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Abstract: The present work was performed on three versions of a newly developed alloy coded
T200 containing 6.5% Cu, 0.1% Fe, 0.45% Mg, and 0.18% Zr in addition to A319 and A356 alloys
(grain refined and Sr-modified). Tensile bars were subjected to 13 different heat treatments prior to
testing at either 25 ◦C or 250 ◦C. The tensile data were analyzed using the quality index method. The
results obtained showed that, due to the high copper content in the T200 alloy coupled with proper
grain refining, the alloy possesses the highest quality as well as improved resistance to softening
when tested at 250 ◦C among the five alloys. The results also demonstrate the best heat treatment
condition to maximize the use of the T200 alloy for automotive applications. Grain-refined alloy
B, treated in the T6 temper and tested at 250 ◦C, exhibited the best combination of the four tensile
parameters, i.e., UTS, YS, %El, and Q-values: 308 MPa, 304 MPa, 2.3%, and 352 MPa, respectively,
which are comparable with those obtained from the 356 alloy: 309 MPa, 305 MPa, 2.8%, and 375 MPa
in the same order.

Keywords: Al-Cu alloys; heat treatment; tensile testing; quality index; FESEM

1. Introduction

The specific qualities of foundry aluminum alloys are, in particular, good castability,
low melting temperatures, absence of hot cracking, and good distribution of porosities
due to shrinkage during solidification [1]. Casting aluminum-silicon (Al-Si) alloys are the
most widely used due to their very good castability and good corrosion resistance. The
mechanical properties and structural characteristics of foundry Al-Si alloys are markedly
affected by their composition in alloyed elements and by the heat treatments to which they
are subjected [2]. The metallurgical factors specific to Al-Si base casting alloys are consid-
ered to achieve optimum service performance in their applications. Alloying elements,
depending on their composition in the various alloys, generally contribute to increasing
the ultimate tensile stress and the elastic limit. These modifications generally lead to a
reduction in the strain at break. Indeed, the higher the ultimate tensile stress and the elastic
limit, the lower the strain at break. Therefore, trade-offs must be constantly made between
the need to obtain high values of ultimate tensile stress and yield strength on the one
hand and obtaining ultimate strain or ductility on the other hand. However, the situation
is altered by the presence of alloyed elements in some Al-Si eutectic alloys, including
intermetallic compounds that are more fragile than silicon particles. Therefore, the failure
of the alloy is initiated from the intermetallic compounds. It has been established that, in
the eutectic binary Al-Si alloys, the cracks originate in the silicon particles, in particular at
the boundaries of the dendrite cells. These cracks then spread to the aluminum matrix and
initiate ductile fracture [1–3].
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The addition of copper (Cu) to Al-based alloys produces a significant increase in HV
hardness and ultimate tensile stress, or ultimate stress of a typical alloy, or a 15% increment
of strengthening. Moreover, the role of copper in the reinforcement by precipitation of
the resistance of Al-Mg-Si alloys has been studied by many authors. Pashley et al. [3]
reported that the presence of copper leads to the formation of a precipitate with a much
finer structure in samples subjected to artificial aging and, thus, leads to better mechanical
resistance following this heat treatment [4].

The most significant effect of copper is at the third stage of the precipitation sequence.
For Al-Mg-Si alloys, this third stage is the β′ phase, which has a rod shape with a hexagonal
structure. With the addition of copper to Al-Mg-Si alloys, lath-shaped precipitates are
observed; their quantity increases with an increase in the copper composition. More
recently, Chakrabarti et al. 5 suggested that this lath-shaped phase could be a precursor
of the Q phase, named Q′. The addition of copper has also been reported as an element
that reduces the negative effects of natural aging [5–7]. Recent studies by Gökçe et al. [8,9]
on Al-Cu and Al-Cu-Mg alloys revealed that high-strength, Al-based powder metallurgy
alloys were developed with good microstructures from the premixed elemental components
with an increase in the strength of the base Al powder by 5-times from 84 MPa to 466 MPa.

The concept of a quality index was first proposed by Drouzy et al. [10–12] for Al-Si-Mg
(356 alloys). The quality index relates the quality of castings with their mechanical strength
and is expressed with the following equation:

Q = UTS + d log (%El) (1)

where Q = quality index (MPa); UTS (ultimate tensile strength) in MPa; %El = % elongation
to fracture; and d is a constant, whereas YS (probable yield strength) is defined as:

YS = a UTS − b log (%El) + c (2)

The probable yield strength (YS) is controlled by hardening agents, such as Mg and Cu [13].
Previously, the authors presented their findings on the hot tearing and microstructure

of the recently developed Al-Cu-based alloy, which is a modified version of the 208 alloy
with a higher Cu content and no Si, in comparison with A356 and A319 cast alloys [14]. The
present investigation focuses on the microstructural characterization, tensile properties,
and quality index of these three types of alloys following 13 different heat treatments and
two testing temperatures: 25 ◦C and 250 ◦C. In addition, the results will be compared with
those obtained from two commercial alloys, i.e., 319 and 356 alloys, that are widely used in
automotive applications. The study will also include a detailed analysis of the effect of all
variables on the quality index in order to determine the optimum composition and heat
treatment. Another direction considered will be the contribution of each of these parameters
to the tensile properties of the base alloy (coded A in the present study). Generating all
these data will help in enhancing the performance and determining the exact composition
of the newly developed Al-Cu-based alloy that would provide tensile properties close to
those of the currently used commercial alloys.

2. Experimental Procedure

The chemical composition of the base alloy T200 is shown in Table 1, whereas Table 2
lists the final compositions. Two more versions of the T200 alloy were prepared through the
additions of 0.15 wt% Ti + 0.15 wt% Zr and 0.15 wt% Ti + 0.15 wt% Zr + 0.5 wt% Ag using
Al-5%, Ti-1% B, and Al-15% Zr master alloys; Ag was added as a pure metal (999.99%). The
A319 and A356 alloys were grain refined using 0.15 wt% Ti and modified with 200 ppm
Sr using Al-5%, Ti-1% B, and Al-10% Sr master alloys, respectively. The used alloys were
termed A, B, C, D, and E (Table 1). Table 2 lists the final compositions.
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Table 1. Chemical composition of the as-received alloys for the present work.

Chemical Analysis (wt%)

Alloy
Elements

Cu Si Fe Mn Mg Ti Zr V Al

T200 6.5 0.054 0.05 0.453 0.006 0.09 0.18 0.01 Balance

B319 3.32 7.97 0.418 0.245 0.266 0.131 - - Balance

A356 0.12 7.19 0.12 - 0.32 0.12 - - Balance

Table 2. Compositions of the five alloys used for this study.

Alloy Code Composition

Alloy A T200

Alloy B T200 +0.15% Ti

Alloy C T200 +0.15% Ti + 0.5%Ag

Alloy D A319 + 0.15%Ti + 200 ppm Sr (0.02%)

Alloy E A356 + 0.15%Ti + 200 ppm Sr (0.02%)

All alloys were received in the form of ingots and melted in a 60-kg capacity SiC
crucible using an electrical-resistance furnace (Pyradia, Montreal, QC, Canada). This
furnace is equipped with a rotary degassing impeller. The melting temperature was varied
between 830 ◦C and 750 ◦C depending on the alloy’s final composition. Prior to casting,
the temperatures of all melts were approximately 750 ◦C. However, the temperature in the
pouring ladle was approximately 720 ◦C. The metallic ladle was also coated with boron
nitride and preheated at 350 ◦C prior to transferring the liquid metal to the mold. For each
alloy composition, the specified alloying elements were added using calculated amounts of
the corresponding master alloys to obtain the desired level of addition.

The molten metal was degassed for approximately 15 min using pure, dry argon gas
injected into the melt at a constant rate of 20 m3/h employing the graphite impeller (rotating
at ~120 rpm). In order to ascertain the exact chemical composition, three samplings for the
chemical analysis were taken at different times during the casting process for each alloy
melt. These samplings were taken at the beginning, at the middle, and at the end of each
casting process. The melt was poured into an ASTM B-108 permanent mold (fabricated
in-house using ASTM B-108 standard specifications) preheated to 450 ◦C (to drive out
moisture) to prepare the test bars for tensile testing (solidification rate of ~8 ◦C/s) [15].

The as-cast bars (570 tensile bars divided into sets of five bars each) were subjected
to different heat treatments to enhance their mechanical properties. The different heat
treatment conditions, incorporating solution heat treatment (SHT), quenching, and aging
(T6 and T7 tempers), that were used for this study are given in Table 3, which gives the
heat treatment details for Alloys A, B C, D, and E.

• All solution heat treatments (SHT) for the T200 alloys were carried out at 520 ◦C.
• All solution heat treatments (SHT) for the A319 alloy (coded D alloy) were carried out

at 500 ◦C for only 8 h.
• All solution heat treatments (SHT) for the A356 alloy (coded E alloy) were carried out

at 540 ◦C for only 8 h.
• Water quenching was done using warm water (~60 ◦C).

Tensile testing at ambient temperature was carried out on half of the total number
of test bars obtained for all the alloys and all conditions (as-cast and heat-treated). An
MTS Servo hydraulic mechanical testing machine (MTS Systems Corporation, Eden Prairie,
MN, USA) was used to carry out the tensile testing at a strain rate of 4 × 10−4 s−1. Tensile
testing at 250 ◦C was carried out on the other half of the total number of test bars (265 bars
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or 53 packets) for all the alloys/conditions studied. In this case, the testing was carried out
employing an Instron Universal Mechanical Testing machine (Instron®, Norwood, MA,
USA) using the same strain rate of 4 × 10−4 s−1 as in the ambient temperature case. In both
cases, a data acquisition system attached to the machine provided the tensile properties in
terms of ultimate tensile strength (UTS), yield strength at 0.2% offset strain (YS), and the
percentage elongation to fracture (%El).

Table 3. Details of the heat treatment conditions for Alloys A, B, C, D, and E.

Heat Treatment
Number Heat Treatment Details

1 As cast

2 SHT for 4 h/air quenching

3 SHT for 4 h/water quenching

4 SHT for 4 h/water quenching + aging 1 (4 h @ 180 ◦C)

5 SHT for 4 h/water quenching + aging 2 (4 h @ 200 ◦C)

6 SHT for 4 h/water quenching +aging 3 (4 h @ 250 ◦C)

7 SHT for 4 h/water quenching + aging 4 (100 h @ 250 ◦C)

8 SHT for 8 h/air quenching

9 SHT for 8 h/water quenching

10 SHT for 8 h/water quenching + aging 1 (4 h @ 180 ◦C)

11 SHT for 8 h/water quenching + aging 2 (4 h @ 200 ◦C)

12 SHT for 8 h/water quenching + aging 3 (4 h @ 250 ◦C)

13 SHT for 8 h/water quenching + aging 4 (100 h @ 250 ◦C)

The samples for scanning electron microscopic (SEM) examination were prepared
from the tensile-tested specimens by sectioning them 1 cm immediately below the fracture
surface and mounting them carefully for subsequent fracture surface examination. The
fracture surface of the selected samples was examined using the same JEOL 840A scanning
electron microscope (JEOL, USA Inc., Peabody, MA, USA). The fracture surface analysis
aimed to investigate the nature of the fracture for the selected samples and identify the
main source of cracking and fracture for these alloys. The polished surfaces were ion milled
for 20 min prior to examination.

3. Results and Discussion
3.1. Microstructural Characterization (Solidification Rate ~0.8 ◦C/s)

Figure 1 shows the distribution of grain size in the present T200 alloy and the com-
mercial 319 alloy. It is evident that the combined addition of Zr + Ti is more effective in
refining the alloy grains than using TiBor alone.

Figure 2 illustrates the microstructure of the as-received alloys revealing the different
phases and their relative volume fractions. It is evident that, due to the high copper content
in alloy A, the number of precipitated phases (mostly Al2Cu) is markedly higher than
those in alloy D associated with small particles of the Q-phase. Since alloy E contains only
Si and Mg, Mg2Si is the main precipitated phase, as shown in Figure 2d, along with fine
β-Al5FeSi platelets and π-FeMg3Si6Al8. Figure 3 reveals the precipitation of Al3Zr within
the aluminum grains, whereas Ag was segregated towards the grain boundaries in alloy C.
According to the Al-Zr binary diagram shown in Figure 3e [16], the liquidus point of 0.3%
Zr is approximately 750 ◦C. The melting temperature was 830 ◦C, sufficient to dissolve
most of the added Zr. During the period of reducing the melt temperature to 750 ◦C prior
to casting, some of the Al3Zr might have precipitated in the form shown in Figure 3a.
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Figure 1. Macrostructure of grain size distribution in: (a) alloy A and (b) alloy D in the as-cast condition.
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Figure 2. Backscattered electron images of the three base alloys in the as-received condition: (a) alloy 

A; (b) alloy D; (c) alloy D high magnification; (d) alloy E; (e,f) EDS spectra corresponding to Al2Cu 

and Mg2Si, respectively; (g,h) X-ray images of Cu and Mg distribution in (c) and (d), respectively. 
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Figure 2. Backscattered electron images of the three base alloys in the as-received condition: (a) al-
loy A; (b) alloy D; (c) alloy D high magnification; (d) alloy E; (e,f) EDS spectra corresponding to Al2Cu
and Mg2Si, respectively; (g,h) X-ray images of Cu and Mg distribution in (c) and (d), respectively.
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Figure 3. Phase precipitation in alloy C in the as-cast condition: (a) backscattered electron image of 

alloy C; (b) high magnification of (a) showing segregation of Ag towards the alloy grain boundaries 

as confirmed with the x-ray image in (c); (d) X-ray image of Zr precipitated particles; (e) Al-Zr binary 

diagram. The blue arrow points to the melting temperature, whereas the red arrow indicates the 

Figure 3. Phase precipitation in alloy C in the as-cast condition: (a) backscattered electron image of
alloy C; (b) high magnification of (a) showing segregation of Ag towards the alloy grain boundaries
as confirmed with the x-ray image in (c); (d) X-ray image of Zr precipitated particles; (e) Al-Zr
binary diagram. The blue arrow points to the melting temperature, whereas the red arrow indicates
the pouring temperature where Al3Zr phase particles in (a,d) were precipitated; (f) EDS spectrum
corresponding to the Al3Zr particle in (d). The inset in (b) reveals the peak distribution between the
white lines.
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3.2. Tensile Properties (Solidification Rate ~8 ◦C/s)
3.2.1. Testing Temperature 25 ◦C

Figure 4 shows the stress-strain curves produced from alloy B tested at 25 ◦C following
different heat treatments. Examination of these curves shows that they all reveal the same
Young’s modulus. However, there is no marked change in the rate of work hardening when
going from one condition to another due to the large amount of alloying elements in the
base alloy (approximately 8%). As may be seen from Figure 5, all three tensile parameters
of alloy C are slightly inferior to those obtained from alloy B, which may be due to the
entrapment of some oxides during the course of casting. The beneficial effect of the addition
of 0.5% Ag appeared not in improving the alloy strength, but rather in enhancing the alloy
resistance to softening during the heat treatment, in particular aging in the T7 process
compared to other alloys. Prolonged aging for 100 h at 180 ◦C resulted in the coarsening of
the Al2Cu particles, which explains the drop in the alloy strength as presented in Figure 5b.
Considering treatments 8 to 13, it is evident from Figure 6 that alloy B exhibited superior
tensile strength compared to that obtained from the A319 and A356 alloys.
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Figure 4. Stress-strain diagrams obtained from alloy B at room temperature following different heat
treatment conditions. The broken blue line indicates 0.2% proof strain. The colors of the curves
correspond to the heat treatment conditions as listed in Table 3 – of interest to note are the curves for
treatments 10, 13 and 9.

Figure 6 is a schematic diagram showing the effect of the heat treatment on the
dislocation motion and particle density of the alloy strength when going from the T6 to
T7 condition. Abdelaziz et al. [17] investigated the dislocation-particles interaction as a
function of heat treatment in the 354 alloy, as depicted in Figure 7, using transmission
electron microscopy. In the case of the present alloys, Figure 8 exhibits the variation in the
precipitates as a function of the applied heat treatment.
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Figure 6. Schematic representation showing the influence of increasing the aging temperature on the
size, density, and inter-particle spacing of the hardening precipitates: (a) at a low aging temperature
and (b) at a high aging temperature. (L1 and L2 indicate the inter-particle spacing in each case.). The
black arrows represent the dislocations motion through the precipitates.



Materials 2023, 16, 1400 10 of 22

Materials 2023, 16, x FOR PEER REVIEW 10 of 24 
 

 

 

Figure 6. Schematic representation showing the influence of increasing the aging temperature on 

the size, density, and inter-particle spacing of the hardening precipitates: (a) at a low aging temper-

ature and (b) at a high aging temperature. (L1 and L2 indicate the inter-particle spacing in each 

case.). The black arrows represent the dislocations motion through the precipitates. 

  

Figure 7. Brightfield TEM images of dislocation-particles in (a) T4 and (b) T6 conditions, revealing 

the significant increase in dislocation density—same zone axis [17]. 

(a) (b) 

Temperature 

(a) (b) 

Figure 7. Brightfield TEM images of dislocation-particles in (a) T4 and (b) T6 conditions, revealing
the significant increase in dislocation density—same zone axis [17].
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alloy B: (a) as cast (condition 1); (b) T6 (condition 5); (c) T7 (condition 7)—Numbers in each image
indicate UTS values.
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Table 4 lists the tensile properties of alloy A in the as-cast condition. Based on these
values, the plots in Figure 9 show the tensile properties for a given alloy composition/heat
treatment condition (P = property) in terms of ∆P values where ∆P represents the difference
in P with reference to the same property for the A alloy in the as-cast condition. Thus,

∆P = P (at a given condition/alloy composition) − P (alloy A-as cast) (3)

Table 4. Tensile properties of alloy A.

Condition UTS [MPa] YS [MPa] % El [%]

As-cast 283.5 227.3 2.2

These plots, therefore, depict the contribution of the added elements as well as the
heat treatment processes to the tensile properties of the as-cast base alloy A. It should be
borne in mind that negative values mean that the alloy properties in the as-cast condition
are superior to those obtained after heat treatment.

The main observations that may be noted/summarized from Figure 9 are as follows:
From Figure 9a with respect to the UTS tensile property, it is seen that:

1. Alloys B and C show a decrease in UTS levels by approximately 40–50 MPa in the
as-cast condition.

2. The maximum contribution was obtained for all three alloys when heat treated in the
conditions 4, 5, 10, and 11 with alloy B achieving slightly higher values (approximately
20 MPa) than the other alloys, reaching approximately 110 MPa above that shown in
Table 4 for the as-cast alloy A.

3. Treatment 8 resulted in the lowest contribution to the UTS level: 40 MPa (alloy A),
30 MPa (alloy B), and nil for alloy C containing 0.5% Ag.

4. Treatment 4 offered an intermediate contribution almost half-way between treatments
8 and 1.
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Figure 9. Contribution of the alloying elements and heat treatments to the tensile properties of alloy
A in the as-cast condition: (a) UTS; (b) YS; (c) % elongation to fracture.

With respect to the YS tensile property, Figure 9b reveals that:
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1. The maximum contribution to the YS of the as-cast alloy A was achieved when
treatments 4, 5, 10, and 11 were applied to the three alloys, i.e., A, B, and C, with a
value of approximately 80 MPa.

2. In this case, also, treatment 8 contributed negatively to the YS (40–60 MPa) with
alloy C exhibiting the minimum YS of the three alloys.

3. Treatment 13 brought all alloys to almost none.
4. Treatments 1–3 had the same effects on the YS as Treatment 8.

For the percentage elongation to fracture, the following observations were noted from
Figure 9c:

1. The plot showed two explicit positive peaks, one after treatment 2 (4%) and the second
following treatment 9, where each alloy contributed differently: 10% (alloy A), 6%
(alloy C), and 4% (alloy A).

2. The remaining heat treatments exhibited contributions as little as 1%.

3.2.2. Testing Temperature 250 ◦C

The tensile properties of the alloys A, B, C, D, and E when tested at 250 ◦C, using test
bars in the as-cast and heat-treated conditions following solution heat treatment for 8 h, are
presented in this section. Prior to testing, the test bars were kept in the testing chamber at
250 ◦C for thirty minutes to ensure a homogeneous temperature distribution throughout
the bar before the test was carried out. The high temperature tensile properties (UTS, YS,
and %El) of alloys A, B, C, D, and E are shown in Figure 10.
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composition and the applied heat treatment.

The five alloys achieved peak strength when T6 heat treatments were used (i.e.,
treatments 10 and 11) as the precipitates were fine, coherent, and displayed small inter-
particle spacing so that the strength significantly increased. From Figure 10, it may be seen
that alloys A, B, and C reached their peak strength with the heat treatment condition 11 as
also presented in Table 5. When these tensile results are compared with those of the as-cast
condition of each alloy, significant improvement in strength is noted.
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Table 5. Tensile properties of the five alloys following treatment 11 (T6 temper).

Alloy Code UTS [MPa] YS [MPa] % Elongation

A 281 275 1.95

B 307 294 2.26

C 275 262 3.2

D 309 285 2.8

E 282 271 2.4

When the T7 temper was applied (i.e., the heat treatments 12 and 13), the strength
started to decrease, and the ductility started to increase. The reason behind that can
be explained as, in the heat treatment condition 12, the aging temperature was further
increased, which caused over-aging. In the heat treatment condition 13, the temperature as
well as the aging time were increased, which caused further over-aging. As over-aging took
place, the precipitates became coarser in size and lower in density, displaying large inter-
particle distances as well. This facilitates dislocation motion that, in turn, has softening
effects, which decrease the strength. Thus, when the castings were over-aged, the strength
decreased, and the ductility increased.

Figure 11a depicts the microstructure of the T200 alloy in the as-cast condition. In
order to evaluate the effectiveness of the selected solutionizing treatment, i.e., time and
temperature, the sample was aged at room temperature for one week. As can be seen in
Figure 11a, a large amount of Al2Cu phase particles were precipitated during the T4 temper.
Figure 11b exhibits the presence of some ultra-fine precipitated particles that may have
occurred during the interval between the solution heat treatment (SHT) and examining
the sample. With the high amount of Cu in the T200 alloy, a high-volume fraction of
ultra-fine particles is to be expected when the alloy is aged at 180 ◦C (T6) as shown in
Figure 11c. There is an explicit increase in their size and morphology from round particles
to short rods arranged in two perpendicular directions, as displayed by the white arrows in
Figure 11d, following aging for 100 h (T7). Using heat treatment changed that situation and
enhanced the mechanical properties of the T200 alloys. Considering the testing temperature,
Figure 11e illustrates the marked increase in the density of the precipitated Al2Cu when the
alloy tensile bars were pulled to fracture at 250 ◦C. It should be mentioned here that, due to
the high density of Al2Cu particles as displayed in Figure 11e, Al3Zr phase precipitation
could not be traced. In addition, the work of Kipling et al. [18] was carried out at much
higher temperatures in the range of 375–425 ◦C. The EDS spectrum, corresponding to
the white rectangle in Figure 11e and presented in Figure 11f, reveals peaks due to the
presence of Zr.

In general, improvement in the strength of the alloys is attributed to the solution heat
treatment as well as the high solidification rate that followed. As with SHT, the maximum
number of hardening solutes of Cu are retained in solid solution in the matrix forming
a homogeneous supersaturated solid solution (SSSS) at elevated temperatures. When
quenched or cooled rapidly, the SSSS formed during the solution treatment is preserved by
means of rapid solidification to some lower temperature, usually near room temperature.
This retains the solute atoms in solution and blocks them in their positions where they
moved to at the high temperature during the SHT, which makes the casting ready for
subsequent strengthening mechanisms [19–22].
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Figure 11. Precipitation of Al2Cu phase particles in alloy B: in the (a) as-cast and (b) SHT conditions;
(c) aged 4 h at 180 ◦C (T6) and tested at 250 ◦C—inset shows almost complete sphericity of the
precipitated particles; (d) aged 100 h at 250 ◦C following solutionizing at 520 ◦C for 4 h prior to
testing at 250 ◦C; (e) electron image of alloy B in the T7 condition (d) tested at 250 ◦C—inset reveals
Zr-rich precipitates; (f) EDS spectrum corresponding to the white rectangle in (e).
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3.3. Q-Charts
3.3.1. Testing Temperature 25 ◦C

Figure 12 presents the quality chart of the five studied alloys. The high Q and high
PYS results would be located in the upper-right corner of the chart for alloys B, C, and
E following T4 treatment (SHT for 8 h followed by warm-water quenching). Treatments
10 and 11 resulted in moving all the five alloys to the opposite corner of Figure 12, i.e.,
upper-left corner. Table 6 summarizes the composition and appropriate heat treatment for
the T200 base alloy to achieve the best combination of Q and PYS values and each alloy
that would result in the best Q and PYS values.
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Although alloy B produced a Q value falling between alloys A and C, its corresponding
PYS value is the highest among the three alloys. Thus, application of the T6 temper to alloy
B may represent the optimum conditions for using alloy T200. Alloy B also showed higher
values for both heat treatment conditions both without and with aging than the reference
alloys D and E. In general, both alloys B and E exhibited a wide range of Q and PYS values
compared to alloy D that represented the shortest cycle. It can be concluded, therefore,
that alloy B in the T6 condition provides the optimum alloy composition/heat treatment
condition for achieving the best tensile properties and alloy quality for the T200 alloy at
room temperature. On the other hand, alloy E (broken red line) revealed the widest range
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of response to heat treatment in terms of Q levels (270 MPa–480 MPa) and PYS values
(165 MPa–345 MPa).

Table 6. Appropriate composition and heat treatment for the five alloys studied.

Alloy Code Heat Treatment Code Q
(MPa)

PYS
(MPa)

A 2 453 306

B 11 440 360

C 3 463 311

D 8 410 290

E 10 400 309

Figure 13 presents a panel chart showing the Q-values corresponding to alloys A, B, C,
D, and E for the 13 applied heat treatments including the as-cast condition. In the solution
heat treatment condition (treatment #3), alloy C revealed the highest Q value above the
commercial alloys. However, in the T6 temper, alloys C and E obtained very close values.
In all, alloy B offered the highest Q levels over the whole heat treatment duration.
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3.3.2. Testing Temperature 250 ◦C

Figure 14 shows a quality chart illustrating the relationship between UTS and %El for
the five alloys in the as-cast and six heat treatment conditions tested at 250 ◦C. In general,
all values fall in a narrow band around Q (290–350 MPa) as marked by the broken lines in
Figure 14. The main difference appears in the PYS values, which vary between 50–270 MPa.
For all alloys, over-aging (coded treatment 13) displayed values as low as Q = 250 MPa for
alloy A, whereas alloy E showed the lowest PYS level of 40 MPa. In this case, as well, alloy
E revealed the longest path between the as-cast and over-aging conditions due to the alloy
heat treatment flexibility. Apparently, Q values of alloy B fall between alloy D (350 MPa)
and alloy A (240 MPa). In comparing the Q and PYS values of alloy B with alloy E, alloy
B shows slightly higher results. Therefore, it is reasonable to state that alloy B in the T6
temper may be considered as the optimum alloy composition/heat treatment condition. In
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comparison, as Figure 15 shows, alloy E exhibited Q values in the range 270 MPa–350 MPa
and PYS levels in the range 20 MPa–250 MPa (Figure 14).
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4. Fragtography

In this section, the fracture behavior of alloy B will be discussed in terms of heat
treatment and testing temperature. Figure 16a is the fracture surface of the alloy in the
as-cast condition. Since the alloy does not practically have Si, the fracture occurs through
the Fe-intermetallics, mainly α-Fe, which constituted the main intermetallic in this category
of alloys (see white circle). The reported increase in the alloy strength following the T6
treatment (i.e., heat treatment condition 4) appeared in the fracture of the intermetallics over
several parallel layers (see white arrows in Figure 16b) normal to the tensile axis (arrowed
blue). Figure 16c represents the condition corresponding to the maximum attainable
ductility of alloy B (heat treatment condition 13—Figure 4). As can be seen, the original
as-cast structure is replaced by a network of deep dimples with slip marks on their walls
as indicated by the white arrow. Figure 16d is an enlarged micrograph of Figure 16c
highlighting the slip lines (see blue arrow). The fracture surface of the A319 alloy treated in
the same condition 13 is displayed in Figure 16e for comparison, revealing the precipitation
of coarse Al2Cu phase particles in the interdendritic region as confirmed from the associated
EDS spectrum shown in Figure 16f, corresponding to the square area in Figure 16e, mixed
with some Q-phase particles. Since the EDS is taken from a fracture surface, it is difficult to
rely on the accuracy of the phase composition.
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 Figure 16. Secondary electron images showing the fracture surface of alloy B tested at 25 ◦C: (a) as-
cast condition; (b) after T6 treatment; (c) after T7 treatment condition 13; (d) an enlarged micrograph
of (c), (e) alloy D in the heat-treated condition 13; (f) EDS spectrum corresponding to (e). The blue
arrow in (b) indicates the tensile direction.

Figure 17 illustrates the variation in the fracture details of alloy B as a function of heat
treatment when the tensile bars were tested at 250 ◦C. The fracture surface depicted in
Figure 16a mainly revealed a dimple structure compared to that presented in Figure 17a
for the same heat treatment but tested at 25 ◦C. Occasionally, some signs of brittle fracture
similar to those marked by the circled area in Figure 17a were observed. Samples treated
in the T7 condition with prolonged aging time (250 ◦C for 100 h) prior to pulling to
fracture revealed two distinct areas marked A and B as shown in Figure 17b. Detail of
the area marked A is shown in Figure 17c revealing a long series of slip lines covering
the entire surface of the deformed dimple. Apparently, the gaps between two adjacent
dimples—see the area marked B in Figure 17a—are composed of an ultra-fine dimple
network (approximately 600 nm).
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5. Conclusions

Based on the obtained results presented in this article, the following conclusions may
be drawn:

1. Proper grain refining of the T200 alloy (alloy A) using TiBor in the amount of 0.15% Ti
coupled with 0.28% Zr leads to the production of flexible heat-treatable castings free
of hot-tearing defects.

2. Optimum heat treatment of this alloy is 4 h/520 ◦C 9SHT) followed by water quench-
ing (~70 ◦C). Recommended artificial aging is 4 h at 180 ◦C regardless of the
testing temperature.

3. Due to the high copper content in the T200 alloy, its tensile properties are superior to
those obtained from the traditional A319 alloy.

4. Alloy B in the T6 condition is considered the optimum alloy composition/heat treat-
ment condition for the T200 alloy. It resulted in the highest UTS, YS, %El, and Q-values
compared with alloys A and C.

5. Alloy E (356 alloy) revealed the widest range of response to heat treatment in terms
of Q levels (285 MPa–480 MPa) and PYS values (165 MPa–345 MPa) when tested at
25 ◦C. Testing at 250 ◦C resulted in Q values in the range of 270 MPa–350 MPa and
PYS levels in the range of 20 MPa–250 MPa.

6. The presence of Ag in alloy C enhanced the alloy’s resistance to softening during the
aging treatment.
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