient fabrication process along with high sensitivity
and reproducibility provide a high potential of the proposed flexible SERS substrate for
practical application in label-free, non-destructive determination of pesticide residues.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16041475/s1, Figure S1: Normalized Raman Intensity at
1068 cm−1 versus excitation time using 10 mW (1), 25 mW (2), and 50 mW (3) laser power; Figure S2:
Raman spectrum of 1g/L malathion measured on a Raman Grade CaF2 window (1). Raman spec-
trum of 1 mg/L malathion, measured on the rAgNS/AgNS–CF substrate (2). Insert: the structure
of malathion.
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