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1 Department of Strength of Materials and Building Structures, Faculty of Civil Engineering and Architecture,
Kielce University of Technology, 25-314 Kielce, Poland

2 Department of Structures and Bridges, Faculty of Civil Engineering, University of Zilina, Univerzitna 8215/1,
010 26 Zilina, Slovakia

* Correspondence: rafalp@tu.kielce.pl

Abstract: Transversely loaded beam grillages are quite often used in industrial construction. In
order to produce a safe design of such structures, it is necessary to account for the lateral torsional
buckling phenomenon, which reduces load-bearing capacity. To be able to calculate the relevant
reduction factor, the elastic critical load must be determined. As regards the existing design practice
for such structures, simplified conditions are assumed for the mutual restraint of the component
beams. However, this approach does not correspond to reality. This study discusses the results
of numerical investigations and analytical calculations concerning the effect of the elastic action
of simple beam grillage (SBG) joints on the critical load, which results from the lateral torsional
buckling (LTB) condition. The SBG was defined as a flat system of interconnected beams, unstiffened
laterally and loaded perpendicularly to the grillage plane. The analysis covered H-shaped grillages
with different span ratios of component beams, in which the main (coupling) beam was decisive
for instability. The effectiveness of the use of closed-section stiffeners at the grillage joints was also
investigated. The grillage elastic critical resistances (ECR) were determined for two variants of joint
stiffening. The computations were performed by means of FEM numerical simulations. The spatial
models were discretised with the following elements: (1) solid ones in Abaqus, (2) shell ones in
ConSteel, and (3) thin-walled bars in ConSteel. The LTB critical moments of the weakest beam (critical
beam), elastically restrained against warping and against lateral rotation (in the LTB plane), were
computed using the analytical methods developed by the authors. To this end, the methods were
proposed to determine the indexes of the critical beam elastic restraint in the adjacent stiffening
beams. In the study, it was demonstrated that (1) taking into account the conditions of mutual elastic
restraint and interaction of the component beams provides a more accurate assessment of the grillage
ECR, (2) the use of closed-section stiffeners in the grillage joints increase the ECR compared with
classic flat stiffeners, (3) the grillage ECR can be estimated based on the critical moment Mcr of the
weakest beam (critical beam) when the conditions of its elastic restraint in joints are accounted for.

Keywords: elastic critical resistance (ECR); simple beam grillage (SBG); critical beam; critical moment
of lateral torsional buckling; elastic restraint at the support joints; FEM simulations

1. Introduction

Methods currently used for the design of steel structures aim to adequately represent
the actual performance conditions in the engineering computational models. In particular,
this refers to complex structures, in which component members interact in the distribution
of loads and redistribution of internal forces. Examples of such structures include steel
frames, framework structures, or grillages, especially those with stiff (e.g., welded) joints.
When appropriate criteria for the joint properties are met, such structures can be classified
as the so-called ‘fully continuous systems’ [1,2].
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The present study concerns the elastic critical resistance (ECR) of the H-type simple
beam grillage (SBG). The ECR is measured by the external critical load or critical moment
(Mcr) from the condition of lateral torsional buckling (LTB) of at least one component
beam. The ECR of the grillage constitutes the upper limit of the design resistance and
can be used to determine the so-called relative slenderness and the reduction factor for
LTB of the weakest (critical) beam. Such a way of determining the beam design resistance,
taking into account its imperfections, is permitted in European standards [1]. In order to
avoid ambiguity, in this study the H-type SBG was defined as an H-shaped flat system of
interconnected beams, which are unstiffened laterally and loaded perpendicularly to the
grillage plane. On the other hand, the critical beam was called the grillage weakest beam
from the condition of lateral torsional buckling (LTB), which is elastically restrained against
warping and against lateral rotation (rotation in the LTB plane) at the grillage joints.

As regards welded grillages, the so-called fully continuous connection solutions,
where members of equal or similar heights are connected, make it possible to maintain
continuity in the transmission of displacements (including cross-sectional warping) and
cross-sectional forces (including bimoments) at the joints. When the computational models
of steel grillages account for the effects above, it is possible to design this class of structures
in a more effective manner.

The interaction of members connected at the joints of steel frames or framework
structures can be taken into consideration in the programs using the finite element method
(FEM). They include those based on classic bar elements (with 6 degrees of freedom at
each node). In this case, the definitions of the nodal degrees of freedom make it possible
to account for the elastic translational and rotational stiffnesses at the structure joints.
The warping stiffness, however, is disregarded. For grillages, this approach may prove
insufficient, especially for stability analysis. The problem is solved in ConSteel (ConSteel 15)
software, where bar thin-walled elements are employed taking into account the additional
degree of freedom related to section warping (i.e., 7 degrees of freedom are found at
the node). An additional advantage offered by ConSteel is the possibility of converting
the grillage bar model into a shell model. This approach allows an even more accurate
analysis of the stability loss, although not all properties of the structural details can be
fully represented.

In order to directly incorporate the phenomenon of spatial interaction of members
(e.g., beams in the grillage structure) while taking into account joint details, it is necessary
to develop a spatial FEM model. In the model, shell elements (for cold-formed sections) or
solid elements (for hot-rolled sections or their welded equivalents) should be employed, e.g.,
in Abaqus (Abaqus v. 6.12) software. However, to correctly build an extended model for
numerical simulations, which would take the details of solutions of the joint into account,
the design engineer must have experience in spatial FEM modelling. The development of
such models is generally time-consuming, and additionally significantly extends the time
of computations. This way of modelling relatively large parts of the structure, in which
joint details are taken into account, significantly increases the size of the task, even for
modern computers currently used by engineers.

To optimise numerical models and shorten the time of computations, mixed FEM
models are sometimes used. In the models, 1D bar elements of the beams are complemented
by 3D joint models. In this respect, static and stability analysis methods reported in
studies [3–6] among others, provide an interesting option. Such solutions allow for the
local, spatial modelling of the geometry of joint details, while using a bar model for other
structural members. The fundamental benefits brought by those methods is a considerable
reduction in the number of finite elements and the duration of computations. At the same
time, the elastic restraint of the beams at the joints is still taken into account. However,
this does not change the fact that this approach also requires that a designer should have a
considerable, and in some cases even greater (in relation to homogeneous models), skill in
using the FEM technology.
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Another method of spatial modelling of elastic properties of welded corners in flat
frames is discussed in [7]. In this case, the connection of I-section bar members of the
structure (beam, column) is performed by means of a super element that takes into account
the transmission of warping through the joint. In the computational model, the flanges of
the joined beam and column and the stiffeners used in the corner of the frame are modelled
with simple beam elements. The practical use of the super element, implemented in the
ConSteel 15 software, makes it necessary to indicate the joined bar members and to select
the stiffening method. The correctness of the solution was verified by FEM using shell
elements [8].

Although FEM simulations offer many advantages and possibilities, from the point
of view of structural safety, it is reasonable to verify the obtained results by means of
performing at least approximate analytical calculations. The solution (e.g., the analysis of
spatial grillage stability loss) involves finding the weakest member (the critical beam) that
is elastically restrained in the adjacent members (supporting beams). For the critical beam,
it is necessary to determine the indexes of the elastic restraint in the stiffening members
while the properties of the joints are taken into consideration. The approach is to some
extent analogous to that used in the critical plate method (CPM) employed in the analysis
of critical buckling resistance and the design of ultimate resistance of thin-walled members
susceptible to local instability [9]. The manner and criteria of the division of the beam
grillage component elements into critical beams and stiffening beams for more complex
arrangements (shapes) are currently being investigated and will be discussed in another
study from the same authors.

As regards stability analysis of steel beams, which takes into account different types of
elastic restraint at support joints, the solutions proposed, among others, in [10–13], can be
applied. In the stability analysis of the designated beam members of the structure, it is also
possible to employ LTBeam (v. 1.0.11) or LTBeamN (v. 1.0.3) software. Like in ConSteel,
they use bar finite elements supplemented with the so-called warping degrees of freedom.

The literature on the interaction of component beams in grillages or similar structures
(e.g., system of beams braced against torsion) focuses on, among others, (1) lateral torsional
buckling of I-girders discretely braced against torsion and/or against translation [14–19],
including lateral torsional buckling of beams with point bracing [20,21], (2) the numerical
analysis of two- and four-beam structural systems transversely braced with coupling
beams [22], (3) the assembly of beam systems in skewed bridge structures [23], (4) global
stability loss in two-beam systems (beams connected by cross-frames) [24,25], (5) modelling
of curvilinear composite bridges, in which the grillage structure made of full-wall I-beam
girders was approximated by an equivalent 3D truss model [26], (6) taking into account, in
the global analysis, the actual stiffness of the component beam joints (stringer-to-crossbeam)
of the deck members of old railway bridges [27]. A considerable number of studies are
available in the technical literature that deal with various grillage systems. The component
beams of those structures are laterally stiffened by (a) steel diaphragms and timber struts,
e.g., [28], (b) a reinforced concrete deck slab (in bridge structures), e.g., [29], (c) sheathing
plates in ship deck structures, e.g., [30]. However, studies were not found to provide the
analysis of H-type grillages built from beams unstiffened laterally, in which the main beam
carrying the transverse load was a coupling beam. Such structures can be seen, among
others, in industrial construction as support structures for technological equipment.

The specific objectives of this study are as follows: (1) to evaluate the effect of the
span of the component beams, and of the elastic action of the H-type SGB joints on the
grillage ECR from the LTB condition, (2) to investigate the effect produced by closed-
section stiffeners used at the grillage joints, (3) to examine the possibility of determining
ECR in H-type grillage on the basis of elastic stability analysis of the critical beam with the
proposed manner of calculation of the elastic restraint indexes while taking into account
the properties of the joints. Additionally, one of the goals of this study is to consider
the potential ECR reserves of the grillage’s weakest beam. The reserves result from the
properties of the joints that are stronger than the fork support. The critical moment (Mcr) of
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LTB, determined on this basis, can be employed to determine the beam relative slenderness
and the reduction factor for LTB in design calculations. For fully continuous beam grillage
joints, the adoption of fork support conditions in the computational model can lead to an
overly conservative design.

Three approaches (methods) were employed to carry out the task.
Method 1—Numerical simulations in Abaqus using a spatial FEM model for the whole

structure (with joint details) with the use of solid (volume) finite elements. In this case,
the grillage ECR, for a given load type, was determined from the critical load multiplier
obtained from the Buckling procedure.

Method 2—Numerical simulations in ConSteel using a spatial FEM model for the
whole structure. The following elements were employed: (a) shell, (b) thin-walled bars
(7 degrees of freedom at a node). In this case, the grillage ECR, for a given load type, was
obtained from the elastic lateral torsional buckling analysis.

Method 3—Designation of the critical beam from the grillage structure. The beam is
decisive for stability loss of the grillage. For the critical beam, the elastic restraint conditions
in the adjacent (stiffening) beams were taken into consideration. The grillage ECR was
determined on the basis of critical moment Mcr of lateral torsional buckling of the critical
beam. After the indexes of the beam elastic restraint in the support joints were determined,
Mcr was found. This was carried out using three methods, namely (1) analytical calculations,
in which algorithms based on the energy method were used, (2) approximation formulas,
and (3) LTBeamN (FEM) software.

It is important to show the congruence between advanced FEM simulations for the
whole structure and analytical calculations for a designated critical beam. When computa-
tional methods are doubled, it is possible, e.g., to identify potential errors in the structure
modelling. The possibility of using relatively simple approximation formulas allows a
more advanced preliminary design. For basic structural systems, the formulas can also be
employed in the standard design. This approach improves the safety of structures already
at the design stage.

The study provides a detailed analysis of H-type SBG for strictly determined pa-
rameters. They account for the following: (1) the grillage geometry and diagram, (2) the
restraint method and four span variants of the support beams, (3) two span alternatives
of the main (coupling) beam, (4) type of the cross-section of the component beams, (5) the
method of joint stiffening, (6) the load type and ordinates of the load application point. It
is obvious that the grillage ECR is a function of the assumed variables, which translates
into the complexity of the problem. A multi-criteria analysis of different grillage types,
including a wider range of adopted parameters (variables), will be discussed in the authors’
publications in the future.

This study is an introduction to the ‘critical beam’ method. The designated beam is
selected from the structural system on the basis of component stability analysis.

The innovativeness of the research reported in this study, in relation to solutions
known from the literature, involves the following:

(i) A departure from fork support, classically adopted in beam stability analysis;
(ii) Taking into account the interaction of component beams and joint properties (includ-

ing the stiffening type) in the ECR analysis of H-type grillage;
(iii) Proposing a method for the determination of the indexes of the critical beam elastic

restraint in stiffening beams;
(iv) Demonstrating that the ECR of H-type grillage can be determined based on the critical

moment of the critical beam. Further, on the basis of Mcr, it is possible to determine
the so-called relative slenderness and reduction factor for LTB (taking into account
the equivalent imperfection according to [1]) of the design resistance of the beam
against LTB;

(v) Demonstrating that the approach based on the critical beam analysis offers a more
accurate representation of the SBG’s actual performance in the elastic LTB phase while
using a relatively simple analytical model.
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2. Diagram of the Analysed Structure

The detailed analysis concerned an SBG of H-type, composed of support beams A–C
and D–F, and the main (coupling) beam B–E (Figure 1a). The component beams of the
grillage were produced from an IPE300 (E = 210 GPa, ν = 0.3, G ∼= 81 GPa) section for
two main beam span variants, namely L = {6, 7.5} [m], and four variants of support beam
spans L1 = {3, 6, 9, 12} [m]. For each of the span variants, two types of stiffening were taken
into consideration at joints B and E, namely flat stiffeners (Figure 1b) and closed-section
stiffeners (Figure 1c). These two methods of stiffening are characterised by a large disparity
in the obtained warping stiffness [31,32]. It was assumed that the homogeneous grillage
beams were weld-connected at joints B and E. In this way, it was possible to obtain full
continuity in the transmission of displacements, including warping, and in the transmission
of cross-sectional forces, including bimoments. It was assumed that the resistance of the
welded connections is not lower than that of the connected beams. At this stage of the
analysis, the effect of post-weld stresses and deformations in members under bending
was disregarded.
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Figure 1. Diagram of the grillage: (a) view from the top, (b) flat stiffener (tp = 8 mm), (c) closed-
section stiffener (Ø139.7/8). Notation: 1—main (coupling) beam, 2—support beam, 3—flat stiffener,
4—closed-section stiffener [33].

Loading diagrams frequently found in engineering practice for beam B–E were anal-
ysed: (a) force concentrated at midspan, (b) uniformly distributed load, (c) load distributed
over a triangle. Unit loads were applied to the top of the upper flange (zg = +h/2) of the
beam. In addition, beams A–C and D–F were loaded with reactions from the beam B–E.
Beams A–C and D–F were assumed to be fully fixed on supports A, C, D and F. Based
on static calculations performed with Autodesk Robot Structural Analysis Professional
and ConSteel, it was found that the distribution of the moment My on the beam B–E corre-
sponds approximately to the free support. Additionally, it does not indirectly affect the
critical moment of the lateral–torsional buckling of the B–E beam. This results from the low
torsional stiffness of the open-section support beams (A–C, D–F) for the spans considered
in the analysis.

In this case, the transversely loaded main (coupling) beam is decisive for the ECR of
the H-grillage from the lateral torsional buckling condition. This stems from a comparison
of the ECR of the component beams selected from the structure. For the grillage of concern,
the main beam critical moment is at least a few times smaller than the Mcr of the support
beams completely fixed at the support joints and coupled with the B–E beam. Therefore,
the main (coupling) beam of the analysed grillage (Figure 1) is its critical beam. The method
behind this approach is suitable for more complex grillage structures, and it involves
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designating the ‘critical beam’ which is elastically restrained in the adjacent stiffening
beams. The method will be discussed in detail in another paper.

3. FEM Simulations in Abaqus Software (Method 1)

FEM simulations in Abaqus (Abaqus v. 6.12) [34] involved the grillage modelled
as a whole, including physical representation of the joint details. To discretise the beam
members and joints, volumetric finite elements of the C3D8R type were used. They had
eight nodes with six degrees of freedom at a node. The beams were discretised using a basic
FEM mesh with an average mesh size of 50 × 10 × t/4 [mm] (where t is wall thickness).
The mesh was compacted at the structure problematic points to 10 × 10 × t/4 [mm]. Finite
element compaction occurred at supports (A, C, D, and F), at stiffened intermediate joints
(B and E), and at the point where concentrated load was applied. The number of volumetric
finite elements of the C3D8R type depends on the span of the grillage component beams
(A–C, B–E, D–F) and the method of stiffening at joints B and E. For the grillage shown in
Figure 2, the Abaqus software generated 192,748 finite elements. The boundary conditions
of the support beams took into account the prevention of translation, rotation and warping
of the support sections with respect to the principal axes of inertia. This effect was achieved
through translation blockage in three directions (U1 = U2 = U3 = 0) imposed on the frontal
planes of the support cross-sections of the beams.
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The transverse load was applied to the top of the upper flange of the main beam B–E.
The load had the following form: (a) a concentrated force, modelled as a concentrated load
applied to one mesh node, (b) a uniformly distributed load, modelled as a concentrated
load (in the z-axis) of constant value, distributed along the entire length of the beam,
(c) a load distributed over a triangle, modelled as a concentrated load (in the z-axis), the
value of which varied linearly. The way of modelling different parts of the structure of
the exemplary H-grillage is shown in Figure 2. The computations were performed for the
elastic range, using a computational step of the Buckling procedure.

4. FEM Simulations in ConSteel Software (Method 2)

ConSteel (ConSteel 15) software [35] was employed to model the grillage in a 3D
spatial system. A bar model and a shell model based on it were used.

4.1. The Bar Model

For the spatial bar model of the H-grillage, the component beams were modelled using
modified thin-walled elements (7 DOF) that accounted for the section warping at the nodes
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(bar elements with 7 degrees of freedom at a node). In ConSteel, the warping function of
the thin-walled section is based on the Vlasov theory of thin-walled beams [36].

Sections of all the grillage beams were represented by the IPE300 profile, which was
retrieved from the program library of sections. Each of the beams (A–C, D–F, and B–E) were
discretised with 32 finite elements. A certain limitation on the use of hot-rolled sections
(when modelling the structure with thin-walled elements 7 DOF) lies in the fact that it is not
possible to define stiffening at joints B and E and under concentrated force. Consequently,
the grillage ECR was estimated without taking into account the warping stiffness of the
stiffeners (Figure 3).
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As regards the modified thin-walled element 7 DOF, flat stiffeners or closed-section
stiffeners (2C, 2L) can only be implemented in numerical models of welded I or H members.
For the warping stiffness of such a stiffener to be included in the computations of the beam
elastic critical resistance, the stiffener must be defined on both sides of the web. If a flat
or closed-section stiffener is used only on one side of the web, its effect is disregarded by
the program.

The effect of stiffeners in the joints of the H-shaped grillage modelled with bar elements
(7 DOF), where hot-rolled sections are used, can be taken into account indirectly. One of the
methods consists of a local (only within a joint) modification of the cross-section’s geometry
of mutually transverse elements converging in a joint. In such a case, the length of the
equivalent beam element and the necessary geometrical characteristics of the modified
cross-section should be determined. In this study, when determining the ECR of the grillage,
the hot-rolled cross-sections retrieved from the program library were not modified.

The transverse load was applied to the top of the upper flange of the B–E main beam,
in the z-z axis of the beam. The load was of the following form: (a) a point load applied at
the midspan, (b) a load uniformly distributed along the length, (c) a load nonuniformly
distributed (over a triangle) along the length. The method of modelling the structure of
exemplary H-grillage is shown in Figure 3. The computations were performed in the elastic
range, using the buckling analysis.

4.2. The Shell Model

The function converting section walls of a bar element into a shell was implemented
in the ConSteel (ConSteel 15) [35] software. Owing to that, the grillage spatial model was



Materials 2023, 16, 1346 8 of 27

also developed. The model employed triangular shell finite elements with 6 degrees of
freedom at a node. While generating the shell model, the grillages originally modelled
with thin-walled 7 DOF elements (Section 4.1) were used. This way of generating shell
element mesh is extremely efficient. However, as it will be shown later, some inaccuracies
occur in the conversion of the geometric characteristics of the hot-rolled open section to the
thin-walled shell section.

In the conversion of the IPE300 section to the shell model, the web area with root radius
was replaced with an equivalent shell element of greater thickness. After the conversion of
the full grillage model to the shell model, it was necessary to cut the flanges of the main
beam (B–E) so that it would fit the flanges of the support beams (A–C, D–F).

The subsequent stage involved the modelling of the stiffeners as flat or closed shells at
joints B and E. That made it possible to explicitly take into account the warping stiffness of
the stiffeners when determining the ECR of the grillage. In the conversion to the shell model,
the boundary conditions of the bar model support beams, which took into consideration
full fixity, i.e., blockage of all 7 degrees of freedom, were automatically transformed into the
appropriate support constraints of the shell model. At the support points of the support
beams, over their cross-section contour, the so-called rigid bodies were generated. They
connected the cross-section contour to the support point, at which full fixity conditions
were imposed.

At the final stage, the program discretised all the grillage members (beams, stiffeners)
using three-node/triangular finite elements, with six degrees of freedom at each node. The
average mesh dimension of 20 mm was imposed. The mesh was automatically compacted
at the problematic points of the structure.

The manner of load application was the same as in the bar model (Section 4.1). The
shell model of the structure of exemplary H-grillage is shown in Figure 4. The computations
were performed in the elastic range, using the buckling analysis.
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5. The Model of Designated Critical Beam (Method 3)
5.1. Conditions of Elastic Restraint

In order to account for the spatial interaction of beam members of the SBG of H-type
(Figure 1), the parameters of the elastic restraint of the main (critical) beam nodes in the
support (stiffening) beams were determined.

Elastic restraint against warping and elastic restraint against lateral rotation of the
B–E critical beam at the grillage joints (B and E) were taken into account by introducing
dimensionless indexes of restraint [11]:

(a) against warping:

κω =
αω L

2EIω + αω L
, (1)

and (b) against lateral rotation:

κu =
αuL

2EIz + αuL
, (2)

where αω—stiffness of the elastic restraint against warping acc. [11], αu—stiffness of the
elastic restraint against lateral rotation acc. [11], L—beam span, Iω—warping constant,
Iz—second moment of area about the minor axis (z-axis), E—Young’s modulus.

The restraint index κω (1) ranges from κω = 0 for full warping freedom to κω = 1 for
complete warping blockage. Additionally, the restraint index κu (2) varies from κu = 0 for
full freedom of lateral rotation to κu = 1 for complete lateral rotation blockage.

For the SBG of concern (Figure 1a), with beams A–C and D–F restrained at the supports,
the elastic restraint against warping (αω) and the elastic restraint against the lateral rotation
(αu) of the critical beam at joints B and E, resulting from the elastic actions of the support
beams (Figure 5), can be written with the following formulas:

αω =
2

∑
i=1

4EIi
ω

Li
, (3)

αu =
2

∑
i=1

4EIi
z

Li
, (4)

where Iω
i, Iz

i,—geometric characteristics of the i-th sections of the supporting beams
A–B, B–C, D–E, and E–F, reaching the joints B and E, Li—the span of the A–B and B–C
compartments of the A–C beam and D–E and E–F compartments of the D–F beam.

Materials 2023, 16, x FOR PEER REVIEW 10 of 29 
 

 

(a) against warping: 

𝜅𝜔 =
𝛼𝜔𝐿

2𝐸𝐼𝜔 + 𝛼𝜔𝐿
  , (1) 

and (b) against lateral rotation: 

𝜅𝑢 =
𝛼𝑢𝐿

2𝐸𝐼𝑧 + 𝛼𝑢𝐿
  , (2) 

where αω—stiffness of the elastic restraint against warping acc. [11], αu—stiffness of the 

elastic restraint against lateral rotation acc. [11], L—beam span, Iω—warping constant, Iz—

second moment of area about the minor axis (z-axis), E—Young’s modulus. 

The restraint index κω (1) ranges from κω = 0 for full warping freedom to κω = 1 for 

complete warping blockage. Additionally, the restraint index κu (2) varies from κu = 0 for 

full freedom of lateral rotation to κu = 1 for complete lateral rotation blockage. 

For the SBG of concern (Figure 1a), with beams A–C and D–F restrained at the sup-

ports, the elastic restraint against warping (αω) and the elastic restraint against the lateral 

rotation (αu) of the critical beam at joints B and E, resulting from the elastic actions of the 

support beams (Figure 5), can be written with the following formulas: 

𝛼𝜔 = ∑
4𝐸𝐼𝜔

𝑖

𝐿𝑖

2

𝑖=1

  , (3) 

𝛼𝑢 = ∑
4𝐸𝐼𝑧

𝑖

𝐿𝑖

2

𝑖=1

  , (4) 

where Iωi, Izi,—geometric characteristics of the i-th sections of the supporting beams A–B, 

B–C, D–E, and E–F, reaching the joints B and E, Li—the span of the A–B and B–C compart-

ments of the A–C beam and D–E and E–F compartments of the D–F beam. 

 

Figure 5. The designated critical beam B–E of the SBG of H-type: (a) static diagram and boundary 

conditions, (b) bimoment B and moment Mz at the support nodes [13]. 

Formulas (3) and (4) were written in a manner analogous to that used in the classic 

Cross method [37]. 

In addition to the advantageous effect of adequate stiffnesses of the beams in contact 

(Figure 1a), the stiffness of the grillage critical beam elastic restraint against warping (αω) 

at joints B and E is also affected by the way the joints are stiffened (Figure 1b,c). The ad-

ditional stiffness αωR, related to the selected geometry of the joint stiffening, was given by 

the following formula [32]: 

𝛼𝜔
𝑅 = 𝐺𝐼𝑑ℎ0  , (5) 

+
zg

L

z

y

x

z

Pz

y y

z1

1

+
zg

1-1

EB

Pz

L/2

αω

αu

φL/2

αu

αω
uL/2

+
zg

L

z

y

x

z

Pz

y y

z1

1

+
zg

1-1

EB

Pz

L/2

zz

z

y

y

y

x

x
y

zM
f

M
f

B = M
f
·h

h LM z

φ(x)

αu

u(x)

αω

αu

αω

(a) (b) (c)(a) (b)

Mf

Mf

Mz

B = Mf ‧h

h

x

y

z

Figure 5. The designated critical beam B–E of the SBG of H-type: (a) static diagram and boundary
conditions, (b) bimoment B and moment Mz at the support nodes [13].

Formulas (3) and (4) were written in a manner analogous to that used in the classic
Cross method [37].

In addition to the advantageous effect of adequate stiffnesses of the beams in contact
(Figure 1a), the stiffness of the grillage critical beam elastic restraint against warping (αω)
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at joints B and E is also affected by the way the joints are stiffened (Figure 1b,c). The
additional stiffness αω

R, related to the selected geometry of the joint stiffening, was given
by the following formula [32]:

αR
ω = GIdh0 , (5)

where G—Kirchhoff’s modulus, Id—torsion constant of stiffener (Saint-Venant torsion
constant), h0 = h − tf—theoretical stiffener height between flange axes (Figure 1c).

The total elastic restraint against warping αω of the support sections of the critical
beam B–E is expressed as follows:

αω =
2

∑
i=1

4EIi
ω

Li
+ αR

ω . (6)

Two different types of stiffening were employed in the grillage welded joints B and E
(Figure 1).

The analysis of the warping stiffness of different types of stiffeners [31,32] showed
that the effect produced by curbing the beam section’s warping was negligibly small
when flat stiffeners (of commonly found thicknesses) were used, compared with closed-
section stiffeners. Consequently, the contribution of flat stiffeners tp = 8 mm, located in
the axis of the B–E critical beam (Figure 1b), was neglected when the stiffness of the beam
elastic restraint against warping αω (6) was determined, i.e., it was assumed that αω

R = 0.
Conversely, closed-section stiffeners (Figure 1c), especially those made from tubes with a
diameter corresponding to the width of the beam flanges (and of the same thickness as
the flat stiffeners), are highly effective in reducing the warping of both the beam cross-
section [31] and the grillage welded joint. It is possible to treat closed-section stiffeners
as additional details of the joint structure, the properties of which can be included in
the analytical model. Such a model could effectively complement FEM models based on
bar elements.

With respect to grillages with similar strength utilisation in component beams (the
critical beam and stiffening beams), a reduction in the appropriate stiffnesses of the sup-
port beams (stiffening the critical beam), including the closed-section stiffeners, may be
important and should be taken into account. Dealing with such cases will be discussed in
detail in further studies by the authors.

At the current stage of investigations into the problem, the reduction in stiffness against
warping and against the lateral rotation of the restraining beams, including closed-section
stiffeners, can be conservatively estimated following the formulas below:

αω
∗ = αω

(
1 − Mcr

Mcr,u

)
, (7)

αu
∗ = αu

(
1 − Mcr

Mcr,u

)
, (8)

where Mcr—critical moment (critical load) from the condition of the critical beam lateral
torsional buckling, Mcr,u—critical moment (critical load) from the condition of the lateral
torsional buckling of the supporting beams.

The computational example (Appendix A) shows how the concept could be applied to
the design practice.

5.2. The Critical Moment of the Lateral Torsional Buckling of the H-Grillage Main Beam

Critical moments of the lateral torsional buckling Mcr of the critical beam B–E, elasti-
cally restrained against warping and against lateral rotation (in the lateral torsional buck-
ling plane) at fixed support beams A–C and D–F (Figure 1a), were determined using the
MLTB,EL,2 algorithm. It was developed by the authors and written in Mathematica software.
To determine the critical moments, the approximation formula derived in [11] was also
used. The ECR of the critical beam B–E was also determined using the LTBeamN software.
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5.2.1. The Analytical Model—The Energy Method

The energy method in variation terms was used to derive the analytical formulas of the
MLTB,EL,2 algorithm. The total potential energy of the beam-load system was minimisation
using the Rayleigh–Ritz method. The torsion angle function (ϕ) and the beam lateral
deflection function (u) were approximated by originally coupled (using the fixity indexes
κω and κu) power polynomials with simple static interpretation. The first three terms of the
polynomial series were employed, within which polynomials describing the deflection of
the simply supported beam were coupled with polynomials describing the deflection of
the bilaterally restrained beam [11]. The formulas of the functions ϕ(κω) and u(κu) made it
possible to independently consider the elastic restraint against warping (0 ≤ κω ≤ 1) and
the elastic restraint against lateral rotation (0 ≤ κu ≤ 1).

5.2.2. Analytical Model—Approximation Formula

The critical moment Mcr of the LTB of the beam, elastically restrained against warping
and lateral rotation (in the lateral torsional buckling plane), can also be determined based
on the approximation formula derived in [11]. The formula draws on symbolic calculations
carried out in the MLTB,EL,2 algorithm. In this case, only the first coupled term of the
polynomial series was used to approximate the torsion angle function ϕ(κω) and the lateral
deflection function u(κu). Still, a good congruence between the Mcr results obtained in [11]
and those produced by FEM (LTBeamN) was found.

The approximation formula was written as follows [11]:

Mcr = D1

−B1EIzzg +

√
EIz

(
B2GItL2 + B3EIω + B2

1EIzz2
g

)
B4L2 , (9)

where B1, B2, B3, B4, and D1—coefficients depending on the beam loading diagram and the
indexes of the elastic restraint κω (1) and κu (2) acc. [11], zg—ordinate of the transverse load
application point (Figure 5), It—Saint-Venant torsional constant; the remaining symbols
were explained earlier in the study.

5.2.3. Thin-Walled Bar FEM Model—LTBeam, LTBemN

The critical moment of the LTB of the grillage critical beam B–E (Figure 1a) can be
also determined using the LTBeam [38] and LTBeamN software tools. They are based on
thin-walled bar elements (FEM).

LTBeam and LTBeamN are widely known engineering programmes used for determin-
ing critical moments of the LTB of beams with arbitrary mono- or bisymmetric I-sections.
They make it possible to assume classical boundary conditions (fork support), and also
to account for various types of beam stiffening at the support and for complex loading
diagrams. In the program default settings, the analysed beam is discretised using 100 finite
bar (thin-walled) elements.

In the case under consideration, the interaction of the critical beam B–E with the
support beams A–C and D–F should be taken into account by inputting the data on stiffness
coefficients of the elastic restraint against warping αω (6) and against lateral rotation αu (4).

The results of computations in LTBeamN for the critical beam of the exemplary H-
grillage (IPE300, L = 6 m, L1 = 9 m, αω = 384.41 kNm3/rad, αu = 2254.9 kNm) are shown in
Figure 6.
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Figure 6. The ECR and the mode of lateral torsional buckling of the critical beam B–E of H-grillage
(IPE300, L = 6 m, L1 = 9 m) acc. LTBeamN.

6. Selected Results of Computations
6.1. Method 1—Volumetric Model—Abaqus

Figure 7 shows the mode of stability loss in an exemplary SBG of H-type (IPE300,
L = 6 m, L1 = 9 m) with closed-section stiffeners at joints B and E (Figure 1c). The stability
loss mode is associated with the first eigenvalue of the ECR measured by the external
critical load Pz,cr. It was obtained through Abaqus.
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Figure 7. The mode of stability loss in exemplary H-grillage (IPE300, L = 6 m, L1 = 9 m) with
closed-section stiffeners at joints B and E, modelled in Abaqus.

The mode of H-grillage stability loss (Figure 7) acc. the first eigenvalue Pz,cr,1 = 117.3 kN
shows considerable flexural–torsional deformations (lateral torsional buckling) of the
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main beam B–E, having the shape of one half-wavelength. This confirms the adopted
assumption that concerned the designation (isolation) of the critical beam. Based on
further FEM simulations, it was found that the spatial (flexural–torsional) stability loss in
the support beams corresponds to the fourth eigenvalue that features the critical load of
Pz,cr,4 = 1170.2 kN. The second and third eigenvalues of the critical load correspond to the
lateral torsional buckling of the main (critical) beam B–E acc. two (Pz,cr,2 = 415.6 kN) and
three (Pz,cr,3 = 823.2 kN) buckling half-wavelengths, respectively.

Table 1 lists exemplary results of ECR computations of the H-grillage for uniformly
distributed loads (qz,cr), which were obtained with Abaqus.

Table 1. The ECR (qz,cr) of H-type grillage from the condition of lateral torsional buckling of the main
(critical) beam B–E, uniformly loaded (zg = +h/2), from Abaqus (solid model).

Item L
[m]

L1
[m]

zg
[mm]

qz,cr [kN/m] Acc.
Abaqus % [-]

VI-VStiffener
tp = 8 mm

Stiffener
Ø139.7/8

I II III IV V VI VII

1

6

3

150

38.6 40.8 5.7

2 6 35.1 38.9 10.8

3 9 32.6 37.7 15.6

4 12 30.1 36.4 20.9

5

7.5

3 18.4 19.2 4.3

6 6 17.1 18.4 7.6

7 9 16.2 17.9 10.5

8 12 15.4 17.4 13.0

Figure 8 shows joint B deformation (acc. Figure 7) for the stiffening variants analysed
in the study (Figure 1b,c). Compared with a flat stiffener (Figure 8b), the use of a closed-
section stiffener (Figure 8a) significantly reduced the warping of the near-node cross-section
of the B–E main (critical) beam and reduced bimoment transmission (and warping) to the
near-node cross-sections of the support beams (A–C, D–F). This is related to the considerable
torsional rigidity of the closed-section stiffener Ø139.7/8. The stiffener is loaded in the
planes of the IPE300 beam flanges with opposite moments Mf, generated by bimoment
B (see Figure 5b). In this case, closed-section stiffeners (Figure 8a) act as local bimoment
elastic support. By contrast, the poor torsional rigidity of the flat stiffeners, loaded with
moments Mf, results in lower ECR values of the H-type grillage qz,cr (see Table 1) and much
greater lateral displacements and torsion of the support beams (Figure 8b).

6.2. Method 2—ConSteel
6.2.1. The Bar Model (Thin-Walled Bar Elements)

Figure 9 shows the mode of stability loss of an exemplary SBG of H-type associated
with the first eigenvalue of the critical resistance according to the ConSteel software (version
15). (It should be noted that because of the homogeneous hot-rolled profiles (IPE300) used
in the structure (Section 4.1), stiffeners in joints B and E of the analysed grillages in ConSteel
were not included.)



Materials 2023, 16, 1346 14 of 27
Materials 2023, 16, x FOR PEER REVIEW 15 of 29 
 

 

 

Figure 8. Bimoment deformations of B joint of H-grillage obtained with Abaqus: (a) closed-section 

stiffener Ø139.7/8, (b) flat stiffener tp = 8 mm. 

6.2. Method 2—ConSteel 

6.2.1. The Bar Model (Thin-Walled Bar Elements) 

Figure 9 shows the mode of stability loss of an exemplary SBG of H-type associated 

with the first eigenvalue of the critical resistance according to the ConSteel software (ver-

sion 15). (It should be noted that because of the homogeneous hot-rolled profiles (IPE300) 

used in the structure (Section 4.1), stiffeners in joints B and E of the analysed grillages in 

ConSteel were not included.) 

 

joint B, E: 
Ø139.7/8

joint B, E: 
tp = 8mm

top view top view

(a) (b)

A

B

C

D

F

E

IPE300
joint B, E: no stiffeners

A
B

C D
E

F

L = 6m L1
 = 9m

L1
/2

L/2

Pz

joint B deformation
joint E deformation
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Figure 9. The mode of stability loss in exemplary H-grillage modelled in ConSteel software—thin-walled
bar model.
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As in the case of Figure 7 (analysis according to Abaqus software), the mode of the H-
grillage stability loss (Figure 9) according to the first eigenvalue determined by the ConSteel
program (Pz,cr,1 = 103.6 kN) is characterized by significant lateral torsional deformations of
the B–E main beam. This confirms the adopted assumption concerning the identification
(designation) of the so-called the critical beam. Further FEM simulations, this time in the
ConSteel software, demonstrated that the spatial (lateral–torsional) loss of stability of the
supporting beams also corresponds to the fourth eigenvalue related to the critical load
of Pz,cr,4 = 1027.2 kN. In this case, (similarly to the simulations according to the Abaqus
software), the second and third eigenvalues of the critical load correspond to the lateral
torsional buckling of the B–E main (critical) beam according to two (Pz,cr,2 = 381.3 kN) or
three (Pz,cr,3 = 738.0 kN) of half-wavelengths of the lateral buckling.

Table 2 lists the results of calculation of the ECR of the H-grillage for a uniformly
distributed load (qz,cr). The results were determined using ConSteel software—bar model.

Table 2. The ECR (qz,cr) of H-type grillage from the condition of lateral torsional buckling of the main
(critical) beam B–E, uniformly loaded (zg = +h/2), from ConSteel (bar model).

Item
L

[m]
L1

[m]
zg

[mm]

qz,cr [kN/m] Acc.
ConSteel

—Bar Model

No Stiffener

I II III IV V

1

6

3

150

39.31

2 6 35.73

3 9 33.21

4 12 30.59

5

7.5

3 18.64

6 6 17.22

7 9 16.33

8 12 15.52

6.2.2. The Shell Model

Figure 10 shows the mode of the stability loss of an exemplary SBG of H-type associ-
ated with the first eigenvalue of the ECR according to the ConSteel software—shell model.
In this case, the stiffeners (flat or closed) at joints B and E were ‘physically’ modelled as
shell elements.

Similarly to the cases illustrated in Figures 7 and 9, the mode of the H-grillage stability
loss (Figure 10) according to the first eigenvalue (Pz,cr,1 = 110 kN), determined by the
ConSteel software, the shell model is characterized by significant lateral torsional deforma-
tions of the main beam B–E. As in previous cases, this confirms the adopted assumption
about the identification of the so-called critical beam. Based on further FEM simulations
(ConSteel—shell model), it was found that the spatial (lateral–torsional) loss of stability of
the supporting beams corresponds in this case to the 10th eigenvalue, which is related to
the critical load of Pz,cr,10 = 1152.9 kN. This results from the fact that in the shell model, the
eigenvalues from four to nine refer to various modes of local stability loss of the B–E beam,
which were not taken into account in the bar model. As it is not possible to model the
roundings in the flange–web connection (in the shell model), the susceptibility of the
element to local stability loss increases considerably.
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Figure 10. The mode of stability loss in exemplary H-grillage modelled in ConSteel software—shell model.

Additionally, the second (Pz,cr,2 = 400.3 kN) and the third (Pz,cr,3 = 795.6 kN) eigen-
values of the critical load, similarly to the two previous simulations, correspond to the
lateral torsional buckling mode of the B–E main (critical) beam according to two or
three half-wavelength, respectively.

Table 3 shows the results of calculations of the ECR of the H-grillage for a uniformly
distributed load (qz,cr). The results were obtained with the ConSteel software—shell model.

Table 3. The ECR (qz,cr) of H-type grillage from the condition of lateral torsional buckling of the main
(critical) beam B–E, uniformly loaded (zg = +h/2), from ConSteel (shell model).

Item
L

[m]
L1

[m]
zg

[mm]

qz,cr [kN/m] Acc. ConSteel
—Shell Model % [-]

VI-VStiffener
tp = 8 mm

Stiffener
Ø139.7/8

I II III IV V VI VII

1

6

3

150

36.81 38.89 5.7

2 6 33.38 37.23 11.5
3 9 30.78 36.03 17.1

4 12 28.10 34.78 23.8

5

7.5

3 17.10 17.62 3.0

6 6 15.83 17.13 8.2

7 9 14.93 16.69 11.8

8 12 14.11 16.27 15.3

6.3. Method 3—Designated Critical Beam

Determining the ECR of the grillage on the basis of the elastic critical resistance of
the weakest beam involves the designation of the critical beam and taking into account
the conditions of the beam elastic restraint in stronger stiffening beams. As a part of this
method, the ECR of the critical beam was determined based on analytical models and the
FEM thin-walled bar model (LTBeamN).
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6.3.1. Analytical Models

As a part of the analytical models (Sections 5.2.1 and 5.2.2), the critical moment Mcr
of lateral torsional buckling of the critical beam B–E was determined using the MLTB,EL,2
algorithm and the Formula (9) proposed in [11]. The degree of elastic restraint against the
warping and lateral rotation of the critical beam at joints B and E was accounted for by
means of dimensionless restraint indexes κω (1) and κu (2).

Examples of the calculation results of the critical moment Mcr of the uniformly loaded
critical beam B–E are given in Table 4.

Table 4. Critical moment (Mcr) of the critical beam B–E of H-shaped grillage, uniformly loaded
(zg = +h/2), from analytical methods.

Item
L

[m]
L1

[m]
zg

[mm]

Mcr [kNm] Acc. Analytical Method
% [-]

VIII-VI
Stiffener tp = 8 mm Stiffener Ø139.7/8

MLTB,EL,2 Equation (9) [11] MLTB,EL,2 Equation (9) [11]

I II III IV V VI VII VIII IX

1

6

3

150

170.5 169.6 180.2 179.2 5.7

2 6 156.3 154.9 174.5 173.5 12.0

3 9 145.9 144.2 170.1 168.8 17.1

4 12 138.0 136.1 166.5 164.9 21.2

5

7.5

3 125.9 124.9 131.0 129.9 4.0

6 6 117.6 116.6 127.5 126.6 8.6

7 9 111.3 110.1 124.7 123.8 12.4

8 12 106.3 105.0 122.3 121.2 15.4

6.3.2. The Bar Model (FEM)—Thin-Walled Elements (LTBeamN)

As part of the FEM thin-walled bar model (Section 5.2.3), the LTBeamN software was
used to determine the critical moment Mcr of the critical beam B–E of the H-grillage. The
conditions of elastic restraint of the critical beam in joints B and E were taken into account
by the stiffness coefficients: (1) against warping αω according to Formula (6), and (2) against
lateral rotation αu according to Formula (4).

Examples of the calculation results of the critical moment of lateral torsional buckling
of the grillage critical beam, loaded uniformly, are given in Table 5.

Table 5. Critical moment (Mcr) of the critical beam B–E of H-shaped grillage, uniformly loaded
(zg = +h/2), from LTBeamN (thin-walled bar model).

Item L
[m]

L1
[m]

zg
[mm]

Mcr [kNm] Acc. Bar
Model % [-]

VI-VStiffener
tp = 8 mm

Stiffener
Ø139.7/8

I II III IV V VI VII

1

6

3

150

170.1 179.7 5.6

2 6 156.0 174.1 11.6

3 9 145.7 169.8 16.5

4 12 137.9 166.2 20.5

5

7.5

3 125.6 130.6 4.0

6 6 117.4 127.2 8.3

7 9 111.1 124.4 12.0

8 12 106.2 122.1 15.0
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7. Comparative Analysis

Table 6 compares the ECR of the H-type grillage determined using Method 1 and
Method 2. The grillage main (critical) beam was loaded with a concentrated force at the
midspan. The results were obtained from FEM numerical simulations for 3D spatial models.
The results from the solid model (Method 1—Abaqus) were taken as reference. The solid
finite elements made it possible to model all important details of the spatial structure of
the grillage. The solid model took into account both the details of the rounding of the
flange–web connection, and also the details of the stiffening stiffeners.

Table 6. Comparison of Pz,cr for the H-type grillage loaded with the concentrated force (zg = +h/2)
on the B–E main (critical) beam.

Item Stiffener
L

[m]
L1

[m]
zg

[mm]

Pz,cr [kN] % [-]

Method 1 Method 2

VII-VI VIII-VI VIII-VIIAbaqus–
Solid

Model

ConSteel–
Bar Model

ConSteel—
Shell Model

I II III IV V VI VII VIII IX X XI

1

tp = 8 mm

6

3

150

117.11 117.25 109.97 0.1 −6.1 −6.2

2 6 108.93 108.84 101.88 −0.1 −6.5 −6.4

3 9 103.89 103.60 96.41 −0.3 −7.2 −6.9

4 12 99.61 99.19 91.76 −0.4 −7.9 −7.5

5

7.5

3 70.09 69.78 64.05 −0.4 −8.6 −8.2

6 6 65.98 65.59 60.32 −0.6 −8.6 −8.0

7 9 63.64 63.16 57.84 −0.8 −9.1 −8.4

8 12 61.78 61.25 55.88 −0.9 −9.6 −8.8

9

Ø139.7/8

6

3

150

123.25 117.25 115.69 −4.9 −6.1 −1.3

10 6 119.29 108.84 112.35 −8.8 −5.8 3.2

11 9 116.89 103.60 110.00 −11.4 −5.9 6.2

12 12 114.73 99.19 107.87 −13.5 −6.0 8.8

13

7.5

3 72.83 69.78 65.89 −4.2 −9.5 −5.6

14 6 70.53 65.59 64.79 −7.0 −8.1 −1.2

15 9 69.29 63.16 63.68 −8.8 −8.1 0.8

16 12 68.23 61.25 62.69 −10.2 −8.1 2.4

The comparison of the values in Table 6 shows that the use of closed-section stiffeners
results in an increase in the ECR of H-grillages from 3.9% (L = 7.5 m, L1 = 3 m) to 15.2%
(L = 6 m, L1 = 12 m) according to Abaqus (Column VI), and from 2.9% (L = 7.5 m, L1 = 3 m)
to 17.6% (L = 6 m, L1 = 12 m) according to ConSteel—shell model (Column VIII).

With respect to flat stiffeners (tp = 8 mm), the ECR of the grillages (Table 6) determined
for the bar model (Column VII)—ConSteel software (Method 2) gave a very good approxi-
mation of the Pz,cr determined for the solid model (Column VI)—Abaqus software (Method
1). The maximum differences did not exceed −0.9%. By contrast, the results from the
ConSteel software—shell model (Column VIII)—are lower from −6.1% (L = 6 m, L1 = 3 m)
to −9.6% (L = 7.5 m, L1 = 12 m). This resulted from some shortcomings of converting the
hot-rolled section bar model to the shell model. The procedure of selecting the equivalent
shell thickness within the rounding does not fully transfer the torsional stiffness character-
istics of the hot-rolled section to its shell model. Similar differences are also found in the
calculation of the critical moment, e.g., of simply supported beams modelled in ConSteel
with bar elements (7 DOF) and shell elements using the classic conversion procedure.

For closed-section stiffeners (Ø139.7/8), the results obtained from the thin-walled bar
model in ConSteel (Column VII) are lower from −4.2% (L = 7.5 m, L1 = 3 m) to −13.5%
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(L = 6 m, L1 = 12 m) compared with the results obtained from Abaqus model. As already
mentioned (Sections 4.1 and 6.2.1), results from the fact that the calculations using the bar
model did not take into account the closed-section stiffeners at joints B and E. However,
the use of the shell model (ConSteel, Column VIII), which allows ‘physical’ modelling of
closed-section stiffeners, improves the results of fitting to the Abaqus solid model, with
differences ranging from −5.8% (L = 6 m, L1 = 6 m) to −9.5% (L = 7.5 m, L1 = 3 m).

In order to compare the results obtained with Method 1 and Method 3, the critical
loads of the grillages obtained from the FEM numerical simulations according to Abaqus,
were converted into the equivalent critical moments Mcr,Abq of lateral torsional buckling of
the critical (main) beam. The lateral torsional buckling of the B–E critical beam determines
the ECR of the grillage. Such conversion is also useful when checking the design resistance
of the beam with the reduction factor method (Mcr is needed to determine the beam relative
slenderness, on the basis of which the value of the reduction factor for lateral torsional
buckling is calculated).

As already mentioned, due to the slight torsional stiffness of the supporting beams
A–C and D–F in relation to the bending stiffness of the grillage main (critical) beam B–E,
the support moments of the critical beam at joints B and E are insignificant (i.e., they did
not exceed 3% of the maximum value of the midspan moment) and may be conservatively
disregarded in the design practice. Consequently, the following formulas can be used to
convert the critical loads (Pz,cr, qz,cr, qz,t,cr) of grillages into the critical moment (Mcr) of
lateral torsional buckling of the critical beam B–E: Mcr = (1/4)·Pz,cr·L, Mcr = (1/8)·qz,cr·L2

and Mcr = (8/125)·qz,t,cr·L2.
Table 7 compares the critical moments Mcr of lateral torsional buckling of the H-grillage

B–E critical beam, which is uniformly loaded at the level of the top flange (zg = +h/2). The
values of the moment were determined for two variants of stiffening of joints B and E
(Figure 1b,c) according to (a) Abaqus software (Column VI), (b) LTBeamN software (Col-
umn VII), (c) the MLTB,EL,2 algorithm (Column IX) and (d) approximation Formula (9) [11]
(Column XII). The calculation results obtained from the Abaqus software were taken
as reference.

Critical moments (Table 7) determined with the MLTB,EL,2 algorithm and Formula
(9) [11] gave a very good approximation of the results obtained from FEM software (Abaqus,
LTBeamN). The maximum differences were, respectively, MLTB,EL,2 vs. Abaqus from −3.0%
to +1.8%, Column X, MLTB,EL,2 vs. LTBeamN from +0.1% to +0.3%, Column XI, Formula (9)
vs. Abaqus from −3.8% to +0.6% (Column XIII), Formula (9) vs. LTBeamN from −1.3% to
−0.3% (Column XIV). The comparison of Mcr from the LTBeamN software with the results
obtained from the Abaqus software (Column VIII) shows differences ranging from −3.3%
to +1.7%.

The results in Table 7 show that the use of closed-section stiffeners (Figure 1c) in joints
B and E of the H-grillage, compared with the use of flat stiffeners (Figure 1b), enhanced the
elastic critical resistance of the critical beam B–E, and thus the ECR of the entire grillage.
The increase in Mcr, calculated according to Formula (9), ranged from +4% (for L = 7.5 m,
L1 = 3 m) to over +21% (for L = 6 m, L1 = 12 m). Similar increases in the elastic critical
resistance of the B–E critical beam were obtained for the triangular load, and for the beam
loaded with a concentrated force.

Figures 11–13 show the pattern of variation in the critical moments of lateral torsional
buckling of the B–E beam, determined according to Abaqus, ConSteel, LTBeamN and the
approximation Formula (9) [11]. The critical beam was loaded at the level of the top flange
(zg = +h/2) in the form of (a) uniformly distributed load (Figure 11), (b) triangularly dis-
tributed load (Figure 12), and (c) concentrated force at the midspan (Figure 13). The critical
moments were determined, taking into account the closed-section stiffeners (continuous
lines) or flat stiffeners (dashed lines) in the joints B and E. When the thin-walled bar model
was used in ConSteel (orange lines), the stiffening at joints B and E of the grillage was
not taken into account due to program limitation. For the critical beam with boundary
conditions, as in the fork support, the critical moment obtained from Formula (9) is marked
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with horizontal dotted lines. In this case, the critical moment was estimated with the
assumption of the fixity index κω = κu = 0. The same Mcr value was obtained from the FEM
simulation in the LTBeamN software. The colours of the descriptions of the values of the
critical moments of the B–E beams were associated with the colours of the lines showing
the pattern of the Mcr variation. Consequently, for a given span (L = 6 m or L = 7.5 m) of
the main (critical) beam and the analysed type of stiffening (Ø139.7/8 or tp = 8 mm), the
descriptions of the ordinates provide the maximum and minimum values of Mcr for the
given spans of the supporting beams L1. Additionally, all Mcr values determined in the
ConSteel software with the approximation of the grillage by the bar model are given.

Table 7. Comparison of Mcr for uniformly loaded (zg = +h/2) B–E critical beam of the H-grillage.

Item Stiffener L
[m]

L1
[m]

zg
[mm]

Mcr [kNm] % [-] Mcr
[kNm] % [-] Mcr [kNm] % [-]

Abaqus LTBeamN VII-VI MLTB,EL,2 IX-VI IX-VII Equation (9)
[11] XII-VI XII-VII

I II III IV V VI VII VIII IX X XI XII XIII XIV

1

tp *

6

3

150

173.7 170.1 −2.1 170.5 −1.8 0.2 169.6 −2.4 −0.3
2 6 158.1 156.0 −1.3 156.3 −1.1 0.2 154.9 −2.0 −0.7

3 9 146.9 145.7 −0.8 145.9 −0.7 0.1 144.2 −1.8 −1.0

4 12 135.6 137.9 1.7 138.0 1.8 0.1 136.1 0.4 −1.3

5

7.5

3 129.7 125.6 −3.2 125.9 −2.9 0.2 124.9 −3.7 −0.6

6 6 120.0 117.4 −2.2 117.6 −2.0 0.2 116.6 −2.8 −0.7

7 9 113.9 111.1 −2.5 111.3 −2.3 0.2 110.1 −3.3 −0.9

8 12 108.4 106.2 −2.0 106.3 −1.9 0.1 105.0 −3.1 −1.1

9

Ø **

6

3

150

183.5 179.7 −2.1 180.2 −1.8 0.3 179.2 −2.3 −0.3

10 6 175.1 174.1 −0.6 174.5 −0.3 0.2 173.5 −0.9 −0.3

11 9 169.6 169.8 0.1 170.1 0.3 0.2 168.8 −0.5 −0.6

12 12 163.9 166.2 1.4 166.5 1.6 0.2 164.9 0.6 −0.8

13

7.5

3 135.1 130.6 −3.3 131.0 −3.0 0.3 129.9 −3.8 −0.5

14 6 129.1 127.2 −1.5 127.5 −1.2 0.2 126.6 −1.9 −0.5

15 9 125.8 124.4 −1.1 124.7 −0.9 0.2 123.8 −1.6 −0.5

16 12 122.7 122.1 −0.5 122.3 −0.3 0.2 121.2 −1.2 −0.7

* Flat stiffener (tp = 8 mm), ** closed-section stiffener (Ø139.7/8).

The comparison of the diagrams (Figures 11–13) shows that with an increase in the
span L1 of the supporting beams (A–C and D–F), the critical moment of lateral torsion
buckling of the critical (main) beam B–E decreases. At the same time, the effect of closed-
section stiffeners on the stiffness of the B and E joints increases (continuous lines). The
greatest efficiency in curbing the Mcr drop caused by the use of closed-section stiffeners
was obtained for the span L = 6 m of the main beam and L1 = 12 m of the supporting beams.
Contribution of closed-section stiffeners increases with a decrease in the span of the B–E
beam. The largest falls (Figures 11–13) of the critical moment of lateral torsional buckling
of the B–E beam, related to the increase in the span of the supporting beams, were obtained
for flat stiffeners (dashed lines), especially for the span L = 6 m.

The Mcr variation pattern determined on the basis of the values obtained from the
ConSteel software, taking into account the bar model of the grillage (orange lines), are
generally congruent with those obtained from the Abaqus software (dashed blue lines), in
which the stiffness of the flat stiffeners at the joints B and E of the grillage was taken into
account. That confirms the thesis about the negligible effect of classic flat stiffeners (in this
case for tp = 8 mm) on the critical load of the grillage.
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Figure 11. Mcr of the critical (main) beam B–E with uniformly distributed load as a function of the
span L1 of the supporting beams A–C and D–F.
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Figure 12. Mcr of the critical (main) beam B–E with triangular load as a function of the span L1 of the
supporting beams A–C and D–F.
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Figure 13. Mcr of the critical (main) beam B–E with concentrated force as a function of the span L1 of
the supporting beams A–C and D–F.

Taking into account the elastic restraint of the critical beam B–E at the joints resulted
in a significant increase in the beam elastic critical resistance relative to the fork support.
For a uniformly loaded beam (Figure 11) and a triangularly loaded beam (Figure 12), the
increase in critical resistance ranged between +68% (at L = 7.5 m) and +127% (at L = 6 m).
For a beam loaded with a concentrated force (Figure 13), the increase in Mcr varied between
+52% (at L = 7.5 m) and +93% (at L = 6 m). It should be emphasized that greater increases
in the elastic critical resistance were obtained due to the use of closed-section stiffeners.

Table 8 shows a summary of the maximum percentage differences in the results
(Method 1 vs. Method 3) obtained from the LTBeamN software, the MLTB,EL,2 algorithm,
and from the Formula (9) [11] in relation to the Abaqus software. In the analysis, a total of
48 spatial models of the SBG H-type were performed in the Abaqus software, depending
on (a) the span L and L1 of the component beams, (b) the type of stiffening of joints B and E
(Figure 1b,c), and (c) the load diagram of the critical (main) beam B–E.

Table 8. Summary of the percentage differences of Mcr for the B–E critical beam of the H-grillage.

Loading
Diagram

of the B–E
Beam

zg
[mm] Stiffener

LTBeamN
vs. Abaqus

[%]

MLTB,EL,2
vs. Abaqus

[%]

MLTB,EL,2
vs.

LTBeamN
[%]

Equation (9)
[11]

vs. Abaqus
[%]

Equation (9)
[11]
vs.

LTBeamN
[%]

I II III IV V VI VII VIII
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The critical moments of LTB (Table 8) of the H-grillage B–E critical beam, determined
with the LTBeamN software and estimated using the MLTB,EL,2 algorithm and Formula (9),
gave a very good approximation of the results obtained from numerical simulations in the
Abaqus software (from −6.5% to +3.6%, Columns IV, V, and VII). When the Mcr values
obtained from the MLTB,EL,2 algorithm and Formula (9) with those produced through
LTBeamN were compared, differences were found that ranged from −2.9% to +2.0%
(Columns VI and VIII).

The application method of the approximation Formula (9) [11] and numerical simula-
tions with the use of bar elements from the ConSteel software in the design of the H-grillage
main (critical) beam is shown in the computational example (Appendix A).

8. Summary and Conclusions

In the study, the grillage ECR was determined. The ECR was measured by the external
critical load (or Mcr) from the condition of LTB of the weakest (critical) beam for the
ideal (i.e., not showing up any imperfections) structural system model. Based on Mcr,
it is possible to determine the so-called relative slenderness of the critical beam and the
relevant reduction factor for LTB taking into account the so-called integrated equivalent
imperfection. Such an approach to deal with imperfections in actual steelwork components
is accepted in Eurocode EN 1993-1-1 [1].

Based on the SBG elastic stability analysis, the following was found:

(1) When the interaction of beams in the H-grillage joints is taken into consideration in
the computational model, it is possible to provide a more accurate representation
of the actual performance of this structure class under load. Consequently, a more
precise determination of the ECR is available, compared with estimation based on the
fork support, which is most common in engineering design. It is obvious that when
taking into account the effect of elastic restraint at joints, engineers must be cautious
and check the actual stiffness of the joints.

(2) As the span L1 of the supporting beams increases, the Mcr of the critical beam decreases.
The greatest fall in Mcr, related to the increase in the span of the supporting beams,
was obtained for flat stiffeners (dashed lines in Figures 11–13), especially for the
main beam span L = 6 m. In this case, closed-section stiffeners should be used to
increase Mcr.

(3) The warping stiffness αω of the welded grillage joints depends on their stiffening.
The use of closed-section stiffeners considerably increases the degree of section fixity
against warping. It also restricts the transmission of the bimoment between the joint
component beams and enhances the grillage ECR. The use of classic flat stiffeners,
however, practically does not increase Mcr. In the analysed H-type grillage of concern,
the use of closed-section stiffeners resulted in an increase in the ECR from 3.9%
(L = 7.5 m, L1 = 3 m) to 15.2% (L = 6 m, L1 = 12 m) according to Abaqus (Table 6,
Column VI), and also from 2.9% (L = 7.5 m, L1 = 3 m) to 17.6% (L = 6 m, L1 = 12 m)
according to ConSteel—shell model (Table 6, Column VIII).

(4) The percentage increase in the ECR in the grillage with closed-section stiffeners
(relative to grillage with flat stiffeners) is inversely proportional to the increase in the
span L1 of supporting beams. Enhanced stiffness of the joints mitigates the decrease
in Mcr associated with a diminished stiffness of the supporting beams in the grillage
plane. The greatest efficiency in the mitigation of the Mcr drop due to the use of
closed-section stiffeners was obtained for the span L = 6 m of the main beam and
L1 = 12 m of the supporting beams (Figures 11–13). The contribution of closed-section
stiffeners increases with a decrease in the main beam span L.

(5) The means of determining the stiffness of the elastic action of the grillage joints
reported in this paper, and the approximation Formula (9) proposed in [11], which
at the same time takes into account the effect of elastic restraint against warping and
against the lateral rotation of the grillage’s weakest (critical) beam, make it possible
to produce a very good estimation of Mcr compared with computations based on
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advanced FEM models (Abaqus, ConSteel). Determined in this way, Mcr allows for
an estimation of grillage ECR. Additionally, Mcr can also be successfully applied to
verify the FEM results.

(6) In the case of significant strength utilisation in the supporting (stiffening) beams rela-
tive to their critical buckling resistance (Mcr,u), the reduction in the stiffness restraint
of the critical beam can be conservatively estimated from Formulas (7) and (8). A
more detailed approach to this issue will be the subject of further research and will be
presented by the authors in another study.

(7) The results obtained from the FEM numerical simulations (Abaqus—solid model,
ConSteel—shell model) show (Figures 11–13) that the grillage ECR is conditioned
by the lateral torsion buckling of the B–E critical beam. The critical resistance is
nonlinearly dependent on the grillage geometry and the method of stiffening of
welded intermediate joints B and E. The use of closed-section stiffeners resulted in
ECR increasing from a few to over 21% compared with flat stiffeners (Table 6).

(8) From an engineering point of view, the comparison of results obtained with: Formula
(9) [11], MLTB,EL,2 algorithm, and Abaqus (FEM) indicates their very good congruity
(Tables 7 and 8, Figures 11–13). The LTB critical moments were obtained for (1) differ-
ent variants of the coupling beam span (L) and supporting beams (L1), (2) different
variants of nodal stiffening, and (3) different loading diagrams of the coupling beam.

It was demonstrated in the study that the congruence between the advanced FEM
simulations for the whole structure and the analytical calculations for the designated critical
beam make it possible for the results of both calculation methods to be verified against each
other. The application of relatively simple approximation formulas allows a more advanced
preliminary design. For basic structural systems, the formulas can also be employed in the
standard design. Due to such an approach, the safety of structures can already be improved
at the design stage.

It seems necessary to conduct further research into the stability and design resis-
tance of beam grillages with the use of the analytical computational model of the critical
beam elastically restrained in adjacent (stiffening) beams. This method of analysis will be
continued by the authors.

The explicit account of geometric and structural imperfections (including welding
stress) in the grillage component beams makes it possible to determine the non-linear
load–displacement path and limit strength. This approach, however, requires further
advanced analyses. They should include, among others, the determination of the mutual
effect of the shape imperfections in component beams of H-type grillages while taking
into account nodal properties. This would especially concern nodes with closed-section
stiffeners. It seems necessary to carry out experimental investigations into SGB in order to
validate non-linear FEM models. Obtaining failure and limit strength mechanisms in the
experimental way would allow for a better assessment of the structural system capacity in
the elastic–plastic range, taking into account imperfections.

A natural trend in design methods is to take into consideration real design solutions
of joints, which generate complex conditions for the support of grillage component beams.
Research in this area primarily aims to assess the safety of beam grillage structures, while
taking into account the potential resistance reserves that result from the solutions applied
at the joints.
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Appendix A

Problem. For the static diagram of SBG H-type (Figure 1a) loaded with a concentrated
force Pz = 70 kN, check the design condition of the lateral buckling resistance of the main
(coupling) beam according to EN 1993-1-1 [1] for two variants of stiffening of joints B and
E: (a) variant 1—flat stiffener tp = 8 mm, (b) variant 2—closed-section stiffener Ø139.7/8.
The comparative calculations took into account the degree of reduction in the stiffness of
the support beams as a result of their loading with reactions from the main beam (results
marked with *).

Data: L = 6 m, L1 = 9 m, beam section: IPE300 (Wpl,y = 629.86 cm3), steel: S355
(fy = 355 MPa), class 1 section in bending: MEd = 105 kNm.

Solution.
Simulation results in the ConSteel software—the first critical force Pz,cr,1 = 103.6kN

(lateral torsional buckling of the B–E critical beam according to one half-wavelength), the
fourth critical force Pz,cr,4 = 1027.2 kN (lateral torsional buckling of the supporting beams).

Stiffness coefficients of the elastic restraint of the main (critical) beam in joints B and E:

(a) Variant 1—acc. Formulas (3), (4): αω = 47.00 kNm3/rad, αu = 2254.93 kNm

acc. Formulas (7), (8): αω* = 42.30 kNm3/rad, αu* = 2029.44 kNm

(b) Variant 2—acc. Formulas (4), (5), (6): αω = 384.41 kNm3/rad, αu = 2254.93 kNm

acc. Formulas (7), (8): αω* = 345.97 kNm3/rad, αu* = 2029.44 kNm
Fixity index according to Formulas (1), (2):

(a) Variant 1: κω = 0.842, κu = 0.842, κω* = 0.828, κu* = 0.828
(b) Variant 2: κω = 0.978, κu = 0.842, κω* = 0.975, κu* = 0.828

Critical moment for lateral torsional buckling of the B–E critical beam according to
Formula (9) [11]:

(a) Variant 1: Mcr
(1) = 147.54 kNm, Mcr

(1)* = 145.47 kNm (−1.4%)
(b) Variant 2: Mcr

(2) = 168.41 kNm, Mcr
(2)* = 167.07 kNm (−0.8%)

Reduction factor for lateral torsional buckling (general case) [1]:

(a) Variant 1: λLT
(1) = 1.158, αLT

(1) = 0.21, φLT
(1) = 1.271, χLT

(1) = 0.557

λLT
(1)* = 1.166, αLT

(1) = 0.21, φLT
(1)* = 1.281, χLT

(1)* = 0.552 (−0.9%)

(b) Variant 2: λLT
(2) = 1.084, αLT

(2) = 0.21, φLT
(2) = 1.180, χLT

(2) = 0.607

λLT
(2)* = 1.088, αLT

(2) = 0.21, φLT
(2)* = 1.185, χLT

(2)* = 0.604 (−0.5%)
Lateral torsional buckling resistance moment [1]:

(a) Variant 1: Mb,Rd
(1) = 124.55 kNm, Mb,Rd

(1)* = 123.43 kNm (−0.9%)
(b) Variant 2: Mb,Rd

(2) = 135.73 kNm, Mb,Rd
(2)* = 135.05 kNm (−0.5%)

Bearing capacity condition [1]:

(a) Variant 1: MEd/Mb,Rd
(1) = 0.843 < 1.0 (load capacity fulfilled)

MEd/Mb,Rd
(1)* = 0.851 < 1.0

(b) Variant 2: MEd/Mb,Rd
(2) = 0.774 < 1.0 (load capacity fulfilled)

MEd/Mb,Rd
(2)* = 0.777 < 1.0

Checking the load capacity condition of the B–E main beam with fork support:
Mcr

(3) = 90.03 kNm, χLT
(3) = 0.380, Mb,Rd

(3) = 84.97 kNm
MEd/Mb,Rd

(3) = 1.236 > 1.0 (load capacity condition is not met)
Conclusions from the example:
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(1) Taking into account the conditions of elastic restraint of the main (coupling) beam in
the supporting beams allowed for a more economical assessment of its design lateral
buckling resistance and fulfilment of the load capacity condition according to EN
1993-1-1 [1].

(2) The use of closed-section stiffeners with at joints B and E of the H-grillage, compared
to the use of flat stiffeners, resulted in an increase in Mcr by 14% and an increase in
the design load capacity Mb,Rd by 9%.

(3) Analytical consideration of the spatial interaction of the grillage beams made it
possible to maintain the resistance condition of the main (coupling) beam B–E without
the need to increase its cross-section.

(4) Due to the significant difference between Mcr for the critical (main) beam in relation
to Mcr,u for the supporting (stiffening) beams, the reduction in the design resistance
was only −0.9% (variant 1) and −0.5% (variant 2). In the case of greater strength
utilisation of the supporting beams, the degree of reduction of joint stiffness can be
conservatively determined from Formulas (7) and (8).

(5) In computations, the use of the fork support model for the main (coupling) beam
design resulted in a conservative assessment of the beam resistance (Mb,Rd

(3)). Due
to the simple analytical model, such a simplification is often found in engineering
practice. This is a safe estimate, giving a lower determination of the lateral buckling
resistance of the beam. However, as already mentioned, due to the spatial interaction
of the component beams and the stiffeners of the joints of H-grillage, especially closed-
section stiffeners, use of the fork support model for the weakest (critical) beam is not
an economical solution. In the computational example, adopting such a method of
supporting the main beam resulted in failure to meet the design condition according
to EN 1993-1-1 [1]. In order to satisfy the condition above, it would be necessary to
increase the beam cross-section to at least IPE360.
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