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Abstract: An approach to increase the efficiency of europium-based OLEDs was proposed through
the formation of a mixed-ligand complex. The design of a series of europium complexes, together
with an optimization of the solution deposition, including the host selection, as well as the variation
of the solvent and deposition parameters, resulted in a noticeable increase in OLED luminance. As a
result, the maximum luminance of the Eu-based OLED reached up to 700 cd/m2, which is one of the
highest values for an Eu-based solution-processed OLED. Finally, its stability was investigated.
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1. Introduction

Despite the rapid development of organic light-emitting diode (OLED) technology,
several important issues remain to be solved. Among them, narrowing the luminescence
bands of the OLEDs is particularly important [1] due to the swift acceleration of wearable
electronics development [2,3], including in tissue oximetry [4], where narrow-band lumines-
cence simplifies the detection and fits into the transparency window of biological tissues [5].
The ultimate solution to this problem is the use of lanthanide coordination compounds (Ln
CCs) with extremely narrow luminescence bands (<10 nm) [6]. In particular, europium
complexes with their high quantum yields (PLQYs) and red emission (~615 nm) are of
interest. However, the peculiarities of Ln-based OLEDs [7], particularly their long exciton
lifetime (τ) [8], still result in low luminance and efficiencies of OLEDs based on Eu CCs [9].
This makes it an urgent task to search for new materials, as well as to optimize the OLED
deposition parameters, to which Eu CCs with their long lifetimes are particularly sensitive.

Most commercially available OLEDs are produced using vacuum thermal evapo-
ration (VTE) due to the higher luminance and efficiency of OLEDs produced this way,
resulting from the higher purity of the deposited films [10]. At the same time, VTE has
some disadvantages, including the impossibility of using non-volatile compounds, high
complexity, cost of the technological process, and the complexity of optimization of the
material co-evaporation [11]. Thus, the development of solution-processed methods is itself
an important task.

However, solution deposition is always associated with fast degradation [10,12,13],
which is particularly harmful to Ln-based OLEDs, whose long excited-state lifetimes already
facilitate degradation. As a result, the highest luminance obtained for solution-processed
lanthanide-based OLEDs is very low, while their degradation has not been studied at all.
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At the same time, for some materials, it has already been possible to obtain spin-coated
(SC) OLEDs, which are only slightly inferior to similar VTE devices [13], due to the SC
film deposition process, i.e., the optimal solvent, rotation rate, and annealing conditions.
Mao et al. reported similar OLED performance for VTE-deposited and SC films [14], while
Feng et al. reported that SC films of TPD (tri-methylphenyl diamine) were superior to
the VTE-deposited ones, being much smoother and denser [15]. For Ln-based OLEDs,
this was rarely studied, but we have recently demonstrated [16] that solution-deposited
films of Eu CCs are denser than VTE-deposited films, which resulted in a decrease in the
turn-on voltage.

In this paper, SC deposition of the emission layers based on europium mixed-ligand
complexes was studied and optimized. Their photophysical properties, depending on the
host material and deposition conditions, were studied, aiming at obtaining the highest
PLQY/τ ratio, and the optimized films were tested in OLEDs. As the object of study,
mixed-ligand europium complexes Eu(dik)3DPPZ with dipyrido [3,2-a:2′c,3′c-c]phenazine
(DPPZ) β-diketones (dik = tta (thenoyltrifluoroacetone), dbm (dibenzoylmethane), and btfa
(benzoyltrifluoroacetone)) were used, since DPPZ-containing β-diketonates demonstrated
the record luminance of electroluminescence (EL) [17].

2. Materials and Methods

All solvents and chemicals were purchased from commercial sources.
Powder X-ray diffraction data (PXRD) were collected using Bruker D8 Advance

(Karlsruhe, Germany) [λ(Cu-Kα) = 1.5418 Å; Ni filter] with a step size of 0.020◦.
A suitable single crystal of [Eu(btfa)3DPPZ] (C48H28EuF9N4O6) was selected and

mounted on a Bruker Quest diffractometer. The crystal was kept at 100 K during data
collection. Using Olex2 [18], the structure was solved with the XS [19] structure solution
program using Direct Methods and refined with the XL [19] refinement package using
Least Squares minimization.

Crystal Data for [Eu(btfa)3DPPZ] (C48H28EuF9N4O6, M = 1079.70 g/mol): tetragonal,
space group P4/n (no. 85), a = 27.5502(3) Å, c = 11.6190(3) Å, V = 8819.0(3) Å3, Z = 8,
T = 100 K, µ(MoKα) = 1.515 mm−1, Dcalc = 1.626 g/cm3, 52,490 reflections measured (3.804◦

≤ 2Θ ≤ 56.584◦), 10,940 unique (Rint = 0.0624, Rsigma = 0.0531), which were used in all
calculations. The final R1 was 0.0563 (I > 2σ(I)) and wR2 was 0.1235 (all data).

CCDC 2223863 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk (deposition date 2 December 2022).

Thermal analysis was carried out on an STA 409PC Luxx thermoanalyzer (NETZSCH,
Selb, Germany) in the temperature range of 20–1000 ◦C in air, at a heating rate of 10 (◦)/min.
The evolved gases were simultaneously monitored during the TA experiment using a
coupled QMS 403C Aeolos quadrupole mass spectrometer (NETZSCH, Selb, Germany).
The mass spectra were registered for the species with the following m/z values: 18 (cor-
responding to H2O), 44 (corresponding to CO2), 46 (corresponding to C2H5OH), and 127
(corresponding to I).

The IR spectra were recorded on a Nicolet iS50 FTIR Spectrometer as a powder at ATR
(Thermo Scientific, Waltham, MA, USA).

Photoluminescence spectra were recorded using a Fluoromax Plus (HORIBA, Piscat-
away, NJ, USA) spectrometer at room temperature; excitation was performed through a
ligand, and the absolute method in the integration sphere was used.

2.1. OLED Manufacture

Prepatterned indium tin oxide coating with 15 Ohm/sq on the glass substrates (Kaivo
LTD) were used as anodes. The substrates were cleaned by three-step ultrasonication in
deionized water, acetone, and isopropanol for 15 min each followed by drying with airflow.
Then a 20 min UV treatment was performed to remove residual organic impurities.

http://www.ccdc.cam.ac.uk
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Hole injection layer PEDOT-PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(Ossila Al-4083) was spin-coated on cleaned ITO glass substrates at 3000 rpm for 1 min
with the following annealing process at 140 ◦C for 10 min in the air. Then a 20 nm thick
hole-transporting poly-TPD (Ossila) solution was spin-coated from 5 mg/mL solution
in chlorobenzene at 1500 rpm for 1 min and dried at 120 ◦C for 10 min in the nitrogen-
filled glovebox. Afterward, a 30 nm thick emission layer was spin-coated from THF
(Eu(dik)3DPPZ:CBP 1:3, total c = 5 g·L−1) at 1500 rpm for 1 min with further annealing at
80 ◦C for 10 min.

Finally, the substrates were transferred into a MB-ProVap 5G vacuum deposition
system. The ∼20 nm thick electron-transporting/hole-blocking layer TPBi (Lumtec) was
thermally evaporated followed by a ∼1 nm thick LiF layer and 100 nm thick aluminum
layer as the cathode in a sequence through a shadow mask at 10−6 mbar to form 21 mm2

pixels. The thicknesses of all evaporated layers was controlled by a quartz micro-balance
resonator pregraduated by profilometry.

Measurements of the OLED characteristics were performed in the N2 glovebox without
encapsulation. The electroluminescence spectra were obtained with an Instrument Systems
CAS 120 Array spectrometer sensitive within 200–1100 nm. Current-voltage characteristics
were measured by using Keithley 2400 source-meter measurement unit. The turn-on
voltage was defined as the voltage at which 1 cd/m2 EL intensity was achieved.

2.2. Synthesis

Synthesis of Eu(dbm)3DPPZ. A solution of 1 mmol of EuCl3·6H2O in 20 mL of ethanol
was added to a mixture of Hdbm (3 mmol), Et3N (3 mmol) in 20 mL of ethanol, then a
solution of DPPZ (1 mmol) in 30 mL of ethanol was added, and the precipitation was
observed. The reaction mixture was stirred for 2 h, then the precipitate was filtered off,
washed with cold ethanol, and dried in air.

Synthesis of Eu(tta)3DPPZ. A solution of 1 mmol of EuCl3·6H2O in 20 mL of ethanol
was added to a mixture of Htta (3 mmol), Et3N (3 mmol) in 20 mL of ethanol, then a solution
of DPPZ (1 mmol) in 30 mL of ethanol was added, and the precipitation was observed. The
reaction mixture was stirred for 2 h, then the precipitate was filtered off, washed with cold
ethanol, and dried in air.

Synthesis of Eu(btfa)3DPPZ. A solution of 1 mmol of EuCl3·6H2O in 20 mL of ethanol
was added to a mixture of Hbtfa (3 mmol), Et3N (3 mmol) in 20 mL of ethanol, then a
solution of DPPZ (1 mmol) in 30 mL of ethanol was added, and the precipitation was
observed. The reaction mixture was stirred for 2 h, then the precipitate was filtered off,
washed with cold ethanol, and dried in air.

A single crystal of Eu(btfa)3DPPZ was obtained by the slow evaporation of the
Eu(btfa)3DPPZ solution in ethanol at room temperature.

3. Results and Discussion
3.1. Synthesis and Characterization

Mixed-ligand complexes Eu(dik)3DPPZ were synthesized as in [17]. A single crys-
tal of [Eu(btfa)3DPPZ] was obtained by slow evaporation of the ethanol solution of
Eu(btfa)3DPPZ (Figure 1b). The complex is monomeric, and the Eu3+ central ion is sur-
rounded by three btfa− anionic ligands and one DPPZ neutral ligand, which results in
CN = 8.
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Figure 1. (a) Complexes Eu(dik)3DPPZ used in the present study. (b) The structure of 

[Eu(btfa)3DPPZ] in crystal. 

The PXRD pattern of Eu(btfa)3DPPZ coincided with the one calculated from the 

[Eu(btfa)3DPPZ] structure (Figure 2b); the PXRD patterns of the other Eu(dik)3DPPZ (dik 

= tta, dbm) coincided with those calculated from the structures of [Eu(tta)3DPPZ] and 

[Dy(dbm)3DPPZ] (CCDC numbers 2072867 [16] and 1062453, Figure S3). In order to addi-

tionally confirm the composition of complexes, 1H NMR spectroscopy, TGA, and IR spec-

troscopy were performed (Figure 2a, Figures S1, S2 and S4 in ESI). 
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Figure 2. (a) TGA data of Eu(btfa)3DPPZ, Eu(tta)3DPPZ·EtOH, and Eu(dbm)3DPPZ powders and (b) 

PXRD patterns for Eu(btfa)3DPPZ: experimental (red curve) and calculated from the crystal struc-

ture (black curve). 
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Figure 1. (a) Complexes Eu(dik)3DPPZ used in the present study. (b) The structure of [Eu(btfa)3DPPZ]
in crystal.

The PXRD pattern of Eu(btfa)3DPPZ coincided with the one calculated from the
[Eu(btfa)3DPPZ] structure (Figure 2b); the PXRD patterns of the other Eu(dik)3DPPZ
(dik = tta, dbm) coincided with those calculated from the structures of [Eu(tta)3DPPZ]
and [Dy(dbm)3DPPZ] (CCDC numbers 2072867 [16] and 1062453, Figure S3). In order to
additionally confirm the composition of complexes, 1H NMR spectroscopy, TGA, and IR
spectroscopy were performed (Figures 2a, S1, S2 and S4 in ESI).
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3.2. Photoluminescent Properties

We studied photoluminescent (PL) properties of the complexes’ thin films, as well
as of the composite films Eu(dik)3DPPZ:host (Table 1), where the following hosts were
selected based on the literature data: 6TCTA:3OXD-7, 6CBP:3OXD-7, 6TCTA:3CBP, and
CBP itself [20–22]. Here TCTA is 4,4′,4′′-tris(carbazol-9-yl)triphenylamine, OXD-7 is 1,3-
bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene, and CBP is 4,4′-Bis(N-carbazolyl)-
1,1′-biphenyl.
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Table 1. Photoluminescent properties of the Eu(dik)3DPPZ:host films (λex = 330 nm).

dik = Host in
Eu(dik)3DPPZ:host PLQY, % τobs, ms PLQY/τobs

tta

- 0.4 0.07 6
6TCTA:3OXD-7 2.3 0.25 9
6CBP:3OXD-7 6.4 0.37 17
6TCTA:3CBP 10.7 0.34 32

3CBP 11 0.24 46

btfa

- 1.3 0.10 13
6TCTA:3OXD-7 2.2 0.24 9
6CBP:3OXD-7 5.4 0.39 14
6TCTA:3CBP 4.9 0.31 16

3CBP 4.6 0.27 17

dbm

- 0.6 0.06 10
6TCTA:3OXD-7 2.3 0.21 11
6CBP:3OXD-7 5.1 0.31 16
6TCTA:3CBP 4.1 0.26 16

3CBP 3 0.17 18

Both doped and undoped Eu(dik)3DPPZ films exhibit photoluminescence typical of
europium ions; the organic photoluminescence is absent (Figures 3 and S5–S7 in ESI). The
excitation spectra demonstrate broad excitation bands through the dik− (250–300 nm) and
the DPPZ (300–400 nm) and are almost unaffected by the host [23].
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CBP: Eu(dik)3DPPZ, dik = dbm (blue), btfa (red), and tta (black).

The PLQY and observed lifetime (τobs) values strongly depend on the host. This
demonstrates the importance of the measurements of the photophysical data within the
composite film even if the properties of the pure compound are known. Such dependence
may be associated with the participation of the host in the sensitization process. Indeed, as
DPPZ demonstrates low sensitization efficiency and even quenching of the Eu photolumi-
nescence, the presence of the host, able to sensitize its photoluminescence, may affect the
photoluminescence efficiency.

At the same time, as both the lifetimes and the PLQY increase, we calculated the
PLQY/τobs parameter to compare the obtained films. Indeed, the increase of the PLQY
linearly increases the electroluminescence intensity, while the increase of the τobs results in
its linear decrease. Thus, the larger PLQY/τobs is, the better should be the performance.
Interestingly, the PLQY/τobs value did not change much after the doping, though it in-
creases in some hosts, and decreases in others. This data demonstrates that according to
the photophysical characteristics, CBP can be considered the best host material among the
selected ones.

For CBP, as well as for CBP:TCTA, we also studied the dependence of the composite
films’ photophysical properties on the solvent, from which it was deposited (Table 2). We
selected dichloromethane (DCM), tetrahydrofuran (THF), and toluene (Tol) as the most
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suitable solvents for solution deposition according to the literature data. The photophysical
properties’ dependence on the dopant concentration was also studied.

Table 2. The solvent dependence of the photophysical properties of the Eu(tta)3DPPZ-doped films.

Solvent Eu(tta)3DPPZ:
CBP:TCTA PLQY, % τobs, ms PLQY/τobs

Eu(tta)3DPPZ:
CBP PLQY, % τobs, ms PLQY/τobs

DCM
1:(7/3):1 4.0 0.20 20 1:1 2.5 0.15 17
1:3.5:1.5 7.0 0.29 24 1:2 2.7 0.18 15

1:7:3 9.7 0.34 29 1:3 3.0 0.20 15

THF
1:(7/3):1 5.0 0.24 21 1:1 4.3 0.18 24
1:3.5:1.5 9.8 0.33 30 1:2 8.2 0.21 39

1:7:3 10.7 0.34 32 1:3 11.0 0.24 46

Tol
1:(7/3):1 2.2 0.14 16 1:1 1.6 0.10 16
1:3.5:1.5 3.6 0.21 17 1:2 3.9 0.16 24

1:7:3 4.8 0.26 19 1:3 5.3 0.19 28

It revealed that the PLQY values, as well as the τobs and PLQY/τobs values, do indeed
strongly depend on the solvent. Thus, the PLQY and PLQY/τobs values are lower in the
high-boiling toluene than in DCM and THF. This is likely due to the quenching by the
residual solvent, which remains within the film even after the thermal treatment.

The comparison of the obtained data demonstrates that the best performance is demon-
strated by the Eu(tta)3DPPZ:CBP = 1:3 film, deposited from THF.

3.3. OLED Fabrication

Based on the obtained data, OLEDs S1–S3 with the heterostructure ITO/PEDOT:PSS/poly-
TPD/EML/TPBi/LiF/Al (TPBi = 2,2′,2′′-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))
were obtained (Figure 4), where spin-coated Eu(dik)3DPPZ:CBP 1:3 films served as the EML
(dik = tta for S1, btfa for S2, dbm for S3).
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Figure 4. (a) Heterostructure and (b) band structure of OLEDs.

All the diodes demonstrated the pure EL of the europium ion (Figure S8) with CIE
coordinates (x = 0.66, y = 0.32), which coincided exactly with their photoluminescence
spectra (Figure 3); their luminance reached up to 700 cd/m2 (Figure 5). This is one of the
highest values obtained so far for solution-deposited Eu-based OLEDs, and it is a result of
the purposeful selection of not only the emitter but also the deposition conditions.
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Figure 5. (a) J-V, (b) L-V, (c) L-J, and (d) CE-V curves of Eu(dik)3DPPZ:CBP 1:3 thin films: dbm (blue),
btfa (red), and tta (black).

OLED degradation and stability is an important issue, which has never been studied
for lanthanide-based OLEDs. In the present work, the stability was studied for the OLED
S1 at 7 V and 8.6 V (starting efficiency of ca. 10 cd/m2 and 100 cd/m2, respectively).

At both voltages, an interesting phenomenon was observed (Figure 6): upon mea-
surement, first, an increase in intensity was observed, which reached 33% at 7 V; after
25 s, the intensity increased from 14 cd/m2 to 18.66 cd/m2. This is quite unusual and
may be connected with the further solvent elimination from the layer or heating up of the
OLED device. Thus, the obtained maximum intensity, t50 of 10,643 s = 177.3 min~3 h, was
measured, while from the initial value of 14 cd/m2, t50 has not even been reached after
12,000 s.

At 8.6 V, the intensity increase is not that pronounced. From the initial intensity, t50 of
1971 s~33 min was reached. These values are quite remarkable for the lanthanide-based
solution-processed OLEDs.
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Figure 6. Lifetime of solution-processed OLED based on Eu(dbm)3DPPZ under the constant voltage
of 7 V (~10 cd/m2) and 8.6 V (~100 cd/m2).

4. Conclusions

We demonstrated the strong dependence of the photophysical properties of composite
films containing europium complexes on the composition, such as host and doping concen-
tration, as well as deposition parameters. The optimization of these parameters allowed
us to obtain the films with the highest PLQY/τ ratio, i.e., films doped into CBP, deposited
from the THF. These films were tested in OLEDs, and a luminance of up to 700 cd/m2 was
obtained thanks to the purposeful selection of the deposition conditions, with t50~33 min
at 100 cd/m2. This is the first study of lanthanide-based OLED stability.
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www.mdpi.com/article/10.3390/ma16030959/s1: Figure S1. (a) TGA curve of Eu(tta)3DPPZ·EtOH.
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(b) IR-spectrum of Eu(tta)3DPPZ·EtOH. b) TGA curves of Eu(btfa)3DPPZ and Eu(dbm)3DPPZ;
Figure S2. The 1H NMR spectra of the Eu(tta)3DPPZ and DPPZ in DMSO-d6 solution. Figure
S3. Top: PXRD data of Eu(dbm)3DPPZ in comparison to the theoretical PXRD, obtained from
the single crystal data of Dy(dbm)3DPPZ (left) and indexed PXRD pattern of Eu(tta)3DPPZ·EtOH.
Bottom: Molecules in the structures of Eu(tta)3DPPZ (left) and Eu(btfa)3DPPZ. Figure S4. IR spectra of
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