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Abstract: In this paper, an artificial neural network (ANN) model is proposed to predict the hydration
process of a new alternative binder. This model overcomes the lack of input parameters of physical
models, providing a realistic explanation with few inputs and fast calculations. Indeed, four mortars
are studied based on ordinary Portland cement (CEM I), cement with limited environmental impact
(CEM III), and glass powder (GP) as the cement substitution. These mortars are named CEM I + GP
and CEM III + GP. The properties of the mortars are characterized, and their life cycle assessment
(LCA) is established. Indeed, a decrease in porosity is observed at 90 days by 4.6%, 2.5%, 12.4%, and
7.9% compared to those of 3 days for CEMI, CEMIII, CEMI + GP, and CEMIII + GP, respectively. In
addition, the use of GP allows for reducing the mechanical strength in the short term. At 90 days,
CEMI + GP and CEMIII + GP present a decrease of about 28% and 57% in compressive strength
compared to CEMI and CEMIII, respectively. Nevertheless, strength does not cease increasing with
the curing time, due to the continuous pozzolanic reactions between Ca(OH)2 and silica contained
in GP and slag present in CEMIII as demonstrated by the thermo-gravimetrical (TG) analysis. To
summarize, CEMIII mortar provides similar performance compared to mortar with CEMI + GP in the
long term. This can later be used in the construction sector and particularly in prefabricated structural
elements. Moreover, the ANN model used to predict the heat of hydration provides a similar result
compared to the experiment, with a resulting R2 of 0.997, 0.968, 0.968, and 0.921 for CEMI, CEMIII,
CEMI + GP, and CEMIII + GP, respectively, and allows for identifying the different hydration modes
of the investigated mortars. The proposed ANN model will allow cement manufacturers to quickly
identify the different hydration modes of new binders by using only the heat of hydration test as an
input parameter.

Keywords: artificial neural network; data processing; cement; glass powder valorization; life cycle
assessment

1. Introduction

With a production of about 10 Gm3/year, concrete is the most important building
material and is, therefore, responsible for some of the world’s environmental problems due
to the production of more than 4 billion tons/year of cement, which requires production
temperatures higher than 1450 ◦C [1,2]. Indeed, concrete is responsible for 4 to 8% of
the world’s CO2 emissions at all stages of production with 50% of the emissions in the
construction sector alone [3,4]. Among materials, only coal oil and gas are a more important
source of greenhouse gases [5].
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One of the reflections that have emerged in recent decades is the substitution of part
of the cement by other alternative binders, the supplementary cementitious materials
(SCMs), with similar characteristics to cement, especially the pozzolanic and the hydration
reactivities. The reduction in cement manufacturing’s carbon footprint remains a challenge
and will have a strong appeal in the coming years.

Once glass becomes waste, it is landfilled, which is not sustainable, because it does
not decompose in the environment. The recovery of glass waste eliminates the unnecessary
consumption of limited landfill areas and can reduce energy consumption, among others.
As a result, it is necessary to seek solutions that are more environmentally friendly. One
of the proposed solutions is to replace part of the Portland cement, the most polluting
component of concrete, with wastes and by-products, while trying to keep similar me-
chanical characteristics. Several industrial by-products have been successfully used as
SCMs, including silica fume (SF), ground granulated blast furnace slag (GGBFS), and
fly ash (FA) [6–8]. These materials are used to create blended cements that can improve
concrete’s early durability and/or long-term strength, workability, and cost.

Glass powder (GP), which is studied in this paper, could also be a relevant solution
for the creation of less-CO2-emitting concrete due to its high pozzolanic properties [9–12].
Each year, millions of tons of glass waste are generated worldwide [13,14]. In addition to
reducing the amount of cement in concrete, glass waste will be recycled. This could be an
important step toward sustainable development [15,16]. Furthermore, glass powder pro-
vides additional performance in terms of workability [17], microstructure properties [18,19],
mechanical strength performance in the long term [20–22], durability [23], and hygrother-
mal performance [16,24,25].

In addition, in the context of sustainable applications of industrial by-products in
environmentally friendly cementitious binders, Life Cycle Analysis (LCA) is a suitable tool
for assessing the environmental impacts of cement production and its associated supply
chains [26]. Assessing a literature review of LCA for the concrete and cementitious materials,
it is seen that the major pollutant component is ordinary Portland cement (OPC), mainly
due to the clinker manufacturing process. Indeed, there are three main steps for the cement
manufacturing (cf., Figure 1): (i) the pre-processing, where the raw materials are crushed
and milled into a fine powder, to enter the preheater; (ii) the calcination, where temperatures
greater than 1400 ◦C are achieved, forming the clinker; (iii) finally, the addition of gypsum to
control the setting time followed by final grinding to transform the clinker into a fine-grained
mixture (90% of the particles diameter are on the order of 10 microns).
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The main steps of the LCA assessment are: (i) determining the scope and limitations
of OPC production and its partial replacement by more environmentally friendly SCMs,
evaluating greenhouse gas emissions, and energy and raw material consumption; (ii) se-
lecting output and input data using literature reviews to obtain average values for each
necessary parameter [27–33], (iii) using the input data in the evaluation of the environmental
impact of the mixtures proposed in this study by preceding the interpolation, and (iv) finally,
presenting the results in terms of the decrease or increase in greenhouse gas emissions and
energy and raw material consumption. The regulatory parameters of the two cements used,
among others, are presented in Table 1, which includes the two types of cement used in this
study (CEM I and CEM III). Indeed, the mineral content of CEM I is mainly pure gypsum
(CaSO4·2H2O) with a maximum content of 5%, which controls setting time. Regarding CEM
III, it contains GGBFS with a content between 36 and 95%. The current LCA assessment will
be divided into three types of raw materials (i.e., clinker, GGBFS, and GP).

Table 1. Cement regulations following European Standard (EN 197-1) [27].

Class

Mineral Content
Mineral Components/Inorganic Process Additions Market

Share(Allowable
Range) (Average)

Ordinary Portland cement (CEM I) ≤5% 2.5% inorganic process addition 30%

Portland composite cement (CEM II) 6−35% 20.5% ground granulated blast furnace slag (GGBFS), silica
fume, pozzolan, fly ash, burnt shale 57%

Blast furnace cement (CEM III) 36−95% 65.5% GGBFS 5%
Pozzolanic cement (CEM IV) 11−55% 33% silica fume, pozzolan, fly ash 6%
Composite cement (CEM V) 36−80% 58% GGBFS, pozzolan, fly ash 3%

To investigate the hydration kinetics of these alternative binders, several models
have been proposed in the literature over recent decades. The hydration heat models are
dependent on several variables, some of which are uncontrollable. Finding a credible model
that accurately describes the hydration heat is a challenging task. Based on the literature, the
simulation methods can be classified into three categories: (i) linear regression models [34],
(ii) physical models [35], and (iii) intelligent computing models. The linear regression
models are constructed by using the least-squares methods to fit experimental data under
the assumption that there are linear (or nonlinear) and independent relationships between
the heat of hydration and its influencing factors, i.e., cement compositions, hydration
age, and cement fineness. In the work of Qin [34], the non-assumptive projection pursuit
regression method has been applied to predict the hydration heat of Portland cement.

Concerning the physical models, several models have been proposed in the literature to
predict cement hydration heat. Tahersima et al. [35] used a finite element model to predict
the hydration heat in a concrete slab-on-grade floor with limestone blended cement. The
results showed that the prediction accuracy of finite element results is about 15% more for the
maximum temperature rise and 30% more for the peak time. However, the main difficulty
of this model lies in the determination of the thermal properties of the material to feed the
model. Furthermore, the calculation time takes longer due to discretization. Kondo et al. [36]
proposed a single-particle model that considers the circular-shaped layered growth of a
uniform thickness of hydrates on a spherical single-reaction cement particle to characterize
the hydration kinetics of alite (C3S). Pommersheim et al. [37,38] suggested an integrated
single-particle reaction-diffusion model for the hydration of C3S. The hydration was modeled
by using a classical approach to deal with reactions and diffusion at phase boundaries.

Recently, He et al. [39] developed a numerical method to describe the hydration heat
characteristics of Portland cement under atmospheric steam curing conditions. This model
has been employed using an iterative algorithm and confirmed with the experimental
results. More recently, Nguyen et al. [40] investigated the effects of cement particle distribu-
tion on the hydration process of cement paste using a three-dimensional cement hydration
computer simulation. The hydration process of cement paste was simulated using the
model based on the CEMHYD3D code and the random distribution method was simpler
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and required less time in generating a pre-hydrated model than the correlation function
method. In the work of Chu et al. [41], the CEMHYD3D code was also used to numerically
model the hydration of cement paste by following the evolution of all phases and predicting
the properties of hydrated cements. Furthermore, Zhao et al. [42] studied the early-age hy-
dration of blended cement and modeled its hydration kinetics by measuring the hydration
heat. Within this paper, the classification of hydration modes was discussed based on the
Krstulovic–Dabic model [43,44], which was built on the data from the hydration rate. The
limitations of numerical methods listed above indicate that there is a knowledge gap that
needs to be filled, particularly for machine learning methods.

Indeed, intelligent computing models are usually based on artificial neural networks
(ANN) and can also be used to assess the complicated process [45–48]. Nevertheless, a lack
of knowledge on ANN applications to predict the hydration process was detected. Based on
a literature review, limited works on Machine Learning (ML) and ANN applications applied
to thermal data analysis and processing have been found in the literature. In addition, only
two studies highlight the use of ANN models to investigate the hydration heat of Portland
cement [49,50]. Subasi et al. [50] used a new approach based on an adaptive neuro-fuzzy
inference system (ANFIS). Cook et al. [49] used a Random Forest (RF) model to achieve
high-accuracy predictions of time-dependent thermal hydration kinetics of OPC-based
analysis. Indeed, the largest drawback of RF is that it can become too slow and ineffective
for real-time forecasts if there are too many combined decision trees. In general, these
algorithms are quick to learn but take a long time to produce predictions after they have
been trained. Moreover, ANFIS has a significant processing cost due to its complicated
structure and gradient learning. This is a major drawback for applications with a high
amount of data [51].

Due to the wide range of factors that influence the performance of the binder hydration
process, the dynamic simulation of the hydration is a difficult task. Several variables
influence heat hydration and they can occasionally be beyond control. It can be difficult to
find a model that accurately describes the behavior of materials as they hydrate. Indeed,
complex and non-linear systems influenced by their environment define behavior dynamics.
However, the identification of the thermal parameters of the material to feed the model is
where the main challenge of the physical models is presented in the literature. In addition,
the discretization lengthens calculation times. For this reason, in this paper, an ANN model
was used to predict the hydration process. The general objective is to fill the information
gap and to present a dynamic model that can overcome the mentioned obstacles, compared
to physical models, such as providing a realistic explanation of the heat of hydration, with
minimum inputs and faster calculations. In order to contribute on that matter, the aims of
this work were: (i) to assess the environmental impact of binders used and highlight the
potential of glass powder (GP) valorization in the reduction in cement’s carbon footprint;
(ii) to investigate the effect of GP on the hydration heat, and on the microstructural and
mechanical properties of mortars, in addition to the thermogravimetric analysis results; (iii)
to propose a numerical approach to identify and classify the transition modes of the cement
hydration process. For this last purpose, a multilayer perceptron regressor (MLP) was
proposed to generate a smooth curve model adjusted to the data reading signal and to map
each experimental dataset. This method provides an interpolated model with less noise
and/or other interferences. Once validated, the numerical analysis of the generated model
was used to identify the transition modes. This identification was based on local maxima
and minima of the generated shape format [52–55]. This method allows the development
of a reliable model that can identify and set the hydration process [56].

2. Materials and Methods

Following the approach presented in Figure 2, the methodology employed in this
paper is based on experimental and numerical steps. Each phase is made up of multiple
sub-steps, as detailed in the following subsections. The first step concerns the materials
characterizations at the laboratory scale and their carbon footprint assessment. The second
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step focuses on the data processing aspects and the general proposed numerical model
dedicated to assessing the hydration process of the mortars used.
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2.1. Experimental Program

Experiments were carried out to investigate the substitution effect of cement, which is
responsible for significant greenhouse gas (GHG) emissions, by other non-biodegradable
GHG alternatives, such as glass powder (GP), which represents a significant amount of
waste. The use of GP as cement substitution would affect the consistency, the heat of
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hydration, and the mechanical properties. In the first step, a characterization of the binders’
constituents was performed through particle size analysis and density analysis. Afterward,
mortars with Portland cement (CEM I 52.5 N), blast furnace cement (CEM III 32.5 N), and
glass powder (GP) were mixed. In this study, 50% of the cement mass was replaced by
GP. Indeed, Zeybek et al. [57] conducted a series of compressive strength, splitting tensile
strength, and flexural strength tests to investigate the effect of waste glass powder on the
mechanical properties of concrete. In their study, glass powder was used to replace up to
50% of cement. The study conducted by Kalakada et al. [58] showed also a decrease in
compressive strength at high cement substitution. The compression strength of the concrete
specimen was reduced by 65% when 50% of the cement was replaced with glass powder.
In this study, it was chosen to replace the cement by 50% of GP in mass in view of other
experiences in the literature with high substitution rates, but it is important to notice that
focus is given on the proper validation of the relevance of the ANN model with materials
having a low hydration heat (which is expected at those high substitution rates—up to
50%). The microstructural characterization of the tested mortars was conducted using an
isothermal calorimeter, water porosity, and a TG analysis. In addition, the workability and
mechanical strength of the mortars were also assessed and compared to control mortars
with CEM I and CEM III. To explain the improvement of the mechanical strength and the
decrease in the porosity in the long term, the thermogravimetric analysis was performed
after 90 days.

2.1.1. Raw Materials

Two types of cement were used in this study, CEM I 52.5 N and CEM III 32.5 N in
compliance with the European standard [59]. Glass powder was used as mass substituents
of cement. The glass powder was recovered from glass waste of demolition, provided by
the waste disposal plant of Caen’s metropolitan region (Normandy, France). The density of
binders was determined using a helium pycnometer and the particle size distribution was
assessed by a laser particle size analyzer in the wet process in compliance with the European
standard [60]. Figure 3 shows the particle size distribution of the used binders. The results
show that the studied CEM I and CEM III were almost the same size as the literature result [61]
and presented a finer particle size when compared to GP. Indeed, the average particle sizes D50
of the investigated binders were 16, 13, and 40 µm for CEM I, CEM III, and GP, respectively,
as reported in Table 2. Several studies proved that a GP fineness finer than 75 µm would
produce a pozzolanic reaction instead of alkali-silica reaction (ASR) [62,63]. Concerning the
density results, CEM I presented a high density of about 3150 kg/m3 compared to those of
CEM III and GP, which were 2880 and 2510 kg/m3, respectively.

Table 2. Particles size and density of binders used.

CEM I CEM III GP

d10 (µm) 3 1.5 8

d50 (µm) 16 13 40

d90 (µm) 40 32 80

dmax (µm) 300 70 120

Density (kg/m3) 3150 2880 2510
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2.1.2. Mix Design and Experimental Protocol

The mortar mixture was prepared using the mix design method described by
Equations (1)–(4) [64].

VS + VC + VGP + VW ≈ 1 m3 (1)

W
GP + C

= 0.5 (2)

GP
C + GP

= 0.5 (3)

S
GP + C

= 0.3 (4)

where VS, VC, VGP, and VW (m3) are the sand, cement, glass powder, and water volumes,
respectively. S, W, GP, and C (kg) are the sand, effective water, glass powder, and cement
contents per cubic meter of mortar, respectively. The water-to-binder ratio was taken as
equal to 0.5 (Equation (2)). Such values of paste volume and water-to-binder ratio were
chosen to obtain a homogeneous mortar mixture by limiting bleeding and segregation
and to ensure its good workability [64]. Moreover, the water-to-binder ratio was chosen
high enough to mitigate the phenomenon of self-desiccation due to hydration [65,66]. The
cement substitution ratio was fixed at 0.5 (Equation (3)) to maintain the glass powder
content (GP) as equal to the cement content (C). The volume of sand (VS) was fixed to
obtain a total mortar volume of 1 m3. The mortar mix compositions are given in Table 3.
A commercial SikaCem® superplasticizer polycarboxylate was added to all the mixtures
in order to obtain a better and comparable consistency. Indeed, due to the low content of
the superplasticizer, compared to the mortar constituents, its content was neglected. The
superplasticizer/cement ratio varied between 0.36% and 0.54%. The slump measured at
the fresh state varied between 12 and 21 mm.

In the fresh state, the workability of mortars was assessed using a flow table test according
to the ASTM standard [67]. This test is performed by placing mortar in a mini mortar cone,
which has been previously wetted, in two layers on a vibrating table. Then, 15 vibrations are
applied with a speed of 1 vibration/second. At the end of this test, the flow is measured. In
the hardened state, the porosity, and the compressive and the tensile strengths of all specimens
were tested. According to the French standard [68], the prismatic mortars of 4 × 4 × 16 cm3

were cast. The specimens were cured at the standard conditions, i.e., for 24 h at 20 ± 1 ◦C and
relative humidity no less than 60%. Then, the specimens were unmolded and cured in water
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for different test ages (3, 14, 28, and 90 days) at (22 ± 1) ◦C. After that, all mortar specimens
were taken out of the water for the mechanical properties tests.

Table 3. Mix proportions of mortar (kg/m3).

CEM I CEM III CEM I + GP CEM III + GP

Sand 0/4 1795 1638 1761 1685

CEM I 500 0 250 0

CEM III 0 500 0 250

GP 0 0 250 250

Water 250 250 250 250

Superplasticizer 1.8 1.5 1.4 1.2

Flow (cm) 12 13 17 21

The test of the water porosity consisted of placing the specimens in saturation benches
until the total saturation in water, which was ensured by a vacuum pump [69]. Following
24 h of saturation, the specimens were collected, wiped, and their wet and underwater
weights measured. After that, the specimens were put in the oven at 105 ◦C for 24 h and a
second dry weight measurement was taken. The porosity corresponded to [69].

Concerning the mechanical tests, the corresponding loading rates of the compressive
and flexural strength were 2.4 ± 0.2 kN/s and 50 ± 10 kN/s, respectively. Finally, the
thermogravimetric analysis (TG) was carried out to monitor the solid phase formations on
the mortars and the possible pozzolanic reaction (portlandite—CH, calcite—CC, etc.). The
device used was the NETZSCH® instrument (STA 449 F5 Jupiter, Selb, Germany). It consists
of a sealed chamber to control the atmosphere of the sample by injection of helium gas, an
oven to manage the temperature, a weighing module (microbalance), a thermocouple to
measure the temperature, and a computer to control and record data. During the test, the
temperature should be increased from room temperature to 1200 ◦C with a constant rate
of 10 ◦C/min. This velocity is widely used in the literature and it is recommended by the
French standard [69]. The obtained TG results were used to calculate the portlandite rate
(CH) and the chemically bound water rate (wb) by Equations (5) and (6) [70].

CH% =
m410 − m490

m490
×

MCa(OH)2

MH2O
× 100% (5)

wb% =
m40 − m490

m490
× 100% (6)

where m40, m410, and m490 are the sample weights at 40 ◦C, 410 ◦C, and 490 ◦C, respectively.
MCa(OH)2

and MH2O are the molecular masses of portlandite (CH) and water (H2O), respectively.
To compare the results, CH rate and wb rate were normalized to 100 g of anhydrous material.

2.2. Data Processing Model

In this section, a binder hydration monitoring method is proposed. This method is
based on an artificial neural network (ANN) model processing the data from the hydration
heat tracking test. Indeed, a multilayer perceptron regression (MLP) was used to proceed
to an initial treatment of the data considered as signals in order to transform them into a
time series regression. Afterward, a numerical analysis of the generated model was carried
out in order to identify the different transition modes. The identification of the transition
modes was based on the local maxima and minima values of the generated model and
related to the hydration process.
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2.2.1. Artificial Neural Network Modeling

In the literature, the most used data-driven model for building and material behavior
is the artificial neural network (ANN) [71–73]. Numerous types of ANNs have been
developed over the years with varying characteristics. A multilayer perceptron (MLP) is
a class of ANN, which is applied for both classification and regression problems, it is a
classical type of neural network, very flexible, and can be used generally to learn a map
from inputs to outputs, among other applications. It is classified as supervised learning,
using a backpropagation technique for training (cf., Figure 4). All studies in the literature
highlight good results in long short-term memory (LSTM) applications showing versatility
in a multitude of scenarios [74–77].
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The MLP model consists of three parts or nodes organized in the input layer, hidden
layers, and output layer. Except for the input nodes, all the other concepts apply non-
linear activation functions in which the size of the hidden layer is usually determined
by hyperparametric optimization [75]. The details of the inputs and internal weights are
optimized depending on the applied problem and dataset.

As seen in Figure 4b, the neuronal structure is also composed of three elements [78,79]:
(i) ‘synapses’ or connecting links that are associated with particular weights; (ii) the process-
ing unit that handles the input signals weighted (summing junction) by the synaptic weight
and adjusts them by adding a bias value (bk); (iii) an activation function (ϕ) that limits
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the signal amplitude at the neuron’s output. Figure 4b demonstrates a typical neuronal
structure, applied for the hidden and output layer. The input layer differs by the absence
of the activation function and the single input synapse, connected to the input data. The
neuron k can be described mathematically by Equations (7) and (8).

uk =
m

∑
j=1

xj × wkj (7)

vk = uk + bk (8)

where uk is the linear combiner of the input signal and vk is the weighted sum of the input
values adjusted by the bk. The activation function is a set of mathematical equations that
define the output signal of the neuron k. The activation function may be divided into
four distinct groups [80], as in Equations (9)–(12). Equation (9) represents the threshold
function, which is equivalent to a Heaviside function. Equation (10) is an identification
function (linear function). Equation (11) is a logistic sigmoid function (having a sigmoidal
nonlinearity with a as its slope parameter). Equation (12) is a hyperbolic tangent function
(another kind of nonlinearity).

ϕ(v) =


1 i f v > 0
0 i f v = 0
−1 i f v < 0

(9)

ϕ(V) = 0 (10)

ϕ(V) = log f (V) =
1

1 + e−αv (11)

ϕ(V) = tanh(V) =
2

1 + e−αv (12)

The sum of the weighted and bias-corrected inputs passes through the activation
function ϕ to obtain the final output signal (yk), as shown in Equation (13).

yk = ϕ(
m

∑
j=1

xj × wkj + bk) (13)

The implementation of the ANN model is carried out in three steps. The initial stage is
to train the model to minimize the absolute error by altering the weight parameters, based
on comparisons between experimental and model outputs, which should be as close as
possible. The LBFGS (Limited-Memory Broyden–Fletcher–Goldfarb–Shanno) is a popular
optimization algorithm for estimating weight parameters in machine learning. It uses a
quasi-Newton method [81–83]. As the original method (LBFGS), it uses an estimate of the
inverse Hessian matrix, but in that case, LBFGS stores only some chosen vectors, to be able
to represent the model with a required approximation.

2.2.2. Evaluation Metrics

In order to evaluate the final model’s performance, the correlation coefficient (R2), the
root mean square error (RMSE), and the mean absolute error (MAE) are employed [84–86].
The aim is to achieve a model that best fits the labeled training data by evaluating all the
combined applied metrics. All these metrics are performance indicators commonly used
to measure the efficiency of the machine learning models generated. These indicators’
definitions are given in Equations (14)–(16), respectively.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (14)
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RMSE =

√
1
n
×

n

∑
i=1

(
ŷi − yi

)2
(15)

MAE =
n

∑
i=1

∣∣∣∣yi − ŷ
yi

∣∣∣∣ (16)

2.2.3. Data Processing/Numerical Model

In addition to the characterization of the microstructure and mechanical properties
at several ages, a conceptual framework was built to describe and visualize our study
methods after reviewing the relevant current literature [42,44–48]. Each phase is composed
of several steps, as explained in detail in the following sections. These main phases are
summarized in Figure 5 and as below:

• Collecting data: the experimental data were collected based on heat energy measures
within the time, during the cement hydration process. That was the base dataset
used in the initial data processing, heat energy within time. Four datasets obtained
from CEM I, CEM III, CEM I + GP and CEM III + GP were analyzed. Each dataset
contained X data points, in a total of Y datapoints being analyzed;

• Model estimation: concept of the initial data processing, testing, and optimizing all the
parameters necessary for the execution of the algorithm, such as MLP hidden layers
size, activation functions, and optimization algorithm [71,72,82,85];

• Evaluation of conceived model: based on the mentioned metrics parameters (R2,
RMSE, MAE), the best parameters setup was evaluated to proceed with the data
classification [85,86];

• Mode’s identification: based on the generated model data (hydration heat Q vs. time
plot), a numerical peak analysis was proceeded to identify the transition zones and,
thus, the transition modes of binder hydration with time [42].
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As a result, the binder hydration modes were obtained, through a staircase levels plot,
with respective time transitions [42,45,48]. In addition, within the chemical compositions,
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the main difference aspects can be highlighted in the behavior, and the total time of each
mode for different samples can be compared.

3. Results and Discussion
3.1. Life Cycle Analysis LCA

Tables 4–6 present the LCA inventory obtained after interpolations and considerations
reported in the literature. GGBFS is highlighted by the literature with a potential emission
reduction of 78.84% in the production of CEM III [64]. Regarding GP production, its
manufacturing process shown in Table 4 is not on an industrial scale according to [65]. For
masses, units given are in kg of raw material by kg of produced binder (kg/kg product).
For raw materials in volume, such as water, units given are in m3 of raw material by kg of
produced binder (m3/kg product). For energy input, it is either given in terms of kWh of
energy by kg of produced binder (kWh/kg product) or in kg of utilized fuel source by kg
of produced binder (kg/kg product).

Table 4. Cement regulations following European Standard (EN 197-1) [59].

Raw
Materials Units CEM I

(Clinker)
CEM III
(GGBFS) CEM I + GP CEM III + GP

Limestone kg/kg product 1.1737 0.4049 0.5868 0.2025
Clay kg/kg product 0.3307 0.1141 0.1653 0.0570
Sand kg/kg product 0.0503 0.0174 0.0252 0.0087
Iron ore kg/kg product 0.0203 0.0070 0.0102 0.0035
Water m3/kg product 0.0668 0.0230 0.0334 0.0115
GGBFS kg/kg product - 1.0316 - 0.5158
Raw glass kg/kg product - - 0.6480 0.6480

Table 5. Energy consumption inventory input and calculations.

Energy Units CEM I
(Clinker)

CEM III
(GGBFS) CEM I + GP CEM III + GP

Electricity (kWh) kWh/kg product 0.0687 0.0687 0.0403 0.0403
Petroleum coke kg/kg product 0.0463 0.0463 0.0231 0.0231
Hard coal kg/kg product 0.0559 0.0559 0.0280 0.0280
Diesel kg/kg product 3.04 × 10−7 3.04 × 10−7 1.52 × 10−7 1.52 × 10−7

Fuel oil kg/kg product 0.0117 0.0117 0.0058 0.0058
Natural Gas (MJ) MJ/kg product 0.2777 0.2777 0.8768 0.8768
Light distribution kg/kg product 0.0043 0.0043 0.0022 0.0022

Table 6. General emissions inventory input and calculations.

Emissions Units CEM I
(Clinker)

CEM III
(GGBFS) CEM I + GP CEM III + GP

CO2 kg/kg product 0.0687 0.0687 0.0403 0.0403
NOx kg/kg product 0.0463 0.0463 0.0231 0.0231
SO2 kg/kg product 0.0559 0.0559 0.0280 0.0280
H2O(g) kg/kg product 3.04 × 10−7 3.04 × 10−7 1.52 × 10−7 1.52 × 10−7

Particulates kg/kg product 0.0117 0.0117 0.0058 0.0058
Waste kg/kg product 0.2777 0.2777 0.8768 0.8768

Figure 6 shows the different raw materials’ consumption. The results show a con-
siderable reduction in natural resources replaced by waste. In general, this also implies a
reduction in land use, extraction, and other environmental aspects related to the extraction
of mineral raw materials using by-products, avoiding dumping and similar impacts.
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Figure 6. Raw materials’ consumption.

Figure 7 presents the results for the relevant energy demands. Apart from the electricity
produced by different renewable resources (hydroelectric, wind, and thermoelectric), all
other resources are derived from fossil origins. The fuel that has the greatest impact on
clinker production is petroleum coke and hard coal, followed by fuel oil. The proposed
formulations with a 50% replacement of cement will contribute to a direct 50% reduction in
emissions once the clinker manufacturing process is significantly reduced. Regarding the
increase in natural gas consumption, LCA of GP reveals that the results presented are not
applied on an industrial scale, while scalability in this area could increase performance by
reducing consumption.
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Figure 7. Energy consumption results.

Figure 8 shows the GHG emission results for the formulations studied. The results
show a significant reduction in GHG for the formulations containing GP. Regarding mainly
CO2 emissions, CEM III + GP shows a low impact mainly due to the 78.83% reduction of
the CEM III formulation and its 50% replacement by GP. Finally, the same reduction profile
is observed for the case of heavy metals, i.e., nitrous oxide (NOx) and sulfur dioxide (SO2).
According to the literature, NOx is more detrimental to climate change than CO2, while
some authors indicate that it could be 300 times more detrimental to the climate than CO2.
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3.2. Experimental Results

Table 3 presents the flow values measured of the tested mortars. The flow values vary
between 12 and 21 mm. Moreover, an improvement in workability is obtained of up to
41.6% and 23.5% for CEM I + GP and CEM III + GP compared to mortars with CEM I
and CEM III, respectively. This result is attributed to the higher fineness of GP compared
to cement. Therefore, the substitution of cement by GP decreases the water demand for
hydration process, i.e., by increasing the amount of free water and workability of the
pastes [24].

Figure 9 presents the evolution of the porosity, and the compressive and the tensile
strengths (from flexural tests) at several curing ages (3, 14, 28, and 90 days). In general,
CEM III presents less water porosity in comparison with CEM I. This phenomenon is
explained by the presence of slag in CEM III, which leads to the pores clogging by creating
other ranges of non-connected pores [87]. However, after 3 days of curing, the mortars
containing GP show high porosity compared to those with only cement. This phenomenon
is due to the fineness of GP used, which changes the microstructure and the pore-size
distribution [15,24]. A proportional decrease in porosity is observed with increasing age
for all mix designs. At 90 days, this decrease is of the order of 4.6%, 2.5%, 12.4%, and
7.9% for mortars based on CEM I, CEM III, CEM I + GP, and CEM III + GP, respectively,
compared to the results at 3 days. This result seems to be in good agreement with those
found previously by other authors [15,24,49,50].

When it comes to mechanical strength, for all mortars, an increase is observed and
this is due to the continuous hydration of the binder with the curing time [22]. In addition,
the use of GP with a replacement of 50% of the cement decreases the mechanical strength
in the short term. This is due to a dilution effect, which is the immediate consequence of
the substitution of a more reactive powder (cement) with a less reactive powder (GP) in
the short term [12]. Nevertheless, the mechanical strength does not cease increasing with
curing time [15,22,24]. This phenomenon is due to continuous pozzolanic reactions between
portlandite (Ca(OH)2) and silica originating from GP, as highlighted by Idir et al. [55], in
addition to the slag present in CEM III, as also demonstrated below by the TG analysis.
After 90 days of curing time, the CEM I + GP presents a decrease of about 28% and 17.7% in
compressive and tensile strength, respectively, compared to CEM I. For CEM III + GP, the
decrease is about 57% and 56% in compressive and tensile strength, respectively, compared
to CEM III. These results are in agreement with those reported by Adesina et al. [88].
Nevertheless, these values are adequate for the use of CEM I + GP in the construction sector
and particularly in prefabricated structural elements.
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Porosity (%)
CEM I 19.4 19.2 19.1 18.5

CEM III 16.1 15.8 15.7 15.7
CEM I + GP 24.9 24.5 24.3 21.8

CEM III + GP 31.7 31.2 29.5 29.2
3d 14d 28d 90d

Compressive strength (MPa)
CEM I 12.1 28.3 43.6 46.5

CEM III 8.7 19.2 25.7 35.1
CEM I + GP 10.1 16.5 27.4 33.5

CEM III + GP 4.3 8.2 10.6 15.1
3d 14d 28d 90d

Tensile strength (MPa)
CEM I 5.6 5.9 7.2 7.9

CEM III 5.2 5.1 6.8 7.1
CEM I + GP 3.5 3.6 3.9 6.5

CEM III + GP 1.5 1.2 2.8 3.1
3d 14d 28d 90d

Figure 9. Porosity, and compressive and tensile strengths of mortars used.

To investigate the pozzolanic reaction of GP with portlandite (CH), a thermogravimet-
ric (TG) analysis is conducted at 90 days. Figure 10 shows the three main phases formed
in mortars with CEM I and CEM III. The mortar with CEM III has less portlandite and
calcite (CC) amounts than CEM I mortar does. This is due to the activated pozzolanic
reaction of the blast furnace slag present in the CEM III cement. Nevertheless, in the case of
mortars with GP, the two peaks related to portlandite and calcite are reduced, showing the
consumption of CH by GP to produce additional CSH hydrates [24]. An increase in the
first peak is observed. Indeed, the three phases correspond generally to three processes
according to [89,90]. The first band below 200 ◦C is due to the loss of free water as well
as the dehydration of calcium silicate hydrate (CSH), ettringite (AFt), calcium monosulfo-
aluminate, hemicarboaluminate, or calcium monocarboaluminate (all these material phases
are denoted as AFm). The second peak around 400–500 ◦C is contributed to the dehydrox-
ylation of portlandite (CH), while the decarbonization of calcium carbonates (CC) takes
place at 700–800 ◦C. From dTG patterns, the AFt and AFm material phases are difficult to
dissociate, as the corresponding bands are large, and the decomposition temperatures of
these phases are very narrow and overlay each other.
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Figure 10. TG and dTG curves of the studied mortars.

Based on TG results, the normalized amounts of the bound water (wb) and portlandite
(CH) are both presented in Figure 11. Indeed, the wb rate indicates the volume of reaction
products (including CSH, AFt, AFm, and CH) formed during cement hydration, while
normalized CH can be interpreted as an indication of changes in the assemblage of reaction
products (CH consumption due to the formation of additional CSH hydrates) as highlighted
by Damidot et al. [91]. Figure 11 shows that for the mortars containing low clinker content,
the wb rate is lower than for the standard mortar (CEM I).
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The increase in wb in the mortars with GP is related to pozzolanic reactions. Indeed,
silica reacts chemically with calcium hydroxide (CH) and produces additional CSH phases.
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Due to CH consumption, the normalized CH value for mortar with GP is lower than that
for the standard mortars (CEM I and CEM III). These data show the same trend as those
reported in literature [92,93], where wb and CH values for both pure and blended pastes
with silica fume were estimated and measured.

3.3. Data Processing/Numerical Results

Figure 12 shows the experimental data and those predicted by the ANN model for the
heat of hydration in mW/g. Indeed, the models translating the hydration behavior of CEM
I, CEM I + GP, CEM III, and CEM III + GP mortars provide a good agreement with the
data found experimentally with a difference of relevance more important for the MAE and
RMSE metrics. For the RMSE, the lowest results are obtained with the CEM III + GP results
with a 0.92 R2 score, with the further metrics appointed in the same evaluation for near
0.35 for MAE, and with an improvement for the RMSE, at a value of 0.20, the best result for
all datasets.
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metrics for (a) CEM I, (b) CEM I + GP, (c) CEM III, and (d) CEM III + GP.

The hydration modes identification of CEM I, CEM I + GP, CEM III, and CEM III + GP
are shown in Figure 13a,b and Figure 14a,b, respectively. In general, the proposed model
identifies four main modes [32], including the initial reaction and slow reaction period
(Mode 1), acceleration period (Mode 2), deceleration period (Mode 3), and stability period
(Mode 4) in the history of heat flow. As shown in Figures 13 and 14, the standard mortar
with CEM I started an earlier acceleration period than the other mortars studied with a
higher heat release. This mode corresponds to the induction phenomenon interpreted by
the geochemistry dissolution theory that the primary mechanism controlling the kinetics
up to the end of the induction period is the undersaturation of this surface layer [94]. In
addition, tri-calcium aluminate (C3A) reacts promptly with water from an early age to form
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calcium hydroaluminate (3CaO–Al2O3–Ca(OH)2–nH2O or hydroxy–AFm), as mentioned
by Nguyen et al. [32].
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Figure 14. Heat of hydration, ANN model generated, modes, and transitions identification:
(a) CEM III and (b) CEM III + GP.

As shown in Figures 13b and 14a, CEP I + GP and CEM III mortars present almost
the same behavior in term of peaks position. Nevertheless, these peaks start at 6.78 h and
7.58 h from the first water contact of the binder for the CEM III and CEM I + GP mortars,
respectively. This time delay can be explained by the fact that the containing slag in the
CEM III is more reactive than the glass powder.

In the second mode, the peak value decreases and shifts toward a longer hydration
time when the CEM III and GP are used. This phenomenon could be attributed to the
consumption of C3S (Alite), which is consistent with the hydration heat rate. It is known
that the hydration rate of C3S is much higher than that of C2S (Belite) due to the higher
solubility and lower activation energy of C3S compared to C2S [95]. Indeed, the solubility of
C3S is between 5 and 8 times higher than that of C2S [95]. Therefore, it could be concluded
that Mode 2 is strongly affected by the hydration of C3S, and this state is in good agreement
with the literature [96]. At the end of the induction period, CSH and Portlandite (CH) begin
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to develop fast. There is still considerable controversy about the trigger for this increase in
reaction rate. Indeed, in pastes, it seems that the CH precipitation is the trigger.

Mode 3 corresponds to the renewed dissolution of C3A with the formation of ettringite
(AFt). Due to this retardation of the C3A reaction with sulfate, the main reaction of this phase
should occur after the main peak of the reaction of alite in a properly sulfated Portland
cement. However, in CEM I, the formation of ettringite continues after the exhaustion of
sulfate in the solution [97]. In conclusion, the ANN model makes it possible to determine
when the initial hydration phase is completed, i.e., after 20.54 h, 42.40 h, 45.04 h, and 55.04 h
for mortar based on CEM I, CEM III, CEM I + GP, and CEM III + GP, respectively.

4. Conclusions

An ANN model is used for the first time to identify the different hydration modes of
binders using only the heat hydration test as an input parameter. The method is based on a
MLP regressor that maps the input signal and generates a fitted model. Afterward, a numerical
approach is proceeded to identify the different hydration modes with respective times.

Indeed, ANN model detects four modes during the hydration process. In addition,
the model proposed provides similar results in terms of heat of hydration in comparison
to the experimental results with R2 = 0.997, 0.968, 0.968, and 0.921 for CEM I, CEM III,
CEM I + GP, and CEM III + GP, respectively. In addition to the mechanical strength
achieved, the replacement of 50% of cement by GP is significantly positive for the LCA
results. Indeed, the GHG emissions present the most significant results, by reducing 50%
and 80% of the emissions of CO2 and NOx + SO2 for the CEM I + GP and CEM III + GP
mixtures, respectively.

It is revealed in this study that waste glass can be employed as a partial cement
substitute in mortar and would be beneficial for GHG emissions of concrete. The present
study identifies waste glass as suitable, accessible in large quantities, a local eco-material,
and suitable for concrete construction from an economic and environmental standpoint.
Nevertheless, when waste glass is employed as partial replacement for cement, the strength
values are reduced, which needs to be investigated in the lab for proper mix design and
use of the materials. To address this shortcoming, future research will focus on combining
waste glass with other recycling fibers. Moreover, the proposed ANN model allows cement
manufacturers to quickly identify the different hydration modes of new binders by using
only the heat hydration test as an input parameter.
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