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Abstract: Recently, developments in the field of cosmetics have led to a renewed interest in hair
dyeing. However, damage to the hair during the dyeing process has increased hesitation in attempting
hair dyeing. As a result, hair dyes with minimal side effects have been in constant demand, and are
being developed. In this study, natural-extract polyphenols, pyrogallol, and gallic acid are coordinated
by CuCl2 in a NaCl aqueous solution to form an oligomer, which creates an ion-channel coating on
the hair surface to protect it. This work attempts to develop fast, simple, and damage-free hair-dye
ingredients based on pyrogallol and gallic acid. The morphology and elements of polyphenols coated
on hair are characterized. The results reveal that the hair is dyed with the polyphenol-based dye
reagent successfully. Moreover, the thickness of the dyed hair continuously rises ten times after
dyeing. The tensile strength of the dyed hair is also measured, showing an upward and downward
trend. These results reflect the fact that pyrogallol and gallic acid are considered to be the essential
and functional polyphenols, and can build ion blocks on hair, which can create new multifunctional
coating materials.

Keywords: hair dye; pyrogallol; gallic acid; ion channel; coating; aqueous system

1. Introduction

With the advancement of globalization, hair dye has become more and more popular
among all cultures and ethnicities, desirable not only in natural colors but also in colors
beyond individuals’ genetic predispositions [1–3]. As a result, hair dyeing has become
one of the most prosperous industries in cosmetics to date [4–6]. Human hair has a simple
structure that is mainly composed of protein. In the hair shaft, keratin cells are the most
abundant element, consisting of the pigment melanin [7,8]. Melanin determines the color
of human skin, hair, and eyes [9–13]. As time goes on and the amount of melanin decreases,
hair color also changes to gray or even white. Generally, the average age for white hair
onset is the mid-30s, increasing rapidly from 50 years old onwards [14]. Whether for
maintaining natural hair color or changing the hair color from its natural color, hair dyeing
is undoubtedly the most intuitive and convenient method.

Most commercial chemical dyes contain bleaching agents such as ammonia and perox-
ide [15–17]. During the hair-dyeing process, bleaching agents first damage the outermost
cuticle layer of the hair and push chemical colors such as p-Phenylenediamin (PPD), o-
Phenylenediamine (OPD), and m-Phenylenediamine (MPD) to enter the cortex layer [18–24].
The bleaching agents fade the pigment melanin and further react with chemical colors,
creating a new color and stocking inside the hair. This process can usually bring about a
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permanent hair color but can result in hair damage, unpleasant odor, and even allergic
reactions [25,26]. By contrast, natural dyes color hair by coating the hair shaft and present-
ing a substitute, placing more emphasis on hair-dye safety. They maintain the thickness
of the hair and stick as a semi-permanent color. Polyphenols, pyrogallol, and gallic acid
can be extracted from tea leaves, gallnuts, and other plants [27–29]. Modern hair dyes use
pyrogallol and gallic acid, revolutionary coating methods with different chemical structure
mechanisms that are safe compared with the existing standard dyes [30,31]. Mohamed El-
Wekil et al. [32] reported that the hydroxyl groups in pyrogallol complexed with Cu(II)Cl2
and formed a coordination complex between Cu and a catechol moiety. The formation
showed a yellow color at a 345 nm absorbance colorimetric determination.

In this work, we prepare a polyphenols-based hair dye polymerized by CuCl2 in a
NaCl aqueous solution. Cu(II) ions can complex with hydroxyl groups to create a Cu–O
coupling and form an ion channel on the hair surface, thus protecting the cuticle layer and
further decreasing the hair damage during the dyeing process [32–34]. Coating deposition
on the hair continues layer-by-layer with Cu(II) ions leading to the controllable thickness
in the growth of the hair. We characterize the morphology and element contribution
via field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray
spectroscopy (EDS). The measurement results suggest that the Cu, Cl, and Na elements
distributed on the hair surface and the amount of elements increases as the dyeing time
increases. Furthermore, the cross-sectional EDS results show that only a few Cu and
Cl elements were detected, indicating that the hair dye did not break the hair surface.
The thickness and tensile strength of the hair dyed with polyphenols and amino-based
commercial products are also compared. However, we find that the tensile strength of the
polyphenols-based dyed hair is a little lower than that of the commercial-product dyed hair
after dyeing ten times; this is because when the thickness of the hair surface is increased,
the tensile strength of the hair may decrease.

2. Experiment
2.1. Materials

Pyrogallol (ACS reagent), gallic acid (ACS reagent, ≥98.0%), cupric (II) chloride (CuCl2,
powder, 99%), L-arginine (reagent grade, ≥98%), and sodium chloride (NaCl, ACS reagent,
≥99.0%) were purchased from Sigma-Aldrich (Seoul, Republic of Korea). All reagents
were used as received, without further purification. Human natural (noncommercial)
white-hair samples were supplied by Suan Hyangjang Co., Ltd. (Seongnam, Republic of
Korea). Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine serum, and streptomycin
were purchased from Gibco of Thermo Fisher Scientific (Seoul, Republic of Korea). The
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide was purchased from
Sigma-Aldrich (Seoul, Republic of Korea).

2.2. Synthesis of Gallic Acid and Pyrogallol Oligomer

To prepare the gallic-acid-based hair dye, gallic acid (17.6 mmol) was first dissolved
in H2O (100 mL) at room temperature (RT), and was then mixed with CuCl2 (23.5 mmol)
and NaCl (29.9 mmol) (in 100 mL H2O) solution for 5 min to obtain the gallic-acid-based
hair dye. The pH of the dye reagent was adjusted to 5, using L-arginine (1.14 mmol). The
pyrogallol-based oligomer was prepared via the same method but with a slightly different
weight ratio, which is presented in Supplementary Figure S1.

2.3. Hair-Dyeing Process

To carry out hair dyeing, the white-hair samples were soaked in a mixture solution of
gallic acid and CuCl2 agents. The hair samples were rubbed until foam generation and were
then kept in this state for 2 min. Finally, the dyed hair was washed with shampoo twice
and with running water several times until the water was neutral. The hair samples were
obtained after 30 s of hair drying. The hair samples were prepared with different dyeing
times and named as S-n, where ‘n’ represented the hair-dyeing time. The hair samples
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dyed using commercial products were dyed in the same conditions, while following the
product instructions.

2.4. Characteristics of Dyed Hair

The chemical structure was monitored by Fourier-transform infrared spectroscopy
(FT-IR) using a Nicolet iS5 (Waltham, US) from 4000 to 500 cm–1 with a spectral resolution
of 4 cm−1. FT-IR studies analyzed solid states of Gallic acid and dyed regent. The FE-SEM
and energy-dispersive X-ray-spectroscopy (EDS) analyses were performed on a JSM-6700F
(JEOL, Japan) with an accelerating voltage of 15.0 kV to investigate the surface morphology
and elemental composition of materials. The uniaxial tensile tests were conducted on an
LFV-250HH (Walter + Bai AG, Switzerland) testing machine with a crosshead speed of
5 mm min−1. At least three specimens were tested for each composition. All the dyed-hair
samples were cut with liquid nitrogen to ensure cross-sectional integrity.

HaCaT keratinocytes were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
complemented with 10% fetal bovine serum, 50 U/mL penicillin, and 50 µg/mL strepto-
mycin under a humidified atmosphere of 5% CO2 at 37 ◦C [35]. HaCaT cells were seeded in
24-well plates at 7 × 104 cells/mL density. The next day, the dyed and non-dyed hairs were
loaded onto the cells and cultured for 24 h. The microscopic observation was performed
using an OLYMPUS CKX53, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide solution was added at a 500 ng/mL final concentration. The plate was then further
incubated for 4 h. The medium was removed, and the insoluble formazan was dissolved in
400 µL DMSO. Dissolved formazan was transferred to a 96-well plate (100 µL each well)
to measure the absorbance. The absorbance was determined at 540 nm with a reference
wavelength of 630 nm in a microplate reader (Thermo scientific, MULTISKAN GO). The
cell viability was calculated as follows: % Viability = A 450 − A 630 of test cells/A 450 − A
630 of non-treated control cells × 100.

3. Results and Discussion

Gallic acid, a natural compound, is classified as a phenolic acid distributed in tea or
plant leaves. It can be dissolved in organic solvents such as alcohol, ether, acetone, and
water. Thus, most hair dyes consist of gallic acid and use organic compounds as a solvent.
This study dissolved gallic acid in water, and the hair-dye reagent was prepared in an
aqueous system. The prepared solutions in Figure 1 show that (a) the transparent gallic-acid
aqueous solution mixed with blue-green CuCl2 and NaCl solution produced a dark-green
oligomer. The prepared oligomer mixture was used to carry out hair dyeing. As displayed
in Figure 1b, the uncoated hair S-0 was white, and turned dark brown after dyeing. The
color characteristics of dyed hairs were changed in the order of white, earthy yellow, light
brown, grayish brown, brown, and dark brown as the amount of dyeing time increased.
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Moreover, the chemical structure of the oligomer was confirmed by FT-IR at RT.
Figure 2a presents the chemical structure after gallic acid coordinated with Cu(II), and the
FT-IR result is shown in Figure 2b. The characteristic peak -OH of gallic acid shows at
3397 cm−1; C=O double-bond stretching can be found at 1718 cm−1, and the aromatic C=C
stretching is present at 1600 and 1435 cm−1 as a double peak. C-O-H bending absorption
is detected at 1199 cm−1 for gallic acid. In the case of the gallic-acid oligomer, the main
changes in the spectrum were that: (1) the C=O double-bond stretching moved to a lower
wavenumber (1718 to 1712 cm−1); (2) the C=C double bond shifted to the right, from 1661
and 1449 to 1600 and 1435 cm−1, respectively; and (3) the peak of C-O-H bending decreased
dramatically, due to the conjugation between the hydroxide group and the metal of Cu
causing small frequency shifts [36–39].
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with Cu(II).

EDX and FE-SEM were used to further investigate the distribution of the elements on
the hair and confirm the hair-sample morphology. The resulting EDX values investigating
the elements distributed on the hair surface are summarized in Figure 3a, and the original
data can be found in Supplementary Figure S2. Figure 3a shows that the blank hair sample
(S-0) consisted of C, N, and O, due to the hair mainly consisting of protein. Moreover,
Na, Cl, and Cu elements appeared on the hair surface after dyeing once, and the content
increase trend was in direct proportion to the number of times dyed. Furthermore, there
were no considerable changes to the amount of C, N, or O, revealing that the elements
coated the hair layer by layer. The FE-SEM images of hair samples in Figure 3b–f show
that the surfaces of the hair became smoother as the number of dyeing times increased,
indicating that the hair was coated with the dye reagents.

Furthermore, the cross-section element distribution and morphology were identified
using the same method, and the results are presented in Figure 3. Figure 4a shows that all
the hair samples were composed of C, N, and O. Unlike the surface-element measurement
results, Na was not found in the cross-section of the dyed hair, and only extremely low
quantities of Cl and Cu were detected. Additionally, the cross-sectional SEM images
demonstrated in Figure 4b–f revealed no damage on the hair surface, and the hair was
thoroughly coated with hair dye. The row data of the element-distribution proportions are
displayed in Figure S3.

To further study the hair dye on the hair, the thicknesses and tensile strengths of the
hair samples were also examined. The deep-blue line in Figure 5 represents the thickness
of the hair before and after hair dyeing. The thickness of the hair clearly crept up slowly,
suggesting that every single dyeing process may have formed a coating layer on the hair
surface, increasing the hair thickness. Similarly, the hair’s tensile strength (red line) also
increased with the number of times it was dyed. However, the hair’s tensile strength
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climbed to 375 N/mm2 and then changed to a dropping tendency. This result may be
attributed to the hair dye increasing the hair thickness to a certain degree, with a too-high
thickness decreasing the hair toughness and tensile strength of the hair.

Materials 2023, 16, x FOR PEER REVIEW 5 of 9 
 

 

 

Figure 3. (a) Elements distributed on the hair surface; (b–f) FE-SEM images of the hair samples for 

S-0, S-1, S-4, S-7, and S-10. 

Furthermore, the cross-section element distribution and morphology were identified 

using the same method, and the results are presented in Figure 3. Figure 4a shows that all 

the hair samples were composed of C, N, and O. Unlike the surface-element measurement 

results, Na was not found in the cross-section of the dyed hair, and only extremely low 

quantities of Cl and Cu were detected. Additionally, the cross-sectional SEM images 

demonstrated in Figure 4b–f revealed no damage on the hair surface, and the hair was 

thoroughly coated with hair dye. The row data of the element-distribution proportions 

are displayed in Figure S3. 

 

Figure 4. (a) Elements distributed on the hair cross-section; (b–f) cross-sectional SEM images of the 

hair samples for S-0, S-1, S-4, S-7, and S-10. 

Figure 3. (a) Elements distributed on the hair surface; (b–f) FE-SEM images of the hair samples for
S-0, S-1, S-4, S-7, and S-10.

Materials 2023, 16, x FOR PEER REVIEW 5 of 9 
 

 

 

Figure 3. (a) Elements distributed on the hair surface; (b–f) FE-SEM images of the hair samples for 

S-0, S-1, S-4, S-7, and S-10. 

Furthermore, the cross-section element distribution and morphology were identified 

using the same method, and the results are presented in Figure 3. Figure 4a shows that all 

the hair samples were composed of C, N, and O. Unlike the surface-element measurement 

results, Na was not found in the cross-section of the dyed hair, and only extremely low 

quantities of Cl and Cu were detected. Additionally, the cross-sectional SEM images 

demonstrated in Figure 4b–f revealed no damage on the hair surface, and the hair was 

thoroughly coated with hair dye. The row data of the element-distribution proportions 

are displayed in Figure S3. 

 

Figure 4. (a) Elements distributed on the hair cross-section; (b–f) cross-sectional SEM images of the 

hair samples for S-0, S-1, S-4, S-7, and S-10. 

Figure 4. (a) Elements distributed on the hair cross-section; (b–f) cross-sectional SEM images of the
hair samples for S-0, S-1, S-4, S-7, and S-10.

In addition, to better study the effect of aqueous and amine-based hair dye on the
dyed hair, the thicknesses and tensile strengths of hair dyed using commercial amine-based
products and polyphenols-based reagents were measured. Figure 6a shows the compared
thicknesses of the hair samples. All the commercial products decreased the hair thickness
to a certain degree, while the thickness value increased when the aqueous gallic-acid hair
dye was used. However, the hair samples dyed using commercial amine-based products
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reflected superior tensile strength, compared with that of the prepared gallic-acid-based
dyed hair, indicating that the thickness of hair can affect hair strength directly. Figure 6
indicates that all the hair samples were dyed ten times, and the values are displayed in
Table S2.
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The hair-dye reagent prepared with pyrogallol was also characterized, and the results
are presented in the Supplementary Materials. The pyrogallol-based hair dye demonstrated
a similar result to that of the gallic-acid-based hair dye, which was able to coat the hair
surface and increase the hair’s thickness.

Moreover, to examine whether dyed hairs affected cell viability, keratinocytes were
cultured with hairs dyed at the indicated times, for 24 h. Their microscopic morphol-
ogy and cell viability were compared to those of cells treated with non-dyed hair. We
found that the application of hair barely affected cell growth, including morphological
change (Figure 7a–e) and cell viability (Figure 7f). Furthermore, cells could be attached
to the dyed hairs and grown on them, indicating that the dye is a non-cytotoxic material
for keratinocytes.
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