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Abstract: There is an increased interest in porous materials due to their unique properties such as
high surface area, enhanced catalytic properties, and biological applications. Various solvent-based
approaches have been already used to synthesize porous materials. However, the use of large
volume of solvents, their toxicity, and time-consuming synthesis make this process less effective, at
least in terms of principles of green chemistry. Mechanochemical synthesis is one of the effective
eco-friendly alternatives to the conventional synthesis. It adopts the efficient mixing of reactants
using ball milling without or with a very small volume of solvents, gives smaller size nanoparticles
(NPs) and larger surface area, and facilitates their functionalization, which is highly beneficial for
antimicrobial applications. A large variety of nanomaterials for different applications have already
been synthesized by this method. This review emphasizes the comparison between the solvent-based
and mechanochemical methods for the synthesis of mainly inorganic NPs for potential antimicrobial
applications, although some metal-organic framework NPs are briefly presented too.

Keywords: porous materials; mechanochemical synthesis; bio-related applications

1. Introduction

There are two main strategies for the synthesis of nanoparticles (NPs): top-down, and
bottom-up [1]. In comparison to the bulk materials, NPs show unique properties such as
tunable porosity, controllable particle size, and size-dependent properties, which make
them attractive for various applications [2–4]. The synthesis of NPs is usually carried out
under solvothermal and reductive conditions [5] using conventional heating or ultrason-
ication [6], microwave irradiation [7], and mechanochemistry [8]. Often, these methods
require solvents, and some of them use toxic precursors. Analogous methods are also
used for the preparation of NPs with antimicrobial properties [9–12]. Among them, the
mechanochemical synthesis of NPs is an emerging way of performing chemical transfor-
mations by means of mechanical forces such as compression, continuous deformation,
fractures, shear, or friction [13]. The mechanochemical method involving ball milling has a
long history and is still of high importance for the synthesis of various types of materials
such as metallics, metal oxides, metal-organic frameworks, organics, carbons, and related
nanomaterials. The basic concept for the conversion of reactants to the final product using
a mechanochemical strategy is shown in Figure 1 [14,15]. In this process, the reactants
accumulate huge potential energy, where shear and friction forces can generate many
surface defects, which can substantially improve the reactivity of the final product.

There is a difference between simple grinding and mechanochemical processing. The
former simply represents reduction of the particle sizes from bulk to micro- or nano-level
dimensions, leading to increased particle activity, while mechanochemistry also involves
simultaneous chemical reactions during the grinding process [16]. The grinding process
can be categorized into shaker and planetary ball milling. The former is often used for
small samples, whereas the latter rotates around the central axis as well as around its own
axis. Such motion creates a centrifugal force working against gravity and results in the
desired chemical reactions and helps to scale up the product [8].
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Figure 1. Conversion of reactants to the product in the mechanochemical synthesis. (Reproduced 
with the permission from Ref. [15]. Copyright © 2015 The Royal Society of Chemistry.) 
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processing is regarded as an environmentally-friendly (green) synthesis [16]. Mechano-
chemistry is considered a highly-efficient, easy, and convenient way of synthesizing, mod-
ifying, and/or activating nanomaterials, and can easily compete with the conventional 
synthetic approaches, which often involve multistep processing, a large volume of sol-
vents, risk of byproduct formation, and hazardous chemicals [17,18]. The use of chemical 
reduction is one of the most common methods for synthesizing different metal NPs such 
as Ag [19,20], Cu [21–23], Au [24], and some composites [25,26]. These are often synthe-
sized by using different toxic and environmentally-hazardous chemicals including 
NaBH4, hydrazine hydrate, formaldehyde, hydroxylamine, hydrogen peroxide, etc. On 
the other hand, in the mechanochemical process, the solid reagents with large potential 
energies and strains can create various defects in the final products, and hence the activity 
of the resulting NPs is highly enhanced [27]. Many studies were already done on the syn-
thesis of various metal and metal-based NPs for antimicrobial applications [28–32]. One 
of the review articles covers the antimicrobial properties of different NPs synthesized 
through non-mechanochemical methods [33]. As an example, Figure 2 represents the non-
mechanochemical synthesis of ZrO2 NPs (Panel A) with possible antimicrobial properties 
together with a TEM image (Panel B) and particle size distribution (Panel C). On the other 
hand, one recently-published review article summarizes the mechanochemical aspects of 
the synthesis of metal oxide NPs but does not cover the antimicrobial aspects of these 
materials [34]. By contrast, this review article is focused on both mechanochemical syn-
thesis of mainly inorganic NPs and their antimicrobial properties., although some metal-
organic framework NPs are briefly presented too. 

Figure 1. Conversion of reactants to the product in the mechanochemical synthesis. (Reproduced
with the permission from Ref. [15]. Copyright © 2015 The Royal Society of Chemistry).

In conventional synthesis, solvents play an important role, and often their toxic nature
represents the major challenge to be addressed. Mechanochemical synthesis adopts the effi-
cient mixing of reactants using ball milling without or with a very small quantity of solvents.
This synthesis is also energy- and time-efficient. Therefore, mechanochemical processing
is regarded as an environmentally-friendly (green) synthesis [16]. Mechanochemistry
is considered a highly-efficient, easy, and convenient way of synthesizing, modifying,
and/or activating nanomaterials, and can easily compete with the conventional synthetic
approaches, which often involve multistep processing, a large volume of solvents, risk of
byproduct formation, and hazardous chemicals [17,18]. The use of chemical reduction is
one of the most common methods for synthesizing different metal NPs such as Ag [19,20],
Cu [21–23], Au [24], and some composites [25,26]. These are often synthesized by using
different toxic and environmentally-hazardous chemicals including NaBH4, hydrazine
hydrate, formaldehyde, hydroxylamine, hydrogen peroxide, etc. On the other hand, in the
mechanochemical process, the solid reagents with large potential energies and strains can
create various defects in the final products, and hence the activity of the resulting NPs is
highly enhanced [27]. Many studies were already done on the synthesis of various metal
and metal-based NPs for antimicrobial applications [28–32]. One of the review articles cov-
ers the antimicrobial properties of different NPs synthesized through non-mechanochemical
methods [33]. As an example, Figure 2 represents the non-mechanochemical synthesis of
ZrO2 NPs (Panel A) with possible antimicrobial properties together with a TEM image
(Panel B) and particle size distribution (Panel C). On the other hand, one recently-published
review article summarizes the mechanochemical aspects of the synthesis of metal oxide
NPs but does not cover the antimicrobial aspects of these materials [34]. By contrast, this
review article is focused on both mechanochemical synthesis of mainly inorganic NPs and
their antimicrobial properties., although some metal-organic framework NPs are briefly
presented too.

There are various physical and chemical eco-friendly methods for the synthesis
of different nanomaterials such as microwave irradiation, UV-irradiation, sonochemi-
cal, mechanochemical, photochemical, and magnetic field-assisted processes [35]. Often,
mechanochemical synthesis involves bio-based materials such as lignin with a small amount
of metal sources to synthesize metal-containing NPs. This method was also used for the
synthesis of Pd, Ru, and Re NPs with lignin as a bio-reducing agent [36]. These green syn-
thetic materials were found to have wide applications ranging from catalysis to biomedical
applications [37]. Depending on the shape, size, morphology, and dispersibility of NPs,
their utility has been extended in the fields of biological applications. Since the discovery
of antibiotics, natural products were effectively used as antimicrobial agents. However, the
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effectiveness of the available antibiotics has diminished due to the growth of antimicrobial
resistance (AMR) and multi-drug-resistant microbes [38].
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Figure 2. Schematic representation of the synthesis of functionalized ZrO2 NPs and their antimicrobial
behavior (Panel [A]), TEM image of ZrO2 NPs (Panel [B]), and the corresponding particle size
distribution (Panel [C]). (Reproduced with the permission from Ref. [28]. Copyright © 2020 American
Chemical Society).

Antibiotics are chemical compounds that prevent or inhibit the growth of bacterial
infections in animals or human beings. Due to the global rise in population, industrializa-
tion, change in lifestyle, easy migration, and random or overuse of the available antibiotics,
new mutants of bacteria are formed, known as AMR [39]. The WHO has declared AMR
one of the top ten global public health threats. AMR occurs when the microorganisms
(bacteria, fungi, viruses) change their genetic makeup over time and no longer respond
to conventional antibiotics, causing a serious illness or even death [38]. There are many
bacterial strains in the world and some of them are growing as a public health threat,
as they are multidrug-resistant and cause the deadliest infections—a group of bacteria
including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumanii, Pseudomonas aeruginosa, and Enterobacter species, known as ESKAPE bacteria,
pose a particularly high threat to humans [40]. These bacteria are growing exponentially
worldwide. It is estimated that by 2050 they could cause the death of one person every
three seconds. Most of the antibiotics in use these days are the products of the mid-19th
century. The situation is getting worse as research on finding new antimicrobial agents has
been diverted to the research related to non-communicable diseases [41,42]. The number
of recent antibiotics approved or under the pipeline for the approval by FDA is the main
attestation of this diversion from antimicrobial research. Now, it is quite late to think
critically about novel directions in research toward new antimicrobial drugs to eradicate
these superbugs.

A huge investment and technological advancement in the field of biological science set
an expectation for the discovery of effective antimicrobial agents. However, this optimistic
hypothesis has failed to succeed thus far. There has been only a limited number of drug
approvals by the FDA since 2000 [40]. The WHO already warned that if the progress in the
development of antimicrobial agents is not sufficiently high, the world is headed towards a
post-antibiotic era, where many simple infections will be no longer cured and can result
in many deaths [43]. Therefore, the need for significant discoveries of highly effective
antimicrobial agents is urgent. Recent research shows that various metal NPs tested
for multidrug resistance, along with their possible working mechanisms, are promising.
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Finding highly effective NPs with strong antimicrobial properties would be one of the
milestones in this field.

2. Main Strategies for Synthesis of Nanoparticles

There are many methods, such as sol-gel [44,45], solvothermal/hydrothermal [46],
Stöber [47], microemulsion [48], and methods involving microwaves [49], sonochem-
istry [50] and mechanochemistry, that have been used for the synthesis of NPs.

Sol-gel is a bottom-up approach, based on a wet chemical synthesis of different NPs
(e.g., metal NPs, metal oxide NPs, etc.). During this process, the precursors undergo
hydrolysis followed by condensation to give the desired morphology. The final products
are obtained after drying. This method has been successfully used to prepare various types
of morphologies (nanospheres, nanorods, thin films, etc.) [51].

Stöber method is an effective sol-gel method for the preparation of uniform, homo-
geneous silica NPs with tailorable pore size and surface functionalities. This method was
originated by the ammonia-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) in al-
coholic water system [52]. Later, several modifications were made for the preparation of
non-silica materials by this approach [53].

Solvothermal/hydrothermal methods are very popular for the synthesis of NPs. They
refer to the synthesis process carried out in solvents, or in aqueous media in the case of
hydrothermal processing. In this process, the chemical reactions occur inside the solvother-
mal/hydrothermal reactor, known as autoclave [54].

Microemulsions are the stable isotropic mixture of miscible and immiscible liquid
phases such as the mixture of oil, water, and different surfactants. In this method, two or
more phases are mixed to form microemulsions. During this process nanoscale drops of
water remain continuously in an oil phase protected by a surfactant at the interface. The
main advantage of microemulsion is controllable drop diameter, which restricts unneces-
sary interactions with the surrounding allowing formation of NPs with desired particle
diameters [53]. There are different microemulsions for this purpose, water in oil (W/O) and
oil in water (O/W), and the surfactant as a ternary system are the most common examples.
Magnetite [55], iron oxide [56], Au [57], Cu [58], ZnO NPs [59] represent some examples of
nanomaterials that can be synthesized by this method.

The use of high intensity ultrasound can produce very high temperature and pressure,
which is distinct from other synthetic routes. The irradiation of high energy ultrasound
in volatile organic compounds (VOCs) in a nonvolatile solvent result in the dissociation
of metal carbonyl bonds and produce the elemental metal atoms. This method can also
be used for the synthesis of noble metal nanoparticles, bimetallic core-shell nanoparticles,
metal oxides etc. [60]. Similarly, microwave assisted synthesis of various nanoparticles is
the next important strategy. This is a simple, fast, easy, and efficient way of synthesizing
advanced nanomaterials. Microwaves represent electromagnetic radiation ranging from
300 MHz–30 GHz, which assures an instantaneous and homogeneous heating of the
precursor materials. This method can be used for the synthesis of porous nanomaterials
such as silica, carbons, metal-organic frameworks, metal oxides etc. [61].

In addition to sonochemical and microwave-assisted methods, in which ultrasounds and
microwaves are a source of external energy provided to the synthesis mixture, mechanochem-
istry is one of the oldest methods using mechanochemical forces to reduce the particle size
of substances and initiate chemical processes. Due to the advancement of various tools
and techniques, mechanochemical grinding/milling becomes one of the popular, safe, and
green synthetic tools for the preparation of various types of NPs.

3. Mechanochemistry: History and Advantages

The history of mechanochemistry is very long. The first use of the mortar and pestle
as a grinding tool can be traced to the stone age. Later, these simple tools were replaced by
more sophisticated devices that can be used for the preparation of materials for research
and different practical applications. The mechanochemical process involves the chemical
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transformation of the reactant species by means of various forms of mechanical forces
such as compression, shear strain, friction, etc. This process was found to be scripted
from 315 BC by Theophrastus in his book, “On Stones” [8]. The working principles of
mechanochemistry are still not fully explained, but systematic study was started around
the middle of the 19th century and was significantly advanced after the 1960s. The im-
portant industrial applications of mechanochemistry include the processing of cement
clinker, ores, and powder metallurgy, which adopt fine grinding as a mechanochemical
tool and have been used since the 19th century until now [61]. Although the principles and
methodologies of mechanochemistry are still being explored, the initial slow progress in
this field was accelerated when mechanical alloying emerged. Nowadays, the popularity
of mechanochemical synthesis is increasing in various fields, including organic, inorganic,
and materials chemistry. Because of the growing popularity of mechanochemistry, IUPAC
in 2003 defined mechanochemical reaction as “a chemical reaction that is induced by the
direct absorption of mechanical energy” [62].

Mechanochemical synthesis is one of the safest ways to prepare nanomaterials. This
synthesis is safer than wet chemical processing. The major advantages of this synthesis are:

(i) Reduction of particle size: ball milling is a physical method that affords the synthesis
of particles with reduced sizes down to tens of nanometers.

(ii) Nanostructuring and activation of materials: mechanical grinding can be used for
the synthesis of mesoporous materials via template-assisted methods. In addition,
mechanochemistry can be applied for the nano-casting synthesis of nanoporous mate-
rials [63].

(iii) Doping of nanoparticles: the activity of nanomaterials mainly depends on their surface-
to-volume ratio, size, and surface functionality, as well as the active sites present
on the surface. The surface properties of NPs can be modified by doping, which
is commonly used to enhance their catalytic activity, antimicrobial properties, etc.
Moreover, doping permits the realization of desired properties for specific applications
such as wastewater treatment, nuclear waste management, and adsorption-based
removal of harmful dyes [64–66].

(iv) Reduction of reaction time: mechanochemical processing is quicker than conventional
synthesis. The reduction of tungsten carbide particles from 2–3 mm sizes to 3 µm
takes 70 h in conventional synthesis, whereas the same can be achieved in 3 min in a
planetary ball mill [67].

(v) Large-scale production: this method helps to produce high-purity NPs on a large
scale [68]. For instance, about 10 g of ternary lanthanum nanoscale coordination
polymer was obtained by this solvent-free method [69].

(vi) Low agglomeration: this approach helps to produce the NPs with narrow particle size
distribution [70].

(vii) Medicinal value: the use of modern mechanochemistry in the medicinal field as
medicinal mechanochemistry expands the scope of this approach [71].

Along with these advantages, some disadvantages of this process are known too.
Namely, this method requires high-energy mechanochemical equipment, is prone to particle
contamination originating from the container and grinding balls, and it is often difficult to
achieve ordered porosity, precise shape, and size due to high energy milling [72,73].

4. Mechanochemical Synthesis of Nanoparticles

The basic principle of mechanical synthesis is the grinding of solid materials, which in-
volves the reduction of particle sizes. The essence of mechanochemical processing involves
the induction of chemical reactions between raw materials by the input of mechanical
energy. This is the most important difference between grinding (top-down approach) and
mechanochemical processing [27,74]. The close contact between the milled particles highly
enhances the diffusion and chemical reactivity of the reactants [67]. During the ball milling
process the plastic deformation, shear stress or shock impact, fracture, and friction due
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to the collisions induce structural defects and can break chemical bonds. After multiple
processes, a new and active state of the material is produced [75].

Mechanochemistry can be used to facilitate reactions at different interfacial systems
such as solid-solid, solid-gas, and solid-liquid systems. Specifically, mechanochemical ball
milling is extensively used for the synthesis of different types of metallic NPs, metal oxide
nanocomposites, and different types of doping processes. There are various types of mills
in use for synthesis. Some of them are [75]:

1. SPEX shaker mills
2. Planetary ball mills
3. Attritor mills
4. Modern mills (rod mills, vibrating frame mills)

4.1. Synthesis of Metal Nanoparticles

AgNPs were successfully synthesized via mechanochemistry (ball milling) by using
lignin as a biodegradable reducing agent without solvents. The synthesized AgNPs showed
a very efficient antimicrobial property for both gram-positive and gram-negative bacte-
ria [76]. Some of the studies showed that mechanochemistry can be successfully used for
the synthesis of ultrafine Fe, Co, Ni, and Cu NPs [77]. The mechanochemical reduction of
binary sulfides of copper, chalcocite (Cu2S), and covellite (CuS) by elemental iron resulted
in the formation of copper nanoparticles [78]. This semi-industrial approach can also be
used in laboratories as well as large-scale production [68,78]. Mechanochemistry helps
solve the problems associated with coalescence and oxidation of metallic particles and
facilitates particle size reduction by extending the milling time. It also helps to generate the
products within a short time, even within a few seconds [79]. The synthesis of AgNPs in the
presence of graphite as a reducing agent is the next successful example of ball milling [80].
The latest emerging area of mechanochemistry for the synthesis of nanomaterials is the use
of green-type precursors. In this case, mechanochemical processing can be considered bio-
mechanochemical synthesis. An example of such processing is the synthesis of AgNPs in
the presence of natural products as reducing agents, i.e., Origanum vulgare leaf extract [76].

4.2. Synthesis of Metal Oxide Nanoparticles

Synthesis of ZnO NPs in an eco-friendly mechanochemical way is based on chemical
Reactions (1) and (2). During this process, Zn (OH)2 is formed after milling and subsequent
heat treatment gives the ZnO NPs [36].

Zn (CH3COO)2 + NaOH→ 2CH3COONa + Zn(OH)2 (1)

Zn (OH)2 → ZnO +H2O (2)

There are various routes for the synthesis of metal oxide NPs such as hydrothermal
synthesis, chemical bath deposition (CBD), sol-gel method, etc. Most of these syntheses
are carried out in the liquid phase and require a large volume of solvents. In contrast,
high-energy ball milling converts the bulk materials into fine powder without solvents
or with an extremely small volume of solvents. The mechanical energy activates the
chemical reagents, which results in producing nanoparticles as the final products [27].
An easy, fast, and green synthetic route for the preparation of different metal oxide NPs
makes the mechanochemical process very useful. For instance, the synthesis of Gd2O3 by
mechanochemical processing and subsequent heat treatment was reported [81]. Similarly,
other metal oxide nanoparticles including Cr2O3 [82], ZnO [83,84], ZrO2 [85], CeO2 [86],
SnO2 [87], CdO [88], CoO [89], and TiO2 [90] were effectively synthesized by this method.

The biochar (carbonaceous and porous material) exhibits limited adsorption ability
to anionic species. For instance, modification of biochar with metal oxide species to
form nanocomposites significantly enhances its adsorption capacity. The formation of
these nanocomposites by different processes may discharge some contaminants either
as a byproduct, or impose contamination risk on the final product. High-energy ball
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milling can greatly reduce the contamination risk of the final product. It also decreases the
particle size and increases the specific surface area and thus introduces plenty of active
sites for adsorption. Specifically, combining CuO with biochar can increase the porosity
of the resulting composite, enlarge specific surface area, and introduce hydrophilicity,
which greatly enhances the adsorption capacity of the composite [91]. The comparison
study for the synthesis of some metal and metal oxide NPs through mechanochemical and
solvent-based methods is shown in Table 1. It includes the chemicals used, and particle size.

Table 1. Comparative study of solvent-based synthesis and mechanochemical synthesis of vari-
ous NPs.

Solvent-Based Synthesis Mechanochemical Synthesis

Samples
(NPs)

Size
(nm)

Hazardous Chemicals
Used Refs. Size

(nm) Ref.

Ag 8–50 Hydrazine hydrate,
Sodium hypophosphite [10,92] 39–100 [93]

Au 22 ± 4.6 NaBH4 [94] 14.8 ± 6.8 [36]
Cu2O 7.5 ± 1.8 NaBH4, NaOH [95] 11 [96]
Fe2O3 50 H2O2, N2H4 [97] 4.21 [13]
ZnO 45–76 Ammonia [98] <20 ± 5 [99]

4.3. Synthesis of Nanoalloys and Nanocomposites

Mechanical alloying is the next advantageous strategy to synthesize mixed metal
nanoparticles (alloy nanoparticles). These types of nanoparticles are widely used in catalytic
applications as they show some synergetic effects. There are various methods for the
preparation of bi- or multi-metallic nanoalloys. Many of the synthetic procedures are
analogous to those used for the formation of monometallic NPs. Due to the various
technical difficulties and laborious conventional synthetic procedures, mechanochemistry is
one of the alternative and easy ways to prepare the metal oxide nanocomposites, supported
metal nanoparticles, mesoporous materials, and different coordination polymers because
of its simplicity and low cost [100]. For instance, Fe/CaO and Co/CaO nanocomposites
were synthesized by inexpensive mechanochemical processing using non-toxic metal oxide
precursors [101]. Mechanochemical synthesis can also be used for the synthesis of mixed
metal oxide NPs such as ceria-zirconia [102]; a TEM image of such NPs (Panel A) with the
corresponding XRD pattern (Panel B) is shown in Figure 3.
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4.4. Use of Mechanochemistry for Doping and Incorporating Various Species

TiO2 has been extensively studied as a photocatalyst and it can be synthesized by
different approaches such as sol-gel, hydrothermal, and mechanochemical (ball milling)
methods. Doping and co-doping with suitable metallic or nonmetallic elements or coupling
with another semiconductor have been used to enhance its properties. Silver-doped TiO2
has Schottky defects and behaves as an electron trap. Various methods have already been
proposed to dope Ag on the titania surface. However, ball milling is cost-effective, less
time-consuming, and an eco-friendly approach. Doped titania nanoparticles are photo-
catalytically and biologically active [103]. Another example is a conventional synthesis of
porous carbon, which involves a multi-step and expensive process, and produces many
wastes as a byproduct. Mechanochemical synthesis of carbons eliminates these shortcom-
ings. Thus, a mechanically-induced self-sustaining reaction can be performed at room tem-
perature to get the N-doped porous carbon or nitrogen-rich carbon materials—specifically,
one-pot mechanochemical process involving calcium carbide and cyanuric chloride [104].
Reaction (3) was used to obtain nitrogen-rich carbon material, i.e., C6N3 carbon nitride:

3CaC2 + 2C3Cl3N3 −→ 3CaCl2 + 2C6N3 (3)

Similarly, an easy, efficient, and safe method of doping of Mg on hydroxyapatite was
achieved by the dry mechanochemical method [105]. Additionally, the mechanochemical
synthesis of transition metal-doped ZnO for photocatalytic applications was performed.
Co-doping of ZnO highly reduced its photocatalytic activity as the Co ions substituted
the Zn ions in the ZnO wurtzite phase. On the other hand, the Mn dopant showed an
increased photocatalytic activity at low levels of doping, which was reversed at a higher
level of doping [106].

4.5. Mechanochemical Synthesis of Highly Porous Nanoparticles

Adsorption is an important physical phenomenon that results in attracting atoms or
molecules of gas, liquid, or solid phase on the surface. The porosity of material means the
presence of various interconnected voids and/or channels in its matrix. IUPAC defines
porosity in terms of the size (diameter) of pores and distinguishes three classes of materials:
(i) microporous, having pore sizes below 2 nm; (ii) mesoporous, having pores in the range
of 2–50 nm; and (iii) macroporous, possessing pores with sizes larger than 50 nm [107].
Microporous materials are further sub-classified as ultra-microporous materials having
pore sizes of 0.7 nm or smaller [108]. Mechanochemical synthesis is an emerging method
for the preparation of various porous materials [8]. This method overshadows the phenol-
formaldehyde polycondensation approach for the formation of porous carbon. The uniform
and scalable ordered mesoporous carbons (OMCs) were synthesized using bio polyphenols
(tannin), and block-copolymer. This method was modified to incorporate Ni and Zn species
into carbons [109]. Figure 4 shows the synthetic route of a mesoporous metal oxide obtained
via mechanochemical method (Panel A) and TEM images of carbon synthesized through the
solid-state approach (Panel B). Similarly, mesoporous crystalline γ-alumina and modified
alumina with a high specific surface area and pore volume were synthesized from boehmite
as an alumina precursor via high-energy mechanochemical ball milling [110,111].

Additionally, ball milling was used to synthesize FeO(OH) nanoflake/graphene and
nano Fe3O4/graphene composites from commercially-available graphite oxide and iron
powders [112]. Mechanochemical approach facilitates the synthesis of two- and three-
dimensional metal-organic compounds. Figure 5 represents the chemical reaction for the
formation of Cu3(BTC)2 and Cu3(BTB)2 [113]. A comparison of the mechanochemical
activation of metal-organic framework (MOF) (HKUST-1) (SBET = 1713 m2/g) with the
sample without activation (SBET = 758 m2/g), and commercial sample (SBET = 1836 m2/g)
has been reported elsewhere [113].
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5. Antimicrobial Applications of Mechanochemically-Synthesized Nanoparticles

High demand for various nanomaterials requires further advancements in optimizing
synthetic procedures by using low-cost and renewable precursors, minimizing energy
usage, and preparing environmentally-friendly (greener) materials by eliminating toxic
chemicals, reducing solvent usage, and avoiding harmful gas emissions by adopting the
12 principles of green chemistry [114]. Mechanochemistry is a promising way to address
these issues for the synthesis of different types of nanomaterials. The mechanochemically-
synthesized nanoparticles can be successfully used in various areas ranging from ad-
sorption, catalysis, and energy storage to bio-related applications. The advantages of
mechanochemistry presented in Section 3 make this method attractive when compared to
the conventional synthesis. This section is devoted to NPs with antimicrobial properties,
which can easily be synthesized, modified, and activated via mechanochemical treatments,
and their comparison with other modes of synthesized particles.

5.1. Antimicrobial Properties of Nanoparticles

Metal-based NPs have been extensively studied in the field of biomedical applications.
The antimicrobial properties of materials depend upon various parameters including
the nature of the material, size, solubility, and permeability. Similarly, the role of metal-
based NPs is unique because they have broad bacterial toxicity (non-specific), and the
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mechanism is complex and not specific to certain bacterial cells. This might be the reason
that bacteria barely develop antimicrobial resistance to these NPs. Hence, the generation of
new antimicrobial drugs by using metal-based NPs with adequate antimicrobial activity
and low toxicity could be a great accomplishment in the field of biomedicine [115]. There
are several nanomaterials that possess antimicrobial properties [116,117]. The general
mechanism of the bactericidal effect of NPs is shown in Figure 6 [118].
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When the size of NPs decreases, their surface-area-to-volume ratio increases and,
hence, the bioactivity. There are various theories and mechanisms that explain antimi-
crobial activities. The main mechanism that explains antimicrobial activity involves the
destruction of the cell membrane, interruption of the electron transport chain, generation of
reactive oxygen (ROS) species, protein and enzyme disruption, and DNA damage [119,120].
The study of mechanochemical synthesis of NPs with antimicrobial properties is under
exploration. Dushkin et al. [115] synthesized a nanocomposite of antibiotic (cephalosporin)
with silicon dioxide, exhibiting much higher antibacterial activity than its original counter-
part. Similarly, the ultrasmall CuO NPs were synthesized via a mechanochemical method
using two different precursors, CuCl2·2H2O and CuSO4·5H2O. CuO NPs obtained from
the CuCl2·2H2O precursor showed higher antimicrobial activity, because of their spherical
morphology and narrow size distribution [121]. This finding confirms that the smaller
particles exhibit higher antimicrobial efficacy. Hence, mechanochemical synthesis gener-
ates smaller NPs with enhanced antimicrobial properties. The zone of inhibition (ZOI),
minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC)
determined by colony-forming units (CFU) for CuO NPs derived from both precursors are
shown in Figure 7.

The scope of mechanochemical synthesis is not only limited to the synthesis of metallic
or metal oxide NPs but is also widely used in the synthesis of organic, inorganic, and metal-
organic framework NPs. For instance, the mechanochemically-synthesized organocatalyst
(4-hydroxy-3-thiomethylcoumarin) was used as an antimicrobial agent for pathogenic
bacteria and fungi [122]. Similarly, cyclohexanone and indazole derivatives obtained by the
mechanochemical method were tested in a wide range of microorganisms, including both
gram-positive and gram-negative bacteria, fungi, and yeast. These compounds showed
moderate to good antimicrobial properties. The results were compared with standard
antibacterial drugs, tetracycline, and the antifungal drug ketoconazole [123]. AgNPs
prepared in two different ways, i.e., via conventional green synthesis (using plant extracts)
and mechanochemical method, were also compared, and it was found that AgNPs obtained
from the conventional method showed better antimicrobial properties. It was further
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concluded the better antimicrobial properties of AgNPs prepared via conventional green
synthesis were due to the unreacted silver precursor remaining in the sample. It seems that
the mechanochemical synthesis under optimized conditions could afford better control of
antimicrobial properties [124]. The scope of mechanochemically-synthesized NPs, metal
oxides, nanocomposites, and MOFs in terms of antimicrobial properties continuous to
expand. Table 2 summarizes a variety of metal and metal oxide NPs synthesized via
green chemistry (not mechanochemical), together with some basic information and their
antimicrobial applications.
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Table 2. Antimicrobial properties of various metal and metal oxide NPs.

Sample
(NPs) Synthesis Size

(nm) Microorganism ZOI, MIC Refs.

Al2O3

Plant Extract,
Ultrasonica-

tion

96.10,
11–15

E. coli,
S. aureus,

P. aeruginosa
2.5–10 µg/mL [125,126]

Ag Biosynthesis - Proteus,
E. coli, Bacillus, Pseudomonas 6–15 mm [127]

Au Biosynthesis 53.3
B. subtilis,

E. coli,
K. pneumoniae.

11.42–17.12 mm [128]

Cu Bio reduction 5.3 E. coli,
C. albicans.

Microbial
reduction
(84–99%)

[129]

Fe2O3 Biosynthesis -

B. subtilis,
S. aureus,

E. coli,
K. pneumoniae

10–16 mm [130]

Fe3O4
Co-

Precipitation
E. coli,

B. Subtilis 6.25 µg/mL [131]

NiO Plant Extract 2–21 E. coli,
S. aureus

12 µg/mL
10 µg/mL [132]

ZnO Plant Extract 24.5 K. pneumoniae,
S. aureus 9 mm [133]

The mechanochemical method was used to synthesize various types of oxide nanopar-
ticles, as shown in Table 3. Some of them (not all) were already studied for antimicrobial
applications. The antimicrobial properties shown by the metal and metal oxide NPs syn-
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thesized through the mechanochemical method are given in Table 3. As a result, the study
of biological activity for these NPs could be an area of future research.

Table 3. Mechanochemical synthesis of various metal oxide nanoparticles.

Sample (NPs) Reaction Involved Milling Time Size (nm) Refs.

Bi2O3 α Bi2O3 + (ZnO, Fe2O3, SiO2) −→metal oxides doped γ Bi2O3 5 min–10 h 22.5–67 [134]

CeO2 CeCl3 + 1.5 CaO + 0.25 O2 −→ CeO2 + 1.5 CaCl2 24 19 [135]

Cr2O3 Na2Cr2O7 + S −→ Cr2O3 + Na2SO4 - 10–80 [82]

CuO CuSO4·5H2O + C6H5(COOH)(OH) + 3NaOH −→
CuO + Na2SO4 + C6H5(COONa)(OH) + H2 + 7H2O 30 min 11.59–22.09 [136]

Fe2O3 FeCl3·6H2 + Na2CO −→ Fe2O3·6H2O + 6NaCl + 3CO2 2–5 h 4 [98]
Gd2O3 GdCl3 + 3NaOH + 11 NaCl −→ Gd (OH)2 + 4NaCl 24 20 [81]

NiO NiCl2·6H2O + NaOH −→ Ni (OH)2 + NaCl 30 min 8–80 [137]
SnO2 SnCl4 + (NH4)2CO3 −→ SnO2·H2O + NH4Cl + 3CO2 5 min 3–48 [138]
TiO2 TiCl4+ (NH4)2CO3 −→ TiO2·H2O + 4NH4Cl 5 min 10–50 [139]

ZnO
εZn (OH)2 −→ ZnO + H2O

ZnCl2 +Na2CO3 + 6NaCl −→ ZnCO3 + 8NaCl
Zn (CH3COO)2 + NaOH −→ 2CH3COONa + Zn (OH)2

30 min–6 h 9–36 [36,140]

ZrO2 ZrCl4 + 2CaO −→ ZrO2 + 2CaCl2 20 8 [141]

The mechanochemical method has also been used for the synthesis of metal complexes.
The Co (II), Mn (II), and Fe (II) complexes of amoxicillin were synthesized, and their an-
timicrobial properties studied. Amoxicillin Fe (II) complex did not show activity against
Staphylococcus aureus and Escherichia coli. The complex with Mn (II) showed the highest
antimicrobial activity against Staphylococcus aureus in all concentrations [142]. However, the
biological activity of these complexes was not compared with the activity of the complexes
synthesized by other synthetic methods. It is well-known that ciprofloxacin is a commercial
antimicrobial agent. The mechanochemically-synthesized nano-ciprofloxacin showed a
significantly increased antimicrobial property [143]. It was found that the bacteriostasis
rate of mechanochemically-synthesized nanosized ciprofloxacin is almost twice that of
ciprofloxacin powder. Similarly, nanohybrid materials synthesized through mechanochem-
istry were also studied for their bioapplications. Silver-polysaccharide nanohybrids were
synthesized via mechanochemistry and tested for biocompatibility and toxicity. These
nanohybrids were found to be biocompatible and less toxic to human cell lines. The viabil-
ity percentage data of this nanocomposite are shown in Figure 8 [144]. The exceptionally
low toxicity was expected due to the low solubility of silver precursor from the compos-
ite matrix. This study further opens the door toward the mechanochemical synthesis of
nanohybrids for biomedical applications.

Copper sulfide prepared by acetate route has been shown to have very high antimi-
crobial efficacy against gram-negative and to be inactive against gram-positive bacteria.
Sulfur-mediated copper sulfide nanocrystals synthesized through a mechanochemical ap-
proach showed good antimicrobial activity. CuS with micro-sized particles showed high
antimicrobial activity in gram-negative bacteria, whereas the reduction of particle size
make them active against both strains of the bacteria [145,146]. AgNPs synthesized from
the mechanochemical method using lignin as a reducing agent and polyacrylamide as
support were shown to be highly efficient for the complete killing of both gram-positive
and gram-negative bacteria strains. They were also effective for multi-drug-resistant
strains [147]. Mechanochemistry represents an affordable and sustainable way to synthe-
size nanoparticles with desired properties. This synthetic strategy can further be enhanced
by using “green” precursors such as plant extracts to create materials with antimicrobial
properties [145,148].
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5.2. Porous Materials as Antimicrobial Agents

There is a wide application of porous nanomaterials in various fields such as adsorp-
tion, catalysis, water treatment, sound absorbers, separation, energy storage applications,
molecular sieves, etc. In the case of biological applications, metal-based nanoparticles con-
tributed significantly. However, there are some limitations (toxicity, agglomeration, etc.),
as a result of which, the effectiveness of these NPs is reduced. The most effective solution
to these problems is to immobilize these NPs on various substrates. The commonly-used
substrates are porous carbon, graphene, silica beads, etc. [149]. Similarly, mesoporous
silica-based materials can be used for bioapplications as the surface functionalization of
these materials improves the bioactivity for both in vitro and in vivo study [150]. The
impregnation of natural antimicrobial agent Thymol in nanocellulose-based materials un-
der supercritical carbon dioxide conditions was shown to afford material with effective
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antimicrobial properties. This study further revealed that the cellulose nanofibrils showed
better antimicrobial properties because of higher specific surface area [151] (see Figure 9).

Materials 2023, 16, x FOR PEER REVIEW 14 of 23 
 

 

Copper sulfide prepared by acetate route has been shown to have very high antimi-
crobial efficacy against gram-negative and to be inactive against gram-positive bacteria. 
Sulfur-mediated copper sulfide nanocrystals synthesized through a mechanochemical ap-
proach showed good antimicrobial activity. CuS with micro-sized particles showed high 
antimicrobial activity in gram-negative bacteria, whereas the reduction of particle size 
make them active against both strains of the bacteria [145,146]. AgNPs synthesized from 
the mechanochemical method using lignin as a reducing agent and polyacrylamide as 
support were shown to be highly efficient for the complete killing of both gram-positive 
and gram-negative bacteria strains. They were also effective for multi-drug-resistant 
strains [147]. Mechanochemistry represents an affordable and sustainable way to synthe-
size nanoparticles with desired properties. This synthetic strategy can further be enhanced 
by using “green” precursors such as plant extracts to create materials with antimicrobial 
properties [145,148]. 

5.2. Porous Materials as Antimicrobial Agents 
There is a wide application of porous nanomaterials in various fields such as adsorp-

tion, catalysis, water treatment, sound absorbers, separation, energy storage applications, 
molecular sieves, etc. In the case of biological applications, metal-based nanoparticles con-
tributed significantly. However, there are some limitations (toxicity, agglomeration, etc.), 
as a result of which, the effectiveness of these NPs is reduced. The most effective solution 
to these problems is to immobilize these NPs on various substrates. The commonly-used 
substrates are porous carbon, graphene, silica beads, etc. [149]. Similarly, mesoporous sil-
ica-based materials can be used for bioapplications as the surface functionalization of 
these materials improves the bioactivity for both in vitro and in vivo study [150]. The im-
pregnation of natural antimicrobial agent Thymol in nanocellulose-based materials under 
supercritical carbon dioxide conditions was shown to afford material with effective anti-
microbial properties. This study further revealed that the cellulose nanofibrils showed 
better antimicrobial properties because of higher specific surface area [151] (see Figure 9). 

 
Figure 9. Relationship between the specific surface area and the corresponding antimicrobial prop-
erties. (Reproduced with the permission from Ref. [151]. Copyright © 2020 American Chemical So-
ciety). (a) thymol-impregnated cellulose nanofibrils (CNFs), (b) cryogel obtained by freeze-drying 
the CNF suspension in water, (c) cryogel obtained by freeze-drying the CNF suspension in butanol, 
and (d) aerogel obtained by supercritical drying. 

The graphene-based materials showed a broad range of antimicrobial properties for 
bacteria, viruses, and fungi. These graphene-based materials deteriorate the cellular com-
ponents, mainly proteins, lipids, and nucleic acids. There is a lack of detailed mechanistic 
study on the antimicrobial properties of graphene-based materials; however, recent re-
search shows that the particle size and morphology, as well as the surface functionaliza-
tion, lead to creating oxidative stress, cell membrane rupture, and trapping or wrapping 
[152]. Similarly, carbon nanotubes and fullerenes bind with the lipids and then disrupt 
the cell membrane and DNA, leading to cell death. Due to the lipophilic properties of 

Figure 9. Relationship between the specific surface area and the corresponding antimicrobial prop-
erties. (Reproduced with the permission from Ref. [151]. Copyright © 2020 American Chemical
Society). (a) thymol-impregnated cellulose nanofibrils (CNFs), (b) cryogel obtained by freeze-drying
the CNF suspension in water, (c) cryogel obtained by freeze-drying the CNF suspension in butanol,
and (d) aerogel obtained by supercritical drying.

The graphene-based materials showed a broad range of antimicrobial properties for
bacteria, viruses, and fungi. These graphene-based materials deteriorate the cellular com-
ponents, mainly proteins, lipids, and nucleic acids. There is a lack of detailed mechanistic
study on the antimicrobial properties of graphene-based materials; however, recent re-
search shows that the particle size and morphology, as well as the surface functionalization,
lead to creating oxidative stress, cell membrane rupture, and trapping or wrapping [152].
Similarly, carbon nanotubes and fullerenes bind with the lipids and then disrupt the cell
membrane and DNA, leading to cell death. Due to the lipophilic properties of fullerenes,
which can strongly interact with the membrane lipids, these NPs are biologically more
active against gram-positive species [153,154].

5.3. Role of Nanoparticles in Antimicrobial Resistance or Multi-Drug Resistance

The awareness of infectious diseases has been highly recognized throughout the world
due to the recent finding and outbreak of the COVID-19 (SARS-2) virus. The rate of infection
and transmission of this virus has been very difficult to control, and the scenarios caused
devastating. The next crisis may be caused by the bacteria-resistant strains that continue to
evolve resistance to more and more commercial antibiotics. The generation of antimicrobial
resistance is recognized as a global health threat. Research for effective anti-drug-resistant
agents is very much necessary. Due to the high surface-to-volume ratio and larger contact
with larger numbers of defects, NPs can act as good antimicrobial agents. Additionally,
the nanoscale range of these NPs can penetrate the cell membrane and interfere with the
biological pathway of the microbes causing apoptosis [120]. The effect of NPs can further
be enhanced by reducing their size, conversion into nanoalloys, and functionalization,
and can be more effective if combined with existing commercial antibiotics, showing the
synergistic effect in enhancing antimicrobial properties [155].

These activities of NPs indicate their effectiveness and potential for the next generation
of antibiotics [156]. The working mechanisms of NPs as antimicrobial agents are [157]:

(i) Direct exposure to the bacterial cell causing the cell membrane damage;
(ii) Biofilm inhibition;
(iii) Generation of reactive oxygen species (ROS); and
(iv) Disruption of transcription and translation processes.

NPs as antimicrobial agents have been used for a long time. However, the use of these
NPs as drug-resistant or multi-drug resistant antimicrobials is not as expected. The in vitro
analysis was tested for various metallic NPs such as Au, Ag, Cu, Al, and ZnO against
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different harmful pathogens, including methicillin-resistant staphylococcus aureus (MRSA),
vancomycin-resistant enterococcus (VRE), multidrug-resistant E. Coli (MDR E. Coli), and
MR-ESKAPE [156]. The effectiveness of these NPs to treat most drug-resistant strains is
comparable to or better than for existing commercial antibiotics. Studies have shown that if
the commercial antibiotics and NPs are merged into hybrid materials, they could be more
effective due to the synergistic effect. Additionally, such samples could be prepared in a
shorter time, using simple and greener mechanochemical methods, so that their activity
could be better than that of their counterparts. Mechanochemical synthesis can afford
particles at the nanoscale level, which imparts larger surface area and higher concentration
of surface defects. Hence, the implementation of mechanochemical synthesis of NPs as
antimicrobial agents or multidrug- or drug-resistant variants could prove a potential field
of future research.

6. Conclusions and Perspectives

Synthesis of metal, metal oxide NPs, metal-organic frameworks, doped nanoparticles,
multi-metallic alloy nanoparticles, etc. can be achieved by various solvent-based wet chem-
ical methods. All these NPs can be easily synthesized by energy, time, and cost-effective
mechanochemistry, which uses a very limited volume of solvents or is solvent-free, is
easy, quick, employs eco-friendly chemicals, and activates nanomaterials. This review
article mainly covers the mechanochemical synthesis of nanoparticles and their potential
applications as antimicrobial agents. Mechanochemically synthesized nanoparticles for an-
timicrobial applications could be a better option in the field of medicinal science. Therefore,
the bio-related research of mechanochemically synthesized materials might prove popular
in the future. The particles formed by mechanochemical method possess a lot of defects in
the final products, which is advantageous to functionalize and immobilize antimicrobial
agents such as metal or metal-based NPs and some existing antibiotics. This property helps
enhance effective antimicrobial behavior. The high antimicrobial behavior of mechanochem-
ically synthesized NPs is due to the large surface-area-to-volume ratio, smaller size, and
easy functionalization with the existing commercial antibiotics or other metal and metal
oxide NPs to form multi-metallic alloy NPs aimed at combating antimicrobial resistance
and multidrug resistance. The mechanochemically-synthesized particles could be more
active than the conventionally synthesized nanoparticles because of higher surface area and
a large number of defects on their surface. Mechanochemistry may afford nanomaterials
with better properties in terms of biological, catalytic, and related applications.

Mechanochemical synthesis follows the principles of green chemistry and is a great
strategy to overcome the many drawbacks of wet chemical methods. It might replace the
solvent-based strategy and can challenge the conventional synthesis in terms of the effec-
tiveness of the synthesized NPs. Mechanochemistry eliminates or reduces chemical waste
and is simple, fast, energy-efficient, and can be scaled up for industrial-scale production. It
has been used for the synthesis of various materials for catalysis, adsorption, wastewater
treatment, antimicrobial uses, biomedicine, and more. Thus, its use for the synthesis of
nanomaterials for different bio-related applications is expected to grow in coming years.
The main problem in the biological field is the development of drug-resistant or multidrug-
resistant agents due to the overuse or misuse of available antibiotics. The existing nano
drugs could be more effective if they are incorporated with the porous nanomaterials. This
could be achieved efficiently through a mechanochemical approach. Mechanochemical
method could then be a proper way to develop more effective antimicrobial agents, which
might be effective against various antimicrobial-resistant and/or multidrug-resistant vari-
ants. Some of the previous studies already showed that many metallic and metal oxide
nanoparticles have good antimicrobial activities. Consequently, those nanoparticles can be
resynthesized or incorporated into various supports such as carbon nanotubes, fullerenes,
porous silica, or alumina framework by using mechanochemistry, and they might show
improved bactericidal properties due to the synergistic effect to kill a wide range of microor-
ganisms. This approach to nanoparticle synthesis can be extended to various fields such
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as cosmetic and beauty products, color and paints, toothpaste, and more. As a result, the
prospects of mechanochemistry toward development of nanomaterials with antimicrobial
and bio-related properties are enormous.
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activity. Mater. Lett. 2014, 128, 75–78. [CrossRef]

130. Pallela, P.N.V.K.; Ummey, S.; Ruddaraju, L.K.; Gadi, S.; Cherukuri, C.S.; Barla, S.; Pammi, S.V.N. Antibacterial efficacy of green
synthesized α-Fe2O3 nanoparticles using Sida cordifolia plant extract. Heliyon 2019, 5, 02765–02772. [CrossRef]

131. Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron
oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 2015, 5, 14813. [CrossRef]

132. Nawaz, M.; Tahir, M.B.; Iqbal, T.; Pervaiz, M.; Rafique, M.; Aziz, F.; Younas, U.; Alrobei, H. Synthesis, characterization, and
antibacterial activity of NiO NPs against pathogen. Inorg. Chem. Commun. 2020, 122, 108300–108307. [CrossRef]

http://doi.org/10.1038/ncomms15020
http://doi.org/10.1016/j.micromeso.2020.110792
http://doi.org/10.1038/s41598-022-25869-w
http://doi.org/10.1021/acsami.5b03477
http://www.ncbi.nlm.nih.gov/pubmed/26083395
http://doi.org/10.1021/cm1012119
http://doi.org/10.1039/b513020b
http://doi.org/10.1134/S1607672912020019
https://www.tandfonline.com/doi/abs/10.2147/IJN.S246764
http://doi.org/10.2147/IJN.S246764
http://doi.org/10.1515/ntrev-2022-0059
http://doi.org/10.1038/nrmicro3028
http://doi.org/10.1016/j.nano.2015.11.016
http://doi.org/10.1016/j.msec.2019.110011
http://doi.org/10.1021/acssuschemeng.0c08975
http://doi.org/10.1007/s11164-015-2379-5
http://doi.org/10.3390/nano11051139
http://www.ncbi.nlm.nih.gov/pubmed/33924877
http://doi.org/10.1016/j.matlet.2021.131569
http://doi.org/10.1039/D1BM01233A
http://doi.org/10.1016/j.sjbs.2021.12.007
http://doi.org/10.1016/j.jiph.2021.10.007
http://doi.org/10.1016/j.matlet.2014.04.106
http://doi.org/10.1016/j.heliyon.2019.e02765
http://doi.org/10.1038/srep14813
http://doi.org/10.1016/j.inoche.2020.108300


Materials 2023, 16, 1460 21 of 21

133. Janaki, A.C.; Sailatha, E.; Gunasekaran, S. Synthesis, characteristics, and antimicrobial activity of ZnO nanoparticles. Spectrochim.
Acta A Mol. Biomol. Spectrosc. 2015, 144, 17–22. [CrossRef] [PubMed]

134. Liu, G.; Li, S.; Lu, Y.; Zhang, J.; Feng, Z.; Li, C. Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity by
α-Bi2O3→ γ-Bi2O3→ α-Bi2O3 transformation in a facile precipitation method. J. Alloys Compd. 2016, 689, 787–799. [CrossRef]

135. Gopalan, S.; Singhal, S.C. Mechanochemical synthesis of nano sized CeO2. Scr. Mater. 2000, 42, 993–996. [CrossRef]
136. Abbas, A.K.; Abass, S.K.; Bashi, A.M. CuO nano particles synthesized via the mechanichanical method starting with solids state

chemichal reactions. IOP Conf. Ser. Mater. Sci. Eng. 2019, 571, 012067–012078. [CrossRef]
137. Tang, A.; Li, X.; Zhou, Z.; Ouyang, J.; Yang, H. Mechanochemical synthesis of Ni (OH)2 and the decomposition to NiO

nanoparticles: Thermodynamic and optical spectra. J. Alloys Compd. 2014, 600, 204–209. [CrossRef]
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