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Abstract: This paper addresses a study of cost-optimal road modular hinged frames. The performance
of three hybrid metaheuristics is assessed through a fractional factorial design of experiments. The
results allow for selecting and calibrating the hybrid simulated annealing to solve the combinatorial
optimization problem. By varying the horizontal span from 8 to 16 meters and the earth cover
from 1 to 5 meters, 25 different structural configurations are studied. The calibrated methodology is
applied to obtain nine different frames with optimal costs for each configuration. The study of the
economic, environmental and geometrical characteristics of the 225 optimum structures allows for the
development of a regression analysis. With R2 correlation coefficients close to the unit, the expressions
form a valuable tool for calculating the final cost, associated emissions, embodied energy and
particular geometric characteristics. The optimum structures present slender and densely reinforced
designs. In addition, some structures show considerable reductions in the shear reinforcement,
something solved by localized increases in longitudinal reinforcement.
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1. Introduction

There is a growing general interest in caring for the environment. Widespread aware-
ness of the consequences of pollution promotes sustainable alternatives over traditional
ones [1–3]. In this context, construction is one of the most contributing industries to global
pollution. Currently, in addition to fulfilling their service, infrastructures must incur the
lowest possible environmental impact [4–6].

However, improving the structural design process is a challenging task [7–9]. A large
number of discrete variables must be considered. Therefore, systematizing the obtaining
of designs is very complicated. This complexity leads to the traditional design process
depending on the responsible technician [10]. Based on existing structures, the structural
engineer defines an initial design. It is then checked, and the grade or quantity of materials
is modified if it does not meet structural requirements. This process is repeated, achieving
a safe structure that, on the other hand, does not make optimal use of the materials. One
way of improvement consists of approaching the design process of reinforced concrete
structure as a combinatorial optimization problem [11–15]. Its solution results in obtaining
non-traditional designs that, in addition to verifying the structural requirements, make
optimum use of materials.

The techniques applied to solve combinatorial optimization problems can be divided
into two main groups: exact techniques and approximate or metaheuristic techniques.
The former achieve the best possible result and are suitable for problems with a limited
number of variables [16,17]. The latter allow for the study of more complex problems,
obtaining high-quality results. This characteristic generates a general interest in applying
approximate techniques to solve structural problem designs [7,18–20].

These approximate methods make use of a variety of metaheuristic algorithms based
on different working principles. This allows the conditioned exploration of the solution
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space with a certain degree of randomness. The techniques considered in the present
study can be framed within the so-called hybrid metaheuristics. Based on the simulated
annealing (SA), threshold accepting (TA) and old bachelor’s acceptance (OBA) algorithms,
these integrate a mutation operator (MO) specific to genetic algorithms (GA). The SA, TA
and OBA algorithms classify as local search algorithms. Starting with a feasible solution,
these obtain and evaluate new solutions similar to the current one through a series of rules.
In contrast to these, GAs search for optimal solutions by selection, crossover and mutation
of populations of feasible solutions. Hybridizing both typologies allows for high-quality
results in optimizing structures such as composite bridges [20,21], retaining walls [15,22–24]
or prestressed box girder bridges [21,25].

In this context, the present work develops a parametric study of road modular hinged
frames (RMHF). Reinforced concrete frames are a very common structural typology in
transport infrastructure. With spans ranging between three and twenty meters, these
structures are applicable as a solution for road crossings. Previous work focused on
studying cast-in-place road frames (CPRF) [26]. However, the analysis of the related
literature allows for identifying a lack of development in the study of RMHF. Based on
the quality and consistent characteristics of prefabrication, the present study solves the
lack of current development and improves the general knowledge about optimal RMHF.
In this way, the precast typology, considered an alternative to the cast-in-place structures,
is proposed.

The RMHF comprises two sets, which facilitate transport to the construction site. The
two sets present three main structural components, the upper and lower slabs and the
lateral walls. Traditionally, the slab’s thickness is established between 1/15 and 1/10 of
the span. The lateral walls’ thickness ranges between 1/12 of the vertical span and the
particular slab thickness. Four main geometric characteristics define the RMHFs: the clear
height (H), the horizontal span (L), the height of the hinge (HH) and the earth cover above
the structure (HE). Figure 1 represents the detailed RMHF desgin.
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Figure 1. Set of variables of the RMHF considered in the optimization problem.
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The study considers spans ranging between 8 and 16 m and earth cover depths be-
tween 1 and 5 m. The study of the optimal designs allows for determining the influence
of the characteristics that define them and developing a regression analysis. In addi-
tion, the comparison with the cast-in-place alternative allows for establishing a series of
improvements derived from the prefabrication of this structural typology.

This way, the study develops a factorial design of experiments (DoE) in order to
evaluate the performance of three hybrid metaheuristics: simulated annealing with mu-
tation operator (SAMO), threshold accepting with mutation operator (TAMO) and old
bachelor’s acceptance with mutation operator (OBAMO). Analysing the results allows
for calibrating the parameters that define the algorithms and the subsequent selection of
the best-performing technique [27]. Once selected, the hybrid metaheuristic is applied to
obtain optimal RMHF. Obtaining optimal designs requires the establishment of an objective
function. The economic cost of a structure is a direct representation of the use of materials.
Thus, the final cost of RMHFs is optimized for 25 different horizontal span and earth cover
combinations. Nine designs are optimized for each configuration, obtaining a total of 225
environmentally efficient designs under highly restrictive budgets.

2. Optimization Problem

This section details the combinatorial optimization problem proposed. This com-
prehends the complete definition of the variables, parameters, constraints and objective
function [28]. The problem posed consists of minimizing the use of materials in the con-
struction of RMHFs. The structure’s final cost C(~x), calculated by means of Equation (1),
was considered the objective function. Its calculation is direct, consisting of the multipli-
cation of the unit price of each material ci and the quantity used mi(~x). In addition, to
analyse the optimal designs’ environmental impact, the associated CO2 emissions AE(~x)
and embodied energy EE(~x) were evaluated through Equations (2) and (3). Similar to the
objective function, emissions are obtained as a factor of each material’s quantity mi(~x), the
unitary emissions aei and unitary embodied energy eei, respectively. The designs must
comply with a series of constraints R(~x) detailed in Section 2.3. The compliance of the
optimal designs with the constraints is generally expressed through Equation (4).

C(~x) =
n

∑
i=1

ci · mi(~x) (1)

AE(~x) =
n

∑
i=1

aei · mi(~x) (2)

EE(~x) =
n

∑
i=1

eei · mi(~x) (3)

R(~x) ≤ 0 (4)

The set of unit cost ci, unitary associated CO2 emissions aei and embodied energy eei
for each of the materials can be consulted in Table 1. These values were obtained from the
Construction Technology Institute of Catalonia by the BEDEC database [29].

Table 1. Unit cost, associated CO2 emission and embodied energy values for each material [29].

Unit Material Unit Cost (EUR) CO2 Emissions (kg) Energy (kWh)

m3 C25/30 Concrete 88.86 256.66 402.44
m3 C30/37 Concrete 97.80 277.72 428.29
m3 C35/45 Concrete 101.83 278.04 429.95
m3 C40/50 Concrete 104.83 278.04 429.95
kg B 400 S 1.40 0.70 3.38
kg B 500 S 1.42 0.70 3.38
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2.1. Variables

A total of 38 variables defined each RMHF design solution, establishing the geometry,
grade of materials and passive reinforcement design. The value of the variables represented
in Figure 1 was subjected to optimization within the ranges presented in Table 2. Meanwhile,
parameters were established previously and remained constant during the optimization
process. The influence of the main geometrical parameters was the subject of a parametric
study shown in Section 4.

Table 2. Variables considered in the optimization problem.

Geometrical Variables Num. Values Range Values

Upper slab depth (m) DUS 46 0.30 to 1.20
Lower slab depth (m) DLS 41 0.40 to 1.20
Lateral walls depth (m) DLW 46 0.30 to 1.20

Materials variables

Concrete grade (MPa) C 4 25, 30, 35 or 40
Steel grade (MPa) S 2 400 or 500

Passive reinforcement variables

Flexural reinforcement R1 (mm) φR1 6 10 to 32
(bars) nR1 9 4 to 12

Flexural reinforcement R2 (mm) φR2 6 10 to 32
(bars) nR2 9 4 to 12

Flexural reinforcement R3 (mm) φR3 6 10 to 32
(bars) nR3 9 4 to 12

Flexural reinforcement R4 (mm) φR4 6 10 to 32
(bars) nR4 9 4 to 12

Flexural reinforcement R5 (mm) φR5 6 10 to 32
(bars) nR5 9 4 to 12

Flexural reinforcement R6 (mm) φR6 6 10 to 32
(bars) nR6 10 3 to 12

Flexural reinforcement R7 (mm) φR7 6 10 to 32
(bars) nR7 9 4 to 12

Flexural reinforcement R8 (mm) φR8 6 10 to 32
(bars) nR8 9 4 to 12

Flexural reinforcement R9 (mm) φR9 6 10 to 32
(bars) nR9 9 4 to 12
(m) LR9 151 to 451 3 to 0.75 ·L

Corner reinforcement CR1 (mm) φCR1 6 10 to 32
(bars) nCR1 10 3 to 12
(m) HCR1 76 to 226 1.5 to 0.375 ·L
(m) VCR1 76 1 to 2.5

Corner reinforcement CR2 (mm) φCR2 6 10 to 32
(bars) nCR2 10 3 to 12
(m) HCR2 101 to 251 1 to 0.375 ·L
(m) VCR2 26 1 to 1.5

Shear reinforcement SR1 (mm) φSR1 7 8 to 32
(m) sSR1 7 0.10 to 0.40
(m) LDSR1 76 to 226 1.5 to 0.375 ·L

Shear reinforcement SR2 (mm) φSR2 7 8 to 32
(m) sSR2 7 0.10 to 0.40
(m) LDSR2 101 to 251 1 to 0.375 ·L

Prior to solving the problem, all variables were discretized. This way, the variables
could take a given number of values within the range stipulated for each. The geometric
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variables adopted thicknesses every two centimetres within limits. The separation between
shear reinforcement branches was established every five centimetres within the stipulated
range. Normalized reinforcement diameters between 10 and 35 millimetres were considered.
Moreover, the number of bars was set to any integer lower or equal to the maximum
value established.

Due to the number of variables and values each was allowed to take, the problem’s
solution space presents a dimension of 9.87 · 1043. This large magnitude states that a
complete study of the solution space is not feasible. Thus, the application of the techniques
described in Section 3 is particularly interesting. The calibration and selection of the
hybrid metaheuristic allow for obtaining high-quality results while maintaining adequate
computational costs.

2.2. Parameters

There are several determining factors in the design of RMHF. The first of these is the
vertical span (H). Based on common characteristics of this typology, a vertical span of five
meters was established. The second factor is the height of the hinge (HH), whose position
relative to the lower slab was set at 3/5 of the vertical span. The remaining two parameters
were the subject of the parametric study. The variation of their magnitude gave rise to
optimum designs whose study allowed a regression analysis. The first one is related to
the horizontal span (L). RMHFs functioning as a solution for road crossings bridge spans
ranging from 8 to 16 m. Therefore, RMHFs were optimized in which L adopted 8, 10, 12, 14
and 16 m. This type of buried structure is usually located in up to 12 m deep embankments.
Considering the established H, the study adopted earth cover depths of 1, 2, 3, 4 and 5 m
for a medium quality soil. The set of parameters and all those necessary for the calculation
and verification of the RMHF can be consulted inTable 3.

Table 3. Main parameters considered in the RMHF optimization.

Geometrical Parameters

Free height (m) H 5
Horizontal span (m) L 8 to 16
Hinge height (m) HH (3/5) · H
Earth cover (m) HE 1 to 5

Loading parameters

Earth specific weight (kN/m3) γE 20
Reinforced concrete specific weight (kN/m3) γC 25
Earth internal friction angle (◦) IF 30
Active earth pressure coefficient KA 0.33
Resting earth pressure coefficient KR 0.50
Heavy traffic vehicle load (kN/m3) TL 150
Heavy traffic vehicle load lenght (m) TLL 1.20
Uniform overload (kN/m3) UO 10
Ballast coefficient (MN/m3) BE 10

Economic and sustainability parameters

Unit costs (EUR) ci Table 1
Unit CO2 emissions (CO2 kg) aei Table 1
Unit embodied energy (kWh) eei Table 1

Exposure related parameters

Exposure class XC2

Legislative related parameters

Standard regulations CEN [30,31]/MFOM [32]
Code considerations MFOM [33]
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Loads associated with heavy vehicles and Marston’s effect were considered according
to the Spanish regulation recommendations [32,33]. The remaining loads, actions and asso-
ciated conditions were taken from current applicable regulations [30,31]. As a completely
buried structure, temperature variations occur slowly and homogeneously throughout the
surrounding earth’s mass. Following the current standard’s recommendations [30,33], it is
feasible to consider that no loads are derived from temperature gradients. Thus, the thermal
effects were disregarded. In addition, since prefabricated structures undergo intensive
control in the manufacturing and curing process, the rheological effects were neglected.
Finally, a generic location was established within a non-seismic zone, so consideration of
the associated actions was not necessary.

2.3. Constrains

As stated in Section 2, the optimal RMHF design is subject to several constraints. These
ensured adequate representation of the reality and the resulting structure meeting the
structural requirements of current regulations [30,31]. The constraints applied are divided
into Ultimate Limit States (ULS) and Service Limit States (SLS). ULS ensure structural
integrity, while SLS ensure adequate service life. Prior to verification, it is necessary to
calculate the structure’s internal stresses. This was achieved by applying the displacement
method to the two-dimensional model under the linear elastic analysis hypothesis.

Once the internal stresses were known, the shear ULS was checked. This consisted of
comparing the acting shear stress with the standard’s exhaustion limit values stipulated. In
addition, the stress increase in the tensile reinforcement associated with the shear stress
was calculated. If the structure complied with the shear ULS, the tensile increment was
applied, and the normal stresses ULS were checked. This consisted of verifying that the
axial stress and bending moment are located within the interaction diagram of each section.
After this, the deflection ULS was checked, limiting the displacement of the upper slab to
1/250 times the frame span. Subsequently, compliance with the fatigue ULS was ensured.

Within the second group of constraints, the cracking SLS was checked. In order to
do so, the crack opening was obtained and compared with the standard’s limit value. In
addition, the maximum and minimum passive reinforcement and crack control reinforce-
ment amounts were also checked. Constructibility was reviewed by calculating the spacing
between bars. Finally, the transversal reinforcement was obtained directly from the flexural
passive reinforcement design.

The developed software allowed verifying the ULS and SLS according to the described
process. The result of the verification process was a series of coefficients generally expressed
by Equation (5). Associated with the ULS and SLS verification, these resulted from the
relation between each section’s acting (As) and resistant (Rs) stresses.

As

Rs
≥ 1 (5)

3. Proposed Hybrid Metaheuristic Strategies

This section details each of the hybrid metaheuristics considered in the study. A DoE,
detailed in Section 3.4 was carried out to calibrate and select the best-performing technique.
Once selected, it was applied to obtain the optimal design analysed in the parametric study
presented in Section 4. Initially, the SAMO, TAMO and OBAMO hybrid metaheuristics
were considered. The following sections detail the functioning of each.

3.1. Hybrid Simulated Annealing

The SAMO algorithm was the first of the three techniques considered. The basis of the
technique is the SA, proposed by Kirkpatrick et al. [34] for electrical circuit design. The
SAMO’s novelty consists of adding a mutation operator to the SA. For specific problems,
this hybridization results in considerable improvements in the exploration capability of the
algorithm [7,16,23]. The algorithm bases its operation on the thermal annealing process.
The annealing is applied to certain materials to modify their mechanical characteristics.
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These changes are achieved thanks to the microstructural modifications during the thermal
annealing. The temperature is the controlling parameter of the process. Initially, it has a
high value, which is gradually reduced by applying the cooling coefficient. During this
period, the material adopts different crystallization states with lowering energy levels.
The SA equates each feasible solution to the problem with a physical crystallization state.
Consequently, the objective function is equivalent to the internal energy associated with
each state.

The SAMO generates and evaluates the cost of an initial random solution. Then
generates a new solution by applying a movement, which is affected by the mutation
operator. The newly generated solution is evaluated and directly accepted if it costs less.
If the new cost worsens, it is accepted if the probability P obtained through Boltzmann
energetic expression, Equation (6), is greater than a random value in the 0 to 1 range. The
acceptance probability P depends on the difference between the current and new objective
function values ∆E and the current temperature T [34]. This process is repeated at the same
temperature for a predetermined number of iterations called the Markov chain. When
a chain is finished, the temperature decreases geometrically at the rate of the cooling
coefficient. The temperature reduction progressively limits the SAMO’s ability to accept
solutions worse than the current one.

P = e−(∆E/T) (6)

The optimization process ends when one of two criteria is met. The stop criterion
establishes the maximum number of chains in which a bettering solution is not found.
On the other hand, the termination criterion dictates a minimum percentage of the initial
temperature of the problem. The initial temperature setting is carried out as proposed in
Medina [35]. Correctly calibrating this parameter is essential in order to obtain high-quality
results [25,36].

Five parameters define the SAMO, three of which are specific to the SA algorithm. The
Markov chain length (MCL), the cooling coefficient (CC) and the stopping criterion (SC).
The remaining two determine the standard deviation (SD) and the number of variables
(VN) affected by the mutation operator. The values considered for the DoE are detailed in
Section 3.4.

3.2. Hybrid Threshold Accepting

The second alternative assessed in the study was the TAMO. This technique is based
on the TA, which Dueck and Scheuer [37] developed as an improvement for the SA. The
TA and the SA differ in the acceptance criterion for worsening solutions. As described in
Section 3.1, the SA has a probabilistic criterion. On the other hand, the TA accepts worse
solutions by directly comparing the cost difference and a threshold.

The initial threshold is established analogously to the SA [35]. It is then geometrically
reduced at the rate of the reduction coefficient. Limiting the ability to accept worse solutions
as the optimization develops. Like the SAMO, five parameters define the TAMO. The chain
length (CL), the reduction coefficient (RC) and the stopping criterion (SC) are specific to
the TA. The remaining two are the mutation operator’s standard deviation (SD) and the
number of affected variables (VN). Similar to the SAMO, the process finishes when either
the SC or the termination criterion are met.

3.3. Hybrid Old Bachelor’s Acceptance

The third technique studied was the OBAMO. Consisting of a modification of the OBA
proposed by Hu et al. [38], it works similarly to the TAMO. The main difference is that
the threshold does not start from a high initial value and then decreases over time. In the
OBAMO, the initial threshold is zero. Then, it increases or decreases depending on the
rejection or acceptance of new solutions. The criterion of acceptance of worsening solutions
is deterministic. As in the TAMO, worsening solutions are accepted if the cost increase is
lower than the threshold at that time.
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In this context, the OBAMO is also defined by five parameters. Two establish the
standard deviation (SD) and the number of variables (VN) affected by the mutation op-
erator. Two of the remaining are related to the threshold increase (IC) and decrease (DC)
coefficients. These are applied each time a solution is rejected or accepted, respectively.
Unlike the algorithms described in Sections 3.1 and 3.2, the OBAMO does not have a control
parameter that decreases in time. Therefore, the fifth parameter is the termination criterion
(TC), equivalent to the algorithm’s maximum number of iterations.

3.4. Design of Experiments

The hybrid metaheuristic parameters’ calibration directly impacts the optimization re-
sults’ quality. Each technique’s performance varies depending on the studied optimization
problem. Thus, selecting the best-suited algorithm for the considered problem is crucial. In
addition, it is essential to appropriately calibre the metaheuristic parameters. In this context,
the DoE detailed in this section allowed the selection and application of the technique with
the best performance.

The study developed a 2(n−1) fractional factorial DoE for each hybrid metaheuristics.
Two levels were established for each parameter, corresponding with the values presented
in Table 4. A total of parameters define the three techniques, so 16 combinations of
each parameter’s level need to be considered. In order for the results to be statistically
representative, each of the configurations is run five times. Therefore, the influence of each
of the parameters of the hybrid metaheuristics can be addressed. Table 5 presents the mean
results of the DoE for each configuration.

Table 4. Metaheuristic parameter bounds considered in the DoE.

SAMO P1 P2 P3 P4 P5

Parameter MCL SD VN CC SC
Lower bound (−) 1000 0.1 1 0.8 1
Upper bound (+) 5000 0.3 5 0.9 5

TAMO P1 P2 P3 P4 P5

Parameter CL SD VN RC SC
Lower bound (−) 1000 0.1 1 0.8 1
Upper bound (+) 5000 0.3 5 0.9 5

OBAMO P1 P2 P3 P4 P5

Parameter TC SD VN IC DC
Lower bound (−) 10,000 0.1 1 1 1
Upper bound (+) 50,000 0.3 5 5 5

The algorithm’s performance does not depend solely on the final result quality. Thus,
in addition to analysing the lowest costs, the computational cost associated with obtaining
each optimal RMHF was addressed. The analysis of the DoE results allows for identifying
the SAMO as the best performing technique for its application to solving the problem
posed. Furthermore, considering the associated computational cost, the algorithm was
calibrated so that the MCL was 10,000 iterations, with CC of 0.8 and SC of 5 chains without
improvement. In addition, the mutation operator was defined by an SD of 0.1 and affected
a VN of 5. In general, as Figure 2 shows, longer chain lengths achieve better results.

However, the computational cost increases rapidly. In this context, the calibration
achieved an optimum RMHF whose cost differed only 0.006% from the general optimum.
However, the computational cost is 4.95 times lower. Moreover, with a means standard
deviation of 0.597%, the algorithm is a robust tool for solving the problem. The algorithm
was applied in order to obtain optimum RMHF analysed in the parametric study detailed
in Section 4.
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Figure 2. DoE results for the SAMO hybrid metaheuristic.

Table 5. DoE mean minimum cost results and associated computational cost for each configuration.

SAMO TAMO OBAMO

P1 P2 P3 P4 P5 Cost (EUR) Iter. % Min. Cost (EUR) Iter. % Min. Cost (EUR) Iter. % Min.

− − − − + 3722.99 11,472 0.0067 4484.78 7790 0.2127 4266.87 5621 0.1538
+ − − − − 3700.97 56,759 0.0008 4206.81 28,405 0.1376 3935.18 15,901 0.0641
− + − − − 3809.90 10,551 0.0302 4005.26 6823 0.0831 3939.44 6688 0.0653
+ + − − + 3723.28 44,999 0.0068 3933.48 19,124 0.0636 4108.21 30,886 0.1109
− − + − − 3893.24 13,428 0.0528 3844.05 14,008 0.0395 4131.20 6607 0.1171
+ − + − + 3764.81 75,442 0.0180 3764.61 64,237 0.0180 4420.60 31,150 0.1954
− + + − + 3854.21 14,101 0.0422 3917.74 12,470 0.0594 4470.99 3043 0.2090
+ + + − − 3787.60 76,644 0.0242 3764.19 62,072 0.0179 3978.78 23,037 0.0759
− − − + − 3759.89 32,726 0.0167 3900.58 20,817 0.0548 4233.84 5175 0.1449
+ − − + + 3735.80 137,994 0.0102 3990.50 61,719 0.0791 3808.35 30,193 0.0298
− + − + + 3745.25 38,517 0.0127 3953.74 22,026 0.0691 3878.68 7326 0.0488
+ + − + − 3717.33 135,874 0.0052 4376.86 41,030 0.1835 4103.01 28,609 0.1095
− − + + + 3810.35 53,194 0.0304 3759.25 53,703 0.0165 4135.06 8395 0.1182
+ − + + − 3740.23 254,796 0.0114 3711.42 227,138 0.0036 3788.71 30,451 0.0245
− + + + − 3808.14 52,211 0.0298 3755.12 52,050 0.0154 4188.70 4486 0.1327
+ + + + + 3730.33 266,381 0.0087 3698.10 258,351 0.0000 3838.12 43,960 0.0379

4. Results of the Parametric Study and Regression Analysis

The present work carried out the parametric study of optimal RMHF obtained by
applying the SAMO hybrid metaheuristic described in Section 3 to the combinatorial
optimization problem described in Section 2. Five horizontal spans of 8, 10, 12, 14 and 16 m
were considered. In addition, five earth cover depths of 1, 2, 3, 4 and 5 m were considered.
The combination of both parameters allowed the study of 25 different RMHF configurations.
The calibrated SAMO was applied, and nine optimal structures were obtained for each
configuration. The analysis of a total of 225 optimal RMHF allowed the study of the main
economic, geometrical and design characteristics.

Furthermore, the regression analysis was carried out, obtaining good fitting results.
The expressions obtained allow for structural techniques to calculate certain approximations
prior to RMHF design. This section focuses on the presentation and discussion of the
results obtained.
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4.1. Final Cost Analysis

Figure 3 represents the mean minimum final cost of the optimum RMHF as a function
of the span. The results showed a clear quadratic relation in all cases. Increasing the size
of the RMHF causes the loads associated with self-weight and soil fill to increase linearly.
Consequently, the shear and bending moments vary linearly and quadratically, respectively.
In addition, deflections vary at a two-quadratic rate. Together, these variations make it
necessary to increase the amount of resistant material in the RMHF.
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Figure 3. Cost of the RMHF as function of the horizontal span, for each earth cover depth.

The final cost of the structure is a direct representation of the use of materials. The
results allowed associating the variation in the final cost to two reasons. The first is the
intrinsic need to use more material to build a larger structure. The second is that the
structure needs to resist stresses of greater magnitude. The first reason justified a linear
increase in the final cost. The study of the second allowed establishing the increase in shear
and bending moment stresses as the direct cause behind the quadratic relation identified in
the regression analysis. With an R2 regression coefficient between 0.9988 and 0.9997, the
expressions obtained are an adequate tool for the final cost approximation of the RMHF.
It is relevant to highlight that when the earth cover above the structure is five meters, the
final cost increases 1.44 times when the span increases from 14 to 16 m. This factor is, to
some extent, more significant than other earth cover cases, varying between 1.28 and 1.33
for 1 and 4 m, respectively.

Figure 4 shows the mean minimum cost as a function of earth cover depth. The
regression analysis showed a linear relation. With slightly lower correlation coefficients,
the expressions obtained represent the final cost as a function of the earth cover depth. The
analysis of the results allowed for associating the linear relation to the linear increase or
decrease in the axial forces of the RMHF when varying the earth cover. Increasing the earth
cover by one meter results in final cost increases between 5.73% and 10.49% for the 8 and 16
m frames, respectively. This corresponds to an increasing slope of the regression trendlines
as the earth cover increases.

Furthermore, the analysis of the results allowed identifying that increments in the
larger span range relate to more significant increases in the final cost. In Figure 3, this is
represented by faster growth of the cost curve. Whereas in Figure 4, it corresponds to an
increasing separation between the straight trend lines.
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Figure 4. Cost of the RMHF as function of the earth cover, for each horizontal span.

4.2. Sustainability Analysis

This section focuses on the results related to the associated CO2 emissions and em-
bodied energy of the optimum RMHF. The regression analysis allowed identifying similar
characteristics to those mentioned for the final cost in section ref. In both cases, there
is a quadratic relationship with the span. In addition to a linear relation to the earth
cover depth.

The present work considered associated CO2 emissions and embodied energy as im-
pact measuring tools associated with the optimal RMHF obtained. However, these were not
considered objective functions. Thus, the particularized study of the characteristics of opti-
mal frames as a function of such variables is beyond the scope of the study. Figures 5 and 6
show the results obtained in the regression analysis. With R2 correlation coefficients close
to one, the expressions form rough impact measuring tools for the design of RMHFs.
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Figure 5. Associated CO2 emissions analysis as a function of: (a) horizontal span; (b) earth cover.
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Figure 6. Embodied energy analysis as a function of: (a) horizontal span; (b) earth cover.

4.3. Geometrical Characteristics Analysis

This section continues with the results of the study. In this context, the relevant
geometric characteristics of the optimal RMHFs were analysed. Figures 7 and 8 show the
top slab depth and mid-span reinforcement area as a function of the horizontal span. The
regression analysis showed a clear linear relationship between the upper slab depth and
horizontal span. The results present a similar trend to those obtained in previous studies of
similar structures [11,26]. The optimization problem posed does not condition the design of
passive reinforcement with traditional considerations. The individualized study of specific
variables resulted in expressions with correlation coefficients somewhat lower but still
representative. This is somewhat to be expected when studying particular variables. Unlike
the final cost or sustainability indicators, the precise analysis of a single variable makes the
consequences of the discretization process relatively more noticeable.

For an earth cover of one meter, the upper slab depth and horizontal span ratio vary
between 10.05 and 9.92 for horizontal spans of 8 and 16 m, respectively. For structures
buried at five meters deep, this ratio varies between 15.76 and 15.40 for the same cases. The
expressions result of the regression analysis allowed for calculating a mean variation factor
of 1.47 as the span increased from 8 to 16 m.

The reinforcement area in the mid-span section of the upper slab showed a clear
linear relationship with the horizontal span of the RMHF. The passive reinforcement area
increases with an average factor of 2.82 as the span varies from 8 to 16 m.

It is of particular interest to note that the RMHF configuration buried at one meter
presents a behaviour that differs from the one presented by the rest of the depths. This
characteristic behaviour is seen when studying Figures 7 and 8. In both figures, it can be
seen that the slope of the line corresponding to 1 m of burial depth is less pronounced than
the others. An in-depth analysis of the designs corresponding to this configuration allows
us to identify the frames with 8 and 10 m of horizontal span responsible for this behaviour.
These configurations showed upper slabs with greater depths and higher flexural reinforce-
ment. Such characteristics result from RMHF designs whose shear reinforcement showed
considerable reductions. The problem posed made use of combinatorial optimization to
obtain the designs. Thus, there is no predisposition for the traditional design. Therefore, the
reduction in shear reinforcement in the one-meter deep, 8 and 10 m horizontal span RMHF
was solved with localized increases of flexural reinforcement and greater depth sections.
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Figure 7. Upper slab depth as a function of the horizontal span.
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Figure 8. Upper slab mid span reinforcement area as a function of horizontal span.

Generally, the designs presented lower slab average depths values of 57.18% of the
upper slab depth. Therefore, on average, the upper slab depth is 1.75 greater than the
lower slab. In the case of the lateral walls, the optimum RMHFs presented reduced depths.
On average, the lateral wall depth equalled 47% of that of the upper slab. The identified
ratios provide an initial approximation in the design of the structural typology. However,
the proposed reinforcement design depends on a substantial set of variables. Thus, the
scope of the study makes a particularized analysis of each of them unfeasible. The results
presented are a functional tool to be considered by structural technicians with pertinent
technical backgrounds.

4.4. Materials Analysis

Section 4.3 highlighted the main geometric characteristics that were identified. This
section focuses on the analysis of the materials used in the building of the optimum RMHFs.
Figures 9 and 10 show the volume of concrete required as a function of the span and the
earth cover depth. Concrete usage showed a quadratic relationship with the horizontal
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span. Meanwhile, the analysis of the results indicated a linear relationship with the earth
cover depth. The regression analysis allowed for obtaining expressions with R2 correlation
coefficients very close to unity. In all cases, the expressions where concrete volume is
expressed as a function of the horizontal span perform an approximation of greater quality
when compared to those where the concrete volume is a function of the earth cover.
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Figure 9. Concrete volume as function of horizontal span, for each earth cover depth.
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Figure 10. Concrete volume as function of earth cover depth, for each horizontal span.

A total of 212 out of the 225 optimal frames studied make use of concrete grade C25/30.
The use of higher grade concrete leads to more slender designs. However, the fact that
94.22% of the optimal RMHF designs used the lowest grade within the possible options
shows that using a higher grade is not the most economical solution. In this context, the
expressions obtained in the regression analysis are a useful tool for calculating the C25/30
grade concrete usage. Based on the results presented in Table 1, it was observed that the
increase of 1 m in the earth cover leads to an increase of EUR 40.20 and 114.07 per linear
meter in the 8 and 16 m span frames, respectively. Furthermore, as a consequence, 182.06
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and 516.61 additional kWh are required for the aforementioned spans. This leads to an
additional 116.11 and 329.47 kg of CO2 emitted into the atmosphere.

The analysis of the amount of steel used for passive reinforcement is presented in
Figures 11 and 12.
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Figure 11. Passive reinforcement steel as function of horizontal span, for each earth cover depth.
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Figure 12. Passive reinforcement steel as function of earth cover depth, for each horizontal span.

Similar to the behaviour highlighted for concrete volume, quadratic and linear re-
lationships are observed with the span and earth cover, respectively. Furthermore, the
results showed a clear trend towards using a specific steel grade. This led to 91.11% of the
optimal RMHFs using B500S steel for the passive reinforcement. The regression analysis
obtained expressions with R2 correlation coefficients close to one. A one meter increase in
the earth cover leads to an increase in steel use of 101.64 and 585.23 kg for the 8 and 16 m
span RMHFs, respectively. As stated in Section 1, the final cost of the structure is a direct
representation of the use of materials. Thus, the higher usage of steel mentioned above,
leads to an increase in the final cost of EUR 144.32 and 831.02 per linear meter, respectively.
Similar to that mentioned for concrete use, the increase in steel necessary is also related to
higher energy consumption and CO2 emissions.
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The passive reinforcement design of the RMHFs studied depends on a large number
of variables. The scope of the study allows for considering the most relevant characteris-
tics. Thus, Section 4.3 described results relating to the passive reinforcement area in the
mid-section of the upper slab. In addition, another relevant result regarding the passive
reinforcement design is the overall reinforcement density of the structure. In this context,
Figure 13 shows the passive reinforcement density distribution surface as a function of the
horizontal span and earth cover depth.
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Figure 13. Reinforcement density distribution surface for the optimum RMHFs configurations studied.

The optimum RMHFs presented quite dense passive reinforcement designs when
compared with similar structural solutions[10,11,26]. With densities ranging from 73.34
to 153.99 kg/m3. The increase from 8 to 16 m span led to an average increase of 1.45 in
the passive reinforcement density. In addition, the study identified the influence of the
earth’s cover depth. Similarly to the case above, the increase in earth cover depth factors
the reinforcement density by 1.35.

5. Conclusions

The present work examined the parametric study of optimal RMHFs. For this purpose,
the study approached the structure’s design as the combinatorial optimization problem
described in Section 2. The use of three hybrid metaheuristic algorithms was considered
for solving the problem. A fractional factorial DoE was carried out, the results of which
placed the SAMO as the most suitable technique. In addition, the analysis of the DoE
results allowed calibration of its parameters to obtain the best possible performance. The
metaheuristic techniques and the DoE were detailed in Section 3. Considering spans be-
tween 8 and 16 m and earth cover depths from 1 to 5 m, the study analysed 25 different
RMHF configurations. The SAMO was applied to obtain nine optimal RMHFs for each
configuration. The economic optimization allowed the analysis of 225 RMHF designs.
By studying the main characteristics, a regression analysis was developed. The analy-
sis obtained representative expressions with R2 regression coefficients close to one. In
view of the results presented in Section 4, the authors consider it appropriate to note the
following conclusions:

• The hybridization of local search-based algorithms with GA mutation operators gives
rise to hybrid metaheuristics. These techniques are applicable in automating the
optimal design of precast structures. The SAMO presents the best performance in
solving the problem posed. The calibrated method has Markov chain lengths of 10,000
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iterations, a cooling coefficient of 0.8 and a stopping criterion of 5 chains without
improvement. In addition, the mutation operator affects one variable with a standard
deviation of 0.1.

• The cost and environmental impact meters present an excellent fitting quadratic
relationship when studied as a function of the horizontal span. This relationship is
linear when considered a function of the earth cover depth. The expressions obtained
are representative and form a valuable tool for the approximate calculation of the final
cost, the associated CO2 emissions and the embodied energy of RMHFs.

• The RMHF design depends on a large number of variables. The study of each particu-
lar variable lands out of the scope of the present work. However, optimal structures
present reduced depths with dense reinforcement designs. This density increases
with both span and earth cover depth. In addition, the mid-span upper slab rein-
forcement area shows quadratic and linear relationships with the span and burial
depth, respectively.

• Previous designs do not condition the structures conceived using the proposed
methodology. Thus, any configuration that verifies the requirements is considered
a feasible solution. In this context, the 8 and 10 m span RMHF buried one meter
deep presented specific characteristics that differ from the general. With considerable
reductions in shear reinforcement, these structures have upper slabs with greater
depth and mid-span reinforcement areas.
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The following abbreviations are used in this manuscript:

SA Simulated Annealing
TA Threshold Accepting
OBA Old Bachelor’s Acceptance
MO Mutation Operator
GA Genetic Algorithm
RMHF Road Modular Hinged Frame
CPRF Cast in Place Road Frame
DoE Design of Experiments
SAMO Simulated Annealing with Mutation Operator
TAMO Threshold Accepting with Mutation Operator
OBMO Old Bachelor’s Acceptance with Mutation Operator
ULS Ultimate Limit State
SLS Service Limit State
MCL Markov Chain Length
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CC Cooling Coefficient
SC Stopping Criterion
VN Variable Number
SD Standard Deviation
CL Chain Length
RC Reduction Coefficient
TC Termination Criterion
IC Increase Coefficient
DC Decrease Coefficient
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