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Abstract: Due to their chemical inertness and low friction coefficient, fluoropolymers are today
widely employed in sectors of activity as diverse and distinct as the textile industry, architectural
sector, and medicine. However, their low surface energy results in poor adhesion, for example,
when used for a component in a composite device with multiple other materials. Among the
techniques used to enhance their adhesion, atmospheric pressure discharges provide a fast and
low-cost method with a reduced environmental impact. Although this approach has proven to be
efficient, the different chemical and physical processes in the discharge remain not fully understood.
In this study, fluoropolymer surfaces were modified using an atmospheric pressure dielectric barrier
discharge in a nitrogen and organic precursor environment. To prevent any damage to fluoropolymer
surfaces, the dissipated power in the discharges was tuned by applying a duty cycle. Evidence
shows that plasma treatment allows for the incorporation of oxygen and nitrogen in the surface
resulting in the formation of hydrophilic functionalities such as carbonyl groups both in ketone
and amide form, amine, and hydroxyl groups after 180 s of treatment. Overall, the data reveal that
the discharge duty cycle has more effect on the oxygen and carbon content in the coating than the
precursor concentration. In addition, increasing the precursor concentration limits the molecular
fragmentation and nitrogen incorporation into the coating. These experiments enable the building of
a better fundamental understanding of the formation mechanism of such chemical moieties at the
fluoropolymer surface.

Keywords: plasma; fluoropolymer; surface treatment; hydrophilicity; coating; dielectric barrier discharge

1. Introduction

Fluoropolymers, such as ethylene tetrafluoroethylene (ETFE), polytetrafluoro-ethylene
(PTFE), perfluoroalkoxy polymer (PFA), and fluorinated ethylene-propylene (FEP), are
mechanically strong materials due to the presence of carbon–carbon (~347 kJ mol−1) and
carbon–fluorine bonds (~485 kJ·mol−1) in their backbones. In addition, fluoropolymers
exhibit chemical inertness, low surface energy, and show excellent dielectric properties [1].
Thanks to these unique features, research in the field of fluoropolymers has attracted
growing interest over the years, for numerous potential applications, including textiles,
architectural, electronics, and biomedical devices [2]. The low surface energy of these
polymers usually results in low adhesion and non-sticking properties [3]. Although their
anti-adhesive properties present an excellent advantage for many applications, this limits
their use in composite due to their inability to bond to other materials. Plasma treatment
is a solvent-free and dry method that enables the modification of the surface of materials
without altering their bulk properties [4–6]. In addition, plasma has been widely used to
modify polymer surfaces in different sectors, such as printing, labeling, and packaging [7,8].
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In comparison to low-pressure plasma systems, atmospheric pressure plasma (APP) reac-
tors can minimize process costs by eliminating the requirement for vacuum equipment,
allowing for faster treatment times and the ability to perform continuous treatments. There-
fore, this process is fast and cost-effective, which makes it suitable for high throughput
manufacturing environments [9]. Despite the various advantages presented here, two main
challenges usually limit the use of plasma in the industry. First, the plasma modification in-
duced on the polymer experiences aging which changes the surface chemical structure over
time. Second, the use of atmospheric pressure discharge often involves highly energetic
localized filaments [10,11]. These phenomena lead to an inhomogeneous modification of
the surface and/or could induce damage to the sample due to localized heat transfer [12].
For this reason, additional studies are necessary to improve the use of APP approaches and
their understanding. A dielectric barrier discharge (DBD) configuration consists of two
metallic electrodes with at least one of the electrodes being covered by a dielectric. In this
research, the fluoropolymer film acts as the dielectric layer in the DBD configuration. In
this configuration, a non-polymerizable gas mixture can be used to enhance the adhesion
by breaking molecular bonds on the film surface and enabling recombination with free
radicals from the discharge to form polar functionalities [13]. A non-polymerized gas is
a compound that does not polymerize yet produces chemical functionalities on the sur-
faces when combined with reactive gases such as H2 and N2. In applications involving
adhesion, mixing a reactive gas with a non-polymerize precursor might result in greater
crosslinking [14–16]. Different parameters (dilution gas, thin-film precursor, additives)
can affect the discharge regime and behavior [17,18]. These parameters also influence the
chemical composition of the coating and hence, its physico-chemical characteristics [19].
For example, using N2 as the primary gas allows the formation of nitrogen-containing
functionalities. In this context, the use of an organic precursor such as acrylic acid, allyl
alcohol, ethanol, and allylamine [20] make it possible to form a hydrophilic layer on the
surface with various functional polar groups, such as amines (NH2), amides (N-C=O), and
carboxyls (COO) [21,22]. One of the critical parameters in plasma is the input power to
control monomer interactions with energetic species [23,24]. Savage et al. [24] used pulsed
wave (PW) to reduce the fragmentation of monomers. Pulsed plasma can improve the
control of thin film chemistry by controlling energy dissipation. In this work, a duty cycle
(DC) was used to pulse the discharge. The DC is equal to the ton/(ton + toff) where ton cor-
responds to the time when the plasma species are produced and molecular fragmentation
occurs, while toff refers to time when the plasma is off [25]. The surfaces of fluoropolymers
were coated for 180 s by an atmospheric pressure DBD using N2 and a non-polymerizable
organic precursor containing oxygen in static mode to form a resistant thin film coating.
The coating is characterized as a function of precursor concentration and duty cycle (to
raise the power level). The thin film was then analyzed to comprehend the molecular
fragmentation and nitrogen incorporation into the precursor.

2. Experimental Section
2.1. Materials

ETFE films 0.127 mm in thickness (supplied by Saint-Gobain Research North America,
Northborough, MA, USA) were treated in static mode for 180 s in a DBD system. The
carrier gas used was nitrogen, and an organic oxygen-containing precursor was chosen for
its capacity to form polar bonds after plasma deposition.

2.2. Plasma Reactor

The discharge configuration used in this work is depicted in Figure 1. The experimental
setup consisted of a power supply, two flat stainless high-voltage electrodes parallel to
a cylindrical ground electrode, and a vacuum system. The electrodes were placed in a
stainless-steel chamber. The area of each high-voltage electrode was 0.95 cm × 14.9 cm, and
the ground electrode was a stainless-steel cylinder with a 150 mm diameter. The polymer
films were placed on the surface of the ground electrode facing the high-voltage electrodes.
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A Super Air Knife airflow laminator (EXAIR) was used to send a laminar flow of the
carrier nitrogen gas and the gaseous precursor through the small space between the two
top electrodes. In addition, a vacuum system was used to decrease the pressure near 0.8 to
1 kPa before each treatment to remove the gas impurities that could affect the treatment.
ETFE acted as a dielectric barrier, preventing polymer damage from the spark transition.
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Figure 1. Experimental set-up, semi-industrial (DBD).

The power supply of the discharge was built from an arbitrary function generator
(AFG-2021, Tektronix, Beaverton, OR, USA) connected to an audio amplifier PL380 from
QSC Audio products, LLC (Costa Mesa, CA, USA) working in the 10 Hz–100 kHz range.
A transformer (RAFTabtronics, Longwood, FL, USA) was used to amplify the signal,
providing an applied voltage (Va) up to 18 kV between the high voltage and ground
electrodes with a bandwidth from 5 to 15 kHz. The applied voltage was measured at the
exit of the transformer using a high-voltage probe (P6015A, 1000x attenuation, Tektronix).
An additional 100 nF capacitor was inserted on the ground side after the discharge. A
voltage was measured on the capacitor by a passive probe (TPP0500B, Tektronix) and
provided access to the charge flowing through the discharge, enabling the calculation of the
dissipated power via the Lissajous figure method [26,27]. The average power density was
calculated in W.cm−2. Finally, a high-performance oscilloscope (Tektronix, Mixed Domain
Oscilloscope MDO3054, 500 MHz, 10 M record length) was used to follow and save the
current/voltage curves. Additionally, a duty cycle was used, which consisted of turning
on and off the plasma by multiplying the sinusoidal signal by a squared waveform with a
frequency that corresponded to the time on of the signal. This enabled the control of the
discharge and avoided overheating and arc formation [13,14]. The effect of the precursor
concentration and the duty cycle were studied to investigate the relationship between the
fragmentation of organic molecules and the chemical composition of the coated surfaces.
An alternating voltage having a frequency of 5 kHz and an amplitude of 11 kV was used.
The breakdown voltage was 9 kV, while the maximum voltage before arc formation was
13 kV. Considering this, 11 kV was selected as the average voltage. The total gas flow (N2

+

precursor) was set to 5 SLM (Standard Liter per Minute), and the inter-electrode gas gap
was set to 1 mm (Table 1). The precursor amount varied between 3% and 15% with respect
to the total flow. The precursor concentration was selected due to the limitation of the
flowmeter on the maximum precursor amount possible to inject into the plasma zone for a
5 SLM total flow. The duty cycle used to regulate the power during the treatment ranged
between 10% and 50%. The limit was fixed at 50% DC to prevent arc formation, polymer
overheating, and surface damage. Table 1 summarizes all conditions studied in this work.
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Table 1. Plasma experimental conditions.

Voltage
(kV)

Frequency
(kHz)

Total Gas
Flow (SLM) Gap (mm) Treatment

Duration (s)
Duty Cycle

(%)
Power

(W.cm−2)
Precursor

(%)
Precursor

Amount (gr.h−1)

11 5 5 1 180
10%
30%
50%

0.17
0.51
0.91

3%
10%
15%

18
60
91

2.3. Characterization Techniques
2.3.1. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) (PHI 5600-ci spectrometer, Physical Electron-
ics, Chanhassen, MN, USA) was used to measure the relative atomic composition on the
various investigated surfaces. The measurements were carried out with an incident angle
of 45◦ on sample 0.5 mm2 area at a residual pressure of 8 × 10−9 Torr. A survey spectrum
covering the range of 0–1200 eV was first recorded using a standard aluminum Kα X-ray
source (1488.6 eV) at 300 W, with charge compensation (neutralizer). A monochromatic
magnesium anode (1253.6 eV) was utilized at 150 W without charge neutralization for high
resolution spectra of carbon (280–300 eV). Multipak (9.0 V) software was used to process
XPS survey scans, and the peak area ratio used to identify the elemental composition of the
ETFE sample and the coating layer. The CF2 component of the C1s spectrum at 291 eV was
used to calibrate the energy scale for the ETFE, and the hydrocarbon component of the C1s
spectrum (285.0 eV) was utilized to calibrate the energy scale for the coating. Multipak was
employed to curve-fit high-resolution C1s peaks. Peaks were curve fitted using Gaussian–
Lorentzian peak forms over an iterated Shirley background, with the full width at half
maximum (FWHM) of each line shape kept between 0.9 and 1.2 eV. Each of the samples
was subjected to four measurements to estimate the homogeneity of the treatment and the
reproducibility of the measurement. Furthermore, this coating investigation was performed
twice for each plasma setting to ensure that the treatment process was reproducible.

2.3.2. Surface Energy

Surface energy was determined through static contact angle measurements. This
was performed using a WCA 2500 XE system (AST, Billerica, MA, USA) equipped with a
built-in high-resolution CCD camera. Per each analysis 0.5 µL droplet of deionized water
and diiodomethane (ReagentPlus®, 99%, contains copper as neutralizer, Sigma-Aldrich, St.
Louis, MO, USA) were placed on the surface. A software computed the angles at the edge
of the droplet. Ten contact angles (five drops per liquid) were measured for each sample to
get an average value and its standard deviation. Surface energy was calculated from the
polar and dispersive surface energy components based on Fowkes theory using contact
angle values of those liquids utilizing Equation (1) [28,29]:(

σd
L

)1/2(
σd

s

)1/2
+

(
σ

p
L

)1/2(
σ

p
s

)1/2
=

σL

2
(cos θ+ 1) (1)

2.3.3. Attenuated Total Reflectance Fourier Transformed Infrared Spectroscopy (ATR-FTIR)

Fourier-transform infrared spectroscopy (FTIR-ATR) was used to identify the coating
chemical functionalities. The spectra were recorded with 4 cm−1 of resolution on an
Agilent 600 Series FTIR spectrometer (Agilent, Mulgrave, Australia). A Harrick’s SplitPea™
(Pleasantville, NY, USA) was set to ensure strong contact between sample and ATR crystal.
The spectra were recorded between 4000 and 400 cm−1 range with 128 scans at 4 different
points from a 1 cm × 1 cm treated sample. All spectra were normalized to the maximum
peak intensity (1040 cm−1, C-F bond from ETFE [30]) to consider potentially unexpected
variables/errors such as sample thickness. For each sample, four points were measured
in various locations on the coating to calculate the standard deviation of the average area
under the peaks assigned and study the growth mode. The curve fitting of the peaks
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was curve fitted using Voigt peak shape of full width-at-half-maximum (FWHM) below
50 cm−1.

3. Results and Discussion
3.1. Surface Composition of Plasma-Treated Samples

Figure 2 shows the concentrations of carbon and fluorine on the surface of plasma-
treated ETFE samples as a function of the amount of precursor injected in the discharge
for each applied duty cycle (DC). All the investigated experimental conditions lead to a
decrease in the surface fluorine concentration from 55% (untreated sample) to approxi-
mately 0%, concomitant with an increase in the surface carbon concentration (Figure 2).
These results are consistent with the deposition of an organic thin film on the ETFE samples.
Interestingly, the carbon surface concentration was shown to be dependent on the duty
cycle applied more than the concentration of precursor injected in the plasma.
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For a precursor concentration of less than 10%, the amount of carbon in the thin film
remained almost unchanged at approximately 72% when the duty cycle in the plasma was
set at 10%. Under the same applied duty cycle, an increase in the amount of precursor from
10 to 15% made it possible to produce thin films with a slightly higher carbon content, e.g.,
75%. Thin films deposited under a DC of 30% revealed a surface carbon content varying
from 72 to ~78% as the concentration of precursor in the discharge went from 10 to 30%. A
similar trend was observed in ETFE samples subjected to a DC of 50%. Here, the carbon
surface concentration found was slightly higher, from 75 to 78%, with an increase in the
amount of precursor injected in the plasma.

The results presented in Figure 2 show that for a given amount of precursor injected
in the plasma, increasing levels of DC entails rising concentrations of surface carbon in
the thin films. This can primarily be explained by the rise of the measured power which
is associated with the increase in duty cycle. For instance, the power density rose from
0.17 W.cm−2 to 0.51 W.cm−2 and then to 0.91 W.cm−2 by changing the DC from 10% to 30%
and to 50%, as mentioned in Table 1. Such increase in power is likely to cause an increase
in the concentration of the precursor fragmentation products (rich in carbon-containing
moieties) thereby depositing them on the surface of ETFE.
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In addition to carbon and fluorine, small amounts of oxygen and nitrogen are also
found on the surface of the ETFE samples following plasma treatment. As the precursor
injected in the discharge contains carbon, oxygen, and hydrogen atoms, nitrogen found
in the thin films solely comes from the carrier gas, N2. Figure 3a shows the O/C ratio as
a function of the precursor injected in the discharge for each applied DC. For a 10% DC,
plasma-treated films revealed a O/C ratio variation from 0.22 to 0.26 as the concentration
of the precursor went from 3% to 10%. Interestingly, when the precursor concentration in
the plasma was 15%, this ratio was found to decrease to 0.21. For 30% DC, the O/C ratio
remained unchanged at approximately 0.21, for precursor concentrations ranging between 3
and 10%, and then decreased to 0.17 when the concentration of the precursor was set at 15%.
For 50% DC, the O/C ratio increased from 0.14 to 0.18 for a concentration of the precursor
between 3 and 10% and remained unchanged between 10 and 15%. It can be argued that an
increase in the amount of the precursor injected in the plasma should result in an increasing
concentration of oxygen in the coatings [17]. With duty cycles ranging from 10 to 50%, the
probability of precursor bonds breaking due to collision with reactive species in the plasma
increases and so the resulting molecule fragments. However, as can be deduced from
Figure 3a, the available energy per molecule may limit this phenomenon [18]. XPS results
indicate that low levels of applied DC favor the deposition of oxygen-containing species
from the plasma phase onto the ETFE substrates. In contrast, high levels of DC appear to
make the incorporation of oxygen-containing species from the plasma phase onto the ETFE
substrates difficult. As a result, less oxygen is analyzed on the surface [19,20]. These results
support those of Laurent et al. [31]. In their study, the O/C ratio was shown to decrease with
the power dissipated in the discharge until reaching saturation, when dissipated powers
as high as 2.10 W.cm−2 were applied in a N2 discharge [23]. Additionally, the carbon
matrix can be strongly crosslinked when using higher DC level. [32,33]. Similar results
have been reported during plasma polymer deposition varying DCs. A. Airoudj et al. [34],
mentioned that an increase in the duty cycle results in a rise in Maleic anhydride molecule
fragmentation. Consequently, different reaction mechanisms take place, resulting in the
retention of fewer anhydride functionalities in the plasma polymer thin film structure.
In addition, their XPS analysis showed that the O/C concentration ratio increased from
0.21 in the continuous wave plasma thin film to 0.31 in the pulsed plasma polymerized
thin films. The authors explained that a lower DC (or average input power) formed a
polymer network with more anhydride groups which was accompanied by a decrease in
crosslinking. During plasma off-excitation periods, radical-monomer processes led to less
cross-linked, more ‘polymer-like’, structures [32]. These observations are also supported by
the work of Vallade et al. (2018) [35]. The authors modified the surface of fluoropolymers
using a semi-industrial corona discharge in a DBD configuration, similar to the one used
in the present study, with nitrogen and an organic precursor. In this study, the partial
least square regression (PLSR) model was used to predict the relationship between the
plasma experimental parameters and the physicochemical characteristics of the resulting
coating. Their model demonstrated that electrical parameters had more effect on the
chemical deposition as compared with other parameters such as gas flow and nitrogen
vibrational temperature.

Figure 3b shows the N/C ratio as a function of the precursor injected in the discharge
for each DC applied. Contrary to O/C ratios, the N/C ratio appears not to be affected by the
duty cycle applied, while being mainly governed by the precursor concentration. Indeed,
increasing the precursor concentration from 3 to 10% makes it possible to produce thin films
with N/C ratios of 0.2 and 0.1, respectively, for all investigated duty cycle values. When the
concentration of the precursor was set at 15%, the N/C remained unchanged at 0.1. As the
total gas flow rate of 5 L/min was kept constant in all experiments, nitrogen concentration
in the discharge was found to slightly decrease by increasing that of the precursor.

Further details on the carbon bonding environment were assessed using XPS analyses
(Figure 4a,b). Figure 4a shows curve fitting of the C1s spectrum of untreated polymer
(ETFE). For the untreated ETFE polymer, the C1s envelope can be resolved into three bands
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originating from fluorine-containing functionalities, such as CF2 (291 eV—highlighted as
carbon n#2 in Figure 4a) and C-F (288.4 eV—shown as carbon n#3 in Figure 4a) as well as
from single bonded C-C/C-H containing species that are linked to a carbon bonded with
fluorine (286.5 eV—shown as carbon n#1 in Figure 4a). Following plasma treatment, the
C1s envelope can still be resolved into three bands despite being shifted toward 285 eV
(Figure 4b). Worthy of mention here is the absence of the C-F2 feature at 291 eV, which
substantiates the deposition of a coating with a thickness greater than 5–10 nm (due to the
C1s electrons mean free path) on the ETFE sample. The bands at 286.5 eV and 287.8 eV can
be attributed to the presence of hydrophilic single-bonded C-O/C-N and double-bonded
C=O/N-C=O containing species in the coatings, respectively. The C—N bonds are likely
to be generated from collision of the nitrogen carrier gas with the precursor or directly
with the substrate while the C—O bonds may originate from the partial dissociation of the
double C=O bond in the precursor [23].
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Approximately 13–28% of carbon atoms are forming C—O/C—N bonds, and 12–20%
correspond to C=O functionalities (Table 2). The band at 285 eV accounts for 60–72% of
the carbon bonding environment and can be attributed to C-C/C-H bonds already present
in the backbone of the precursor as well as to the new bonds formed on the surface of
the coating.

Table 2. Surface composition of plasma-treated ETFE surfaces as a function of applied duty cycle and
precursor concentration.

DC (%) Precursor (%) 285 eV
C—C/C—H

286.5 eV
C—N/C—O

288.4 eV
C=O

10
3 61± 1 23 ± 1 13 ± 1

10 67 ± 1 13 ± 1 19 ± 1
15 63 ± 1 20 ± 2 17 ± 1

30
3 68 ± 0.5 14 ± 1 16 ± 0.5
10 64 ± 2 21 ± 1 15 ± 1
15 67 ± 1 19 ± 3 13 ± 2

50
3 62 ± 1 26.5 ± 0.5 12 ± 2
10 69 ± 1 15.5 ± 0.5 16 ± 1
15 72 ± 2 15± 2 13.5 ± 0.5

Table 3 shows the assignments of the main absorption peaks in the infrared spectrum
of plasma-coated ETFE samples. To understand how fragmentation of the precursor may
take place in the discharge, the C=O/(C-C, C-H) ratio was plotted as a function of the
concentration of the precursor in the discharge for each applied DC (Figure 5). Regardless of
the applied DC, the C=O/(C-C, C-H) ratio decreased as the concentration of the precursor
went from 10 to 15%. In this sense, the increase in the as-deposited carbon primarily
created during the deposition of C-C/C-H bonds from the precursor structure is probably
responsible for the reduction in the number of C=O bonds with precursor concentrations
going from 10 to 15%. This hypothesis was also reported by Mertens et al., [32] who
observed, while preparing oxygen-rich organic coatings in a DBD at atmospheric pressure,
that both the discharge mode and the fragmentation process depend upon the concentration
of the precursor in the discharge. In addition, this result is consistent with the O/C ratio
from the XPS survey investigation (Figure 3a), in which an increase in applied DC resulted
in a decrease in surface-coated oxygen.

Table 3. Frequencies and assignments of the main absorption peaks found in the IR spectrum of
plasma-coated ETFE samples [25,26,36].

Band Position (cm−1) Vibrational Mode Comment

1550 Stretching, ν N-H in amine/amide
1660 C=O in amide
1710 C=O in ketone

2870–2970 CHx in CHx (x = 2, 3)
3200–3550 O-H intermolecular bonded
3310–3350 Stretching N-H in amine/amide

Of note, for a given concentration of the precursor, the C=O/C-C, C-H ratio generally
drops with the applied DC, most likely due to an increase in the electron collisions in the
discharge since the shift in the duty cycle corresponded with a power increase [32]. When
this occurs, these highly active species (i.e., electrons) may accelerate the fragmentation of
the precursor [19].
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Figure 5. C=O/C-C, C-H ratio as a function of the precursor amount for each DC applied.

3.2. Wetting Behavior of Plasma Treated ETFE Samples

To assess the wetting features of plasma-treated surface functionalities, water contact
angles (WCAs) were measured on ETFE samples before and following plasma treatments
(Figure 6). After 180 s of plasma treatment, ETFE samples became (super)hydrophilic, as
supported by the observed decrease in the water contact angle from 92◦ to <10◦. This
suggests that the treatment time is sufficiently long for the plasma deposited coating to
cover the entire surface with a thin hydrophilic layer. The hydrophilic nature of plasma
treated ETFE samples substantiates the formation of hydrophilic functionalities such as
C-O, O=C-O and C-N (see Figure 4b). Interestingly, hydrophilicity of these samples can be
finely tuned by controlling the amount of the precursor injected in the discharge as well
as the applied DC. In general, decreasing levels of DC results in polymers with enhanced
wettability, except for the coatings prepared under a concentration of precursor in the
discharge of 15%. For instance, at 10% DC, the measured WCAs were slightly lower, most
likely due to the high O/C ratio found here (Figure 3a). Superhydrophilic coatings were
obtained under 30 and 50% DC and a precursor concentration of 15%.
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3.3. Surface Energy of Plasma Treated ETFE Samples

Figure 7a shows the total surface energy as a function of the precursor concentration
for each applied DC. For all the experimental conditions explored in this study, the total
surface energy increased from 24 (untreated sample) to 75–80 dyn/cm, thus confirming
the presence of hydrophilic functionalities on the coating. Further understanding of the
wetting properties of the plasma treated surface can be drawn from the analysis of the
polar surface energy and the dispersive surface energy (Figure 7b,c). Following plasma
treatment, the dispersive component of surface energy went from 20 dyn/cm (untreated
sample) to 35–45 dyn/cm, reaching a maximum at 45 dyn/cm for a 50% DC applied
(Figure 7b). Similarly, the polar component of surface energy increased from 5 (untreated
sample) to 35–45 dyn/cm following plasma treatment. Interestingly, the values for 50% DC
(35 dyn/cm) were lower than those for lower DCs (e.g., 10%, 30%). From Figure 7c, it can
be inferred that the amount of the precursor injected in the discharge does not significantly
affect the values of the polar component of surface energy, in contrast to what is found with
the dispersive counterpart. That said, these data reveal that increasing levels of DC only
entail a slight increase in total surface energy, which is mainly due to an increase in the
dispersive surface energy (Figure 7b). As a result, rising levels of applied DC (dissipated
power in the discharge) are not always accompanied by an increase in surface polarity, as
the XPS survey confirmed less oxygen on the surface using the 50% DC.
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3.4. FTIR

The study of the chemistry and the structure of the plasma-treated ETFE surfaces
is key to gaining insight into the mechanisms behind thin film growth. For this reason,
IR features have been compared with those of the untreated ETFE surface and discussed,
in terms of band broadening and frequency shifts. Figure 8 shows the FTIR spectra of
the ETFE film prior to and after a 180 s plasma treatment. The spectrum of ETFE film
reveals several strong bands in the 500–1400 cm−1 range that are assigned to stretching
and bending modes of CF2 groups, as well as a minor band at 2915 cm−1 that are due to
the asymmetric and symmetric stretching vibrations of CH2 and CH3 groups. Considering
that the depth of penetration of an ATR-FTIR analysis is typically 2 µm, the presence of
the ETFE spectral features between 1000 and 1400 cm−1 suggests that the thickness of the
coatings is most likely less than 2 µm. Asymmetric (νa) and symmetric (νs) stretching
of C-H in CH2 and CH3 groups were observed in the 2870–2970 cm−1 range for both
plasma-treated and untreated polymers [25]. The wavenumbers at which these vibrations
occurred were similar to those reported in hydrocarbon compounds [37]. The presence
of plasma-deposited coating is further confirmed by the strong and unresolved band at
3300 cm−1 arising from the stretching vibrations of O-H groups [38]. This feature is not
observed in the untreated surface. N-H stretching vibrations (ν)in NH2 and -NH- groups
also contributed to the feature located at 3300 cm−1 [25]. The presence of the N-H bonds was
further confirmed by the absorption at 1552.4 cm−1 (bending mode, δ). These hydrophilic
functionalities (i.e., OH, NH2, -NH-) are at the origin of the low WCA observed in plasma
treated surfaces (Figure 6). The coatings exhibited at least two features related to the
hydrophilic C=O group between 1500 and 1800 cm−1 that deserve mention. The first one at
1710 cm−1 is attributed to C=O bonds in ketone functionalities (RC(=O)R′) [26], while the
second one at 1658.5 cm−1 is due to the stretching of C=O groups in amide functionalities
(N-C=O) [39]. Ketone groups are present in chemical structures of the precursor, while the
amide groups suggest strong fragmentation of the precursor during the deposition with
nitrogen integration from the carrier gas. For these reasons and as explained below in more
detail, the authors used the behavior of the C=O bonds as a function of the experimental
conditions to explain the fragmentation process of the precursor.
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Figure 8. Fourier-transform infrared spectra of untreated ETFE and of a typical plasma-treated
ETFE sample.
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Figure 9 shows the ATR-FTIR spectra of untreated ETFE and plasma-treated ETFE
samples for all the experimental conditions investigated in this work. Regardless of the
experimental conditions, similar infrared peak absorptions were observed in untreated
ETFE and plasma-treated ETFE samples. Some differences in peak intensities are noticed:
increasing the DC resulted in more intense IR bands between 1500 and 1800 cm−1 and
between 2800 and 3300 cm−1 when compared to the fluoropolymer related peaks at lower
wavenumbers. More specifically, the maximum absorbance value is 0.1 a.u., 0.25 a.u., and
0.75 a.u. for 10% DC, 30% DC, and 50% DC, respectively. Since increasing the DC produced
a more powerful discharge, and consequently more available reactive species in the gas
phase, it can be assumed that a thicker coating was deposited at higher DC [40]. In addition,
regardless of precursor concentration, increasing DC increases the power per molecule for
all precursor concentrations. Figure 9a indicates that for 10% DC, the peak intensities (e.g.,
1650 cm−1) increased from 3% (i.e., 18 gr/h) to 10% (i.e., 60 gr/h) but it drops with 15%
(i.e., 91 gr/h). This unexpected trend might be due to the insufficient available power at
10% DC for the activation of the precursor molecules in the discharge. It can be argued
that with a 15% precursor concentration in the gas phase, only a portion of the injected
molecules are efficiently fragmented and therefore, only a thinner coating can be deposited
on the ETFE sample. Surprisingly, Changes observed in the band intensities following
plasma treatment at 30% and 50% DC do not follow this trend (Figure 9b,c), suggesting
that increasing the power dissipated in the discharge (increasing DC) triggers different
fragmentation mechanisms, which in turn, depends on the concentration of the precursor
in the gas phase. At higher DCs (i.e., 30% and 50%), thicker coatings were deposited at
3% precursor concentration. In this case, the combination of high DC (high power) with
low precursor concentration results in efficient fragmentation of the precursor molecules.
Under these plasma operating conditions, the stretching vibration of C≡N in nitrile groups
occurs at 2186 cm−1 (Figure 9b,c) [41]. Similar results have been reported by Myung and
colleagues [42], who observed the presence of nitrile group at 2185 cm−1 following surface
polymerization of allylamine in an argon atmosphere using a radio frequency (RF) glow
discharge operated under a continuous wave (CW). Of note is that the C≡N bond is very
stable as its corresponding dissociation energy is relatively high (~887 kJ/mol) which is
higher than the other single or double bonds that were formed on the surface [43]. Under
high DC (high-power), Myung highlighted that the high relative IR absorption of C≡N/CH
ratios compared to the NH/CH ones. This suggested that amine groups turn into nitrile
(C≡N) groups. The nitrile functional group may be formed because of the dehydrogenation
of the amine group formed on the surface following interaction with photons, metastable,
electrons, and dissociated chemical bonds in the plasma phase [44]. Furthermore, because
C≡N bonds appear only at high power, fragmentation processes in the gas phase could
also contribute to their formation [45]. Thus, imine groups and, to a smaller extent, nitrile
groups were formed. In a previous study, Choukourov [46] et al. investigated the effect
of the power dissipated in the discharge on the formation of R-C≡N entities during the
polymerization of ethylenediamine (EDA) and diaminocyclohexane (DACH) in a tubular
reactor with an external RF (13.56 MHz) excitation under pulsed plasma polymerization.
The authors observed that the films produced at higher powers contained a significant
amount of double- and triple-bonded atoms containing nitrogen. Moreover, the presence
of C≡N in the discharge was confirmed by the detection of optical emissions from excited
CN fragments by OES.

Figure 10 shows the curve fitting of the band area between 1500 and 1800 cm−1. As
aforementioned, this region exhibits features due to the stretching of two types of C=O
bonds, namely the C=O in the amide bond (N-C=O) at 1660 cm−1 and the C=O bond in
ketones (R-CO-R‘) at 1710 cm−1. An additional peak at 1620 cm−1 was also used for the
curve fitting of this region. The absorbance at 1620 cm−1 cannot be unequivocally assigned
to a single species, as several groups can contribute to the absorption in this region. This
band could be attributed to the C=O-based functionalities, C=C, and/or C=N stretching
vibrations [47,48]. However, based on the literature, this band can be more related to the
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∆N-Hx band deformation mode in amine [44]. The ketone/amide ratio calculated for the
analysis of this region was studied to understand the growth mode of the thin layer.
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Figure 11 shows the amide (N-C=O)/ketone (R-CO-R‘) ratio as a function of the
duty cycle for each precursor concentration. Regardless of the DC applied, this figure
shows that injecting more precursor (%) in the gas phase results in coatings with lower
amide/ketone ratios. Figure 11 indicates that for 10% DC (0.17 W.cm−2), the amide/ketone
ratio varied from 1.66 to 1 as the concentration of precursor went from 3% to 15%. For 30%
DC (0.51 W.cm−2) when the precursor concentration increased from 3% to 15%, the ratio of
amide/ketone went down from 2 to 1.5. In addition, a similar trend was observed for 50%
DC that the ratio decreased from 2.1 to 1.3 with the increase in the precursor concentration
up to 15%.
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Figure 11 also demonstrates that, for each precursor concentration inside the discharge,
raising the DC from 10% to 30% led to a marginal increase in the level of amide/ketone on
the surface, demonstrating higher nitrogen incorporation into the coating. However, the
patterns changed when the DC was raised from 30% to 50%. For instance, the amide/ketone
ratio marginally increased for a 3% precursor. It nearly stayed the same for the 10%
precursor. The ratio was found to decrease slightly for the 15% precursor.

It can be argued that increasing the precursor concentration reduces the available
power per molecule to react and deposit. As a result, less power per molecule results in less
fragmentation of the precursor structure and nitrogen incorporation, leading to an increase
in the deposition of C=O ketone produced from the precursor structure on the surface.
Likewise, raising the concentration of organic precursors reduces the energy per molecule
available for excitation. Here, the additional organic molecules can quench the excited elec-
tronic states of nitrogen, as reported in the literature [47]. In this regard, Guerra et al. [49]
mentioned adding precursors with the capability of quenching the metastable can destabi-
lize the discharge since the energy is too low to ionize the reactive components. This means
that the role played by metastable on the overall excitation processes is less important
when the concentration of the organic molecules increases. Moreover, the dissociation
energy of the nitrogen molecule (N2 → 2N) is 9.8 eV [50]. Because of this high bond disso-
ciation energy, a lower amount of nitrogen atoms could react with the organic fragments
on the surfaces or in the gas phase when a high amount of the precursor is injected into
the discharge.
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4. Conclusions

In this study, a thin coating was deposited on fluoropolymer samples using an at-
mospheric pressure plasma DBD in N2 operated at several duty cycles (DC) and with an
organic precursor at different concentrations. The results indicate the formation of new
hydrophilic functionalities, such as amide, ketone, amine, hydrocarbon, and hydroxyl
groups on the fluoropolymer surface. These components resulted from a competition
between several processes including the substitution of fluorine and hydrogen atoms from
the fluoropolymer surface with precursor or nitrogen species, the plasma fragmentation of
the organic precursor, and the incorporation of nitrogen into the resulting plasma polymer.
The results show that the surface was fully covered after a 180-s treatment as evidenced
by XPS. Furthermore, functional groups were characterized by different applied powers,
by changing the duty cycle. In fact, a reduced oxygen incorporation in the coating surface
resulted from using a higher DC, which in turn led to a lower polar surface energy. More-
over, while characterizing the effect of the precursor amount, the amount of nitrogen atoms
present in the coating was reduced when a higher amount of precursor was introduced
into the discharge. With less nitrogen containing chemical groups, a higher retention of the
precursor chemistry was observed. Analyzing the coating functionalities further by curve
fitting the C=O stretching mode feature of the FTIR spectra of the various investigated
coatings enabled the calculation of amide/ketone ratio. These calculations revealed that
for any investigated power injected in the discharge, a smaller precursor amount led to
more nitrogen integration into the plasma deposited coating, while a larger amount of
precursor resulted in a thin film with a chemical structure closer to one of the precursors.
Interestingly, only when using a combination of a lower precursor concentration and higher
DC, in other words, at the highest energy per molecule, the formation of C≡N (nitrile)
was observed on the surface. (i.e., increasing the number of precursors and decreasing the
power/molecule). In conclusion, all DC (i.e., applied power) concentrations higher than
15% of the precursors favor partial polymerization and reticulation processes. Therefore, a
low precursor concentration (e.g., 3%) and a high DC (e.g., 50% DC) is more effective for
the incorporation of the N2 and will generate stronger cross-linked moieties (e.g., amide
and nitrile) in coatings.
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