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Abstract: The compressive properties of powder metallurgy (PM)-based porous aluminum (Al)
composites were optimized at three levels based on the following parameters: titanium (Ti)-coated
diamond content, polymethylmethacrylate (PMMA) particle content, and PMMA particle size. A
3 × 3 matrix was used in the experimental design of an L9 orthogonal array to get nine sets of
combinations. These nine compositions were then tested and analyzed for density, porosity, plateau
stress, and energy absorption capacity. The effect of individual input parameters was assessed using
the Taguchi-based means ratio and analysis of variance (ANOVA). The main effect plots articulated
the optimal parameter levels for achieving maximum compressive property values (plateau stress
and energy absorption capacity). The findings show that diamond content and PMMA particle
size have a major impact on compressive properties. The ANOVA analysis yielded similar results,
with diamond content accounting for the greatest value. Further, the response optimization of
compressive properties revealed that maximum values could be obtained at optimum parameters:
diamond content of 12 wt.%, PMMA particle size of 150 µm, and PMMA particle content of 25 wt.%.
Confirmation tests on the optimal parameters revealed improved results as well as some minor errors
and deviations, indicating that the chosen parameters are critical for controlling the compressive
properties of Al composites.

Keywords: porous aluminum composite; relative density; porosity; Taguchi L9 orthogonal array
plateau stress; energy absorption capacity

1. Introduction

Due to the unique properties of porous metals, their usage in the automobile indus-
try, aerospace manufacturing, and other industries is progressively growing [1,2]. These
properties include low relative density, high energy absorption capability, and adequate
sound and heat insulation [3]. To improve the mechanical and physical properties, par-
ticularly higher strength of porous metals, the development of composite materials is
highly required. Several strategies for improving the mechanical properties of porous Al
by inclusion of reinforcement particles ex situ or in situ have been used. As a result, many
researchers fabricate and studied porous composite with reinforcing particles such as SiC,
Al2O3, B4C, and CNTs [4–9]. One such reinforcement, the diamond particles, has been used
by several researchers in solid composites [10,11].

Diamond is an inert material with unique properties, such as the highest thermal
conductivity, high hardness, and high strength. These properties are the most interesting
for the objectives of this project. Diamond is an inert material with exceptional properties
such as high strength, hardness, and thermal conductivity. At room temperature, diamond
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has the superior thermal conductivity of any existing material (k = [800–2000] W m1 K1),
while exhibiting relatively low thermal expansion [12]. Considering the high strength
of diamond and other properties, it can potentially improve the properties of porous
composites. Further taking into account the applications in aerospace and automotives,
it can be used as fillers in the crash box and other components to reduce the weight and
prevent damage during accidents. As the evolution of safer materials may cost higher but
their requirement is crucial. Keeping in view the safety of the passengers and expensive
car components, such fillers can serve the purpose.

One of the biggest challenges associated with the use of diamond particles as rein-
forcement is their poor wettability resulting in weak interface between diamond and metal
matrix. Several methods for improving diamond wettability have been investigated. The
interfacial bonding of diamonds with metal matrix have been improved by surface treating
or by applying coating or functionalized with high thermal conductivity metals or alloys
such as Cu, Ag, and Al [13,14]. Another technique is to form a carbide layer between the
diamond and metal interfaces to improve diamond wettability, for example, by using tung-
sten or titanium coating [13]. However, for their reinforcement in the porous Al composites,
it is still in its infancy.

One of the traditional methods employed for the development of advanced materials is
powder metallurgy techniques. For the production of porous metal composites, the powder
metallurgy technique using space-holder material as porous media is relatively simpler and
controllable method [7,15–17]. The process steps generally are as follows: (1) mixing metal
powder with reinforcing particles and space-holder material, (2) compression of prepared
mixtures, (3) removal of space-holder material from the sample, and (4) sintering solid and
liquid state [18,19]. The use of PMMA particles as space-holder material was considered to
be the most beneficial [20,21]. The use of PMMA particles in porous Mg composite revealed
the formation of spherical pores that replicate the shape and size of PMMA particles thus
have better control on porosity [22]. Furthermore, their content and size also influence the
properties of resultant material. Therefore, the present work is dedicated to studying the
effect of different PMMA particle content and size and wt.% of Ti-coated diamond particles
reinforcement on the microstructure and compressive properties of porous Al composites.

The study deals with development of porous Al composites with Ti-coated diamond
reinforcing particles at different weight percentages using different content and size of
PMMA space-holder particles. The powder metallurgy method technique in combination
with Taguchi design of experiment was employed to fabricate the composites. According to
Taguchi DOE, the porous composites for nine sets of parameters were evaluated. The pore
morphology and elemental analysis of the porous Al composites was evaluated using SEM
images and EDX. In addition, the mechanical properties of the porous composites were
measured via compression testing and the plateau stress and energy absorption capability
are determined. The effect of diamond content, PMMA content, and PMMA size on the
compressive properties were then analyzed, experimentally and statistically.

2. Methodology
2.1. Experimental Procedure
2.1.1. Fabrication of Porous Al Composites

Table 1 shows the composition of alloy matrix, reinforcement, and space holder content.
The Al, Mg, tin, Cu, and boron powder (supplied by Sigma-Aldrich Sdn Bhd, Selongor,
Malaysia) with the particle size of 45, 10, 45, 75, and 10 µm and purity of 99.9, 99.9, 99.5,
99.5, and 99.5% respectively were utilized as matrix materials. The diamond particles of
particle size 45 and purity 99.5% were used as reinforcement and were received as Ti-coated
by vacuum vapor deposition technique. While PMMA of purity 99.9% were added as space
holders with varying particle content and particle size.
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Table 1. Composition of Ti-coated diamond reinforced porous Al composites.

Alloy Matrix Al Mg Sn Cu B
Reinforcement

Ti-Diamond
Space Holder

PMMA

Wt.% 94 1 2 2 1 4, 8, 12 20, 25, 30

The powder metallurgy technique was employed to fabricate the porous Al composites
as shown in Figure 1. Initially, the blending process was carried out in three steps. In the
first step, the alloy matrix powder containing AL, Mg, Sn, Cu, and B were mechanically
blended at 300 rpm for 24 h in a ball mill with ball to powder ratio of 10:1, then the alloy
matrix powder mix was added to Ti- coated diamond 800 rpm for 2 h particles using a
shaker followed by mixing the resultant powder with PMMA particles at 800 rpm for
2 h at the heating rate of 2 ◦C/min. Prior mixing PMMA particles were mixed with
CLE safe oil as a binder to bind them with metallic powder. The mixed powders were
compacted uniaxially at the pressure of 350 MPa, followed by heat treatment according
to the temperature required for the elimination of each space holder at 450 ◦C for 1 h,
and then the samples were sintered at 590 ◦C for 1.5 h under an argon atmosphere using
tubular furnace.
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Figure 1. Fabrication process of porous Al composites.

2.1.2. Characterization

The total porosity (P) and relative density were determined from the density measure-
ments by using the Archimedes method with the distilled water impregnation [23], using
the following equation:

Rd =
Bulk density

Material density
(1)

where Rd represents the relative density, bulk density is the density calculated using
Archimedes method, and material density is the density of Al matrix (2.7 g/m3).

Pore-morphology was characterized using scanning electron microscope (SEM) of
JEOL JSM-6300F from Austin, TX, USA and the elemental analysis was carried out using
electron dispersive X-ray (EDX) equipped with SEM. The compressive strength measure-
ments were carried out according to the ASTM E9 standard [24] with a fixed crosshead
speed of 0.5 mm/min at room temperature and load cell of 30 kN (Dartec model3500
universal testing machine (Selongor, Malaysia). The area under the stress–strain curves
determined the energy absorption capacity (W) of the resulting porous Al composites using
the following equation [25].

W =
∫ ε

0
σ dε (2)

where σ and ε are the compression stress and strain, respectively.
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2.2. Taguchi’s Design of Experiments (DOE)

Design of experiments deals with evaluation of factors that are held responsible for
the control of a parameter or a group of parameters by conducting controlled tests and
to estimate the best processing condition. DOE is helpful in investigating all possible
combinations or a part of possible combinations. This is one of the valuable tools that
helps in optimizing and better understanding the factors that aid in reducing material,
energy, cost and time. Taguchi’s design of experiment includes orthogonal arrays and
signal-to-noise ratios (S/N) concepts for analysis of data and prediction of optimum results.
The S/N ratio, or signal-to-noise ratio, is the log function of the output of an analysis and is
the prime function for optimization in a static problem. It is the product of experiments
and is determined by a minimum number of experiments. Generally, in static problems the
three S/N ratios for optimization are Smaller the better, Larger the better, and Nominal the
best and based on the experiment it may be selected. In this study, the three input factors
influencing the compressive properties such as diamond content, PMMA particle size, and
PMMA particle content each with three levels were selected. The Taguchi model with three
factors and three levels were chosen and thus orthogonal array L9 with nine rows and three
columns were obtained. The three levels of the three parameters are shown in Table 2. The
experiments were conducted based on the nine runs acquired from Taguchi model L9, and
the objective of this model was to obtain higher compression properties (plateau stress and
energy absorption capacity). The run order with the corresponding factors and levels are
mentioned in Table 3. Upon the three S/N ratio characteristics larger the better was chosen
for analysis. This S/N ratio was the measure of deviation of the quality characteristic from
the value desired.

Table 2. Control factors (process parameters) and their levels.

Factors Symbol Unit Level 1 Level 2 Level 3

Diamond content A wt.% 4 8 12
PMMA size B µm 75 125 150

PMMA content C wt.% 20 25 30

Table 3. L9 Orthogonal array layout with design factors.

S.no Diamond
(wt.%)

PMMA
Size (µm)

PMMA
(wt%)

Plateau Stress
(MPa)

Energy
Absorption Capacity (Mj/m3)

1 4 75 20 24.8 4.89
2 4 125 25 20.27 5.12
3 4 150 30 26.37 6.78
4 8 75 30 36.68 10.75
5 8 125 25 30.06 9.77
6 8 150 20 29.86 7.93
7 12 75 30 26.79 7.55
8 12 125 20 25.89 8.96
9 12 150 25 40.2 13.66

3. Results and Discussion

This experimental plan seeks to identify the critical factors and their interactions to
attain the best compressive properties (plateau stress and energy absorption capacity).
The porous Al composites were fabricated for nine sets of parametric combinations as per
Taguchi orthogonal array and their compressive properties were recorded as shown in
Table 3.

3.1. Morphology

The cross-sectional view of porous Al composite as shown in Figure 2a exhibits two
types of pore structures: macropores and micro-pores. Macro-pores are the desirable pores
that were formed using PMMA particles as space holders, which decompose during sinter-
ing process leaving the pores behind. These are spherical shaped and have almost similar
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size as that of PMMA particles as shown in Figure 2a. This indicates that PMMA particles
can tailor the pore size and shape, thus can control porosities of porous Al composites.
Moreover, it has been observed that the presence of irregular pores causes difficulty in
prediction of mechanical properties. The benefits of spherical shaped pores as shown in
Figure 2a, include homogeneous pores, regular shape and size, and easier prediction of
mechanical properties theoretically [26]. Jiang et al. investigated the mechanical prop-
erties of porous composites using spherical and angular shaped carbamide particles as
space-holders. The porous composite with spherical carbamide has significantly better
mechanical properties than porous composite with angular carbamide [15]. Moreover, the
presence of rounded corners in spherical porosities contributes to reducing stress concen-
tration. While micro-pores are the unwanted pores that were found in the macropore walls
and struts. The macropores have pore connectivity as evident from Figure 2c. When the
space holders slide with each other during compaction process, connected pores are formed
after sintering. These connected pores aid in proper decomposition of the space holder
during the sintering process [27].
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Figure 2. Microstructure of porous Al composite, (a) pore distribution and shape, (b) EDX of
composite cross section, (c) pore cell and pore connectivity, and (d) well bonded diamond particle.

Table 4 show the density and porosity of the porous Al with varying Ti-coated diamond
(4, 8 and 12 wt.%) and PMMA (20, 25 and 30 wt.%) and PMMA particle size (75, 125, and
150 µm). The density of porous Al composites initially increases insignificantly upto
25 wt.% followed by decrease with increase in PMMA particle size at constant diamond
content of 4 wt.%. of, on the contrary the porosities increased. However, with increase
in diamond content, the densities decreased, while porosities increased. This can be due
to availability of insufficient alloy metal mix to fill the micropores formed as a result of
higher Ti-coated diamond content [28]. Moreover, with increase in PMMA particle size the
densities increased and on the contrary the porosities decreased. The presence of larger
sized PMMA particles forms thicker cell walls and less cracks are formed as a result in
comparison to small sized particles with weaker cell walls.

Table 4. Densities and porosities of porous Al composites for nine sets of parameters.

S.no 1 2 3 4 5 6 7 8 9

Porosity (%) 21 24 30 29 26 18 31 20 25

Bulk density 1.94 2.06 1.76 2.08 2 1.92 2 1.867 1.774
Relative density 0.72 0.76 0.65 0.77 0.74 0.71 0.74 0.69 0.66
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3.2. Effect of Diamond Particle Content

The potential role and proper distribution of reinforcing particles in the matrix allow
composites to exhibit higher strength as compared to monolithic [29,30]. The uniform
distribution of reinforcement particles in the matrix (cell wall) is critical for improving
mechanical properties. Mostly, the reinforcing particles when added to the composites,
get accumulated at the grain boundaries in powder metallurgy technique [31]. This leads
to improvement in the properties such as yield strength, elastic modulus, and energy
absorption capacity. In addition, more the uniformity of the cell wall, the greater is the
strength of cell walls and the mechanical properties of the porous composites [32]. The
intact and perfect cell wall with uniform dimensions influences the strength and physical
properties of the porous materials [33].

It can be seen from Table 3 that the plateau stress of the porous Al composites increased
with the increase in the wt.% of Ti-coated diamond particle. The energy absorption capacity
of the composites also increased significantly with the increase in Ti-coated diamond
particle content. In particular, the porous Al composites with porosity 20–30% with 4
wt.% of Ti-coated diamond exhibited plateau stress ranging from 24.8 to 26.37 MPa and
for 8 wt.% of Ti-coated diamond content the plateau stress ranged from 29.86–36.68 MPa.
However, the highest values were attained at 12 wt.% of Ti-coated diamond content in the
range of 26.78–40.2 MPa. Similarly, the porous Al composites with porosity (20–30%) with
4 wt.% of Ti coated diamond showed energy absorption capacity of 4.88–6.78 Mj/m3 and
the composites with 8 wt.% of Ti-coated diamond content displayed energy absorption
capacity in the range of 7.93–10.75 Mj/m3. The best energy absorption capacity of the range
7.55–13.66 Mj/m3 was obtained for porous composites with 12 wt.% of Ti-coated diamond
content. During the compression tests, Ti-coated diamond particles in the cell walls resist
stress until their critical value is reached, when fracture occurs near or at the cell boundary.
Moreover, the presence of Ti-coated diamond particles in the cell walls increases the cell
wall thickness, as shown in Figure 3, the presence of diamond in the cell walls, and thus
offers greater bending resistance. Moreover, Figure 3a,b shows that the matrix material
held diamond particles so strongly that even when cross sectioned it stayed attached to the
matrix and was not pulled out. This strong bonding is due to affinity of Ti coating with Al
matrix and also due to the presence of sintering metal additives as evident from EDS in
Figure 3c.
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3.3. Effect of PMMA Particle Size

The porous composites replicate the shape and size of space holders, which is impor-
tant in controlling porosity and pore size [22]. It allows the predictability and reproducibility
of mechanical properties. The spherical structured cells (pores) and uniform distribution of
the cell walls were obtained by adding the space holder particles of varying size, as evident
from Figure 4. Due to uniform pore distribution in the porous structure, the strength of
porous Al composite improved [34,35].
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Figure 4. Pore size and wall thickness of pores in porous Al composites with varying PMMA particle
size, (a) 75 µm, (b) 130 µm, and (c) 150 µm.

Table 3 shows that the composites with PMMA particle size of 150 µm exhibited higher
plateau stress values than composites with smaller particle sizes (75 µm and 130 µm). The
cell wall has a significant impact on overall load capacity. The smaller pores result in the
formation of finer solid framework while the larger the pore size form the thicker cell walls
and have high compressibility, which increases with pore size [36]. To maintain porosity, as
pore size decreases, the number of pores increases, resulting in a smaller cell edge thickness.
Furthermore, the cell edges may be too small to supply enough melt, resulting in impairing
the mechanical properties significantly [37]. Therefore, the plateau strength decreases.
Similarly, this effect was also seen in case of energy absorption capacities, where maximum
values were acquired from the composites with 150 µm particle size of PMMA.

3.4. Effect of PMMA Content

Porosity influences the mechanical properties of porous composites [38] and attaining
uniform dispersion could enhance mechanical response. The porosities can be easily
controlled by proper selection of space holder content. In this study, the porosities of
the porous composites were varied by using different contents of PMMA particles. The
porosities in the porous Al composites are seen to depend on the PMMA content as evident
from Table 3. The isolated pores were mostly found in porous Al composites containing
20% PMMA particles than in other wt.%. The interconnected pores were observed as
the amount of PMMA particles increased, as shown in Figure 5b,c,e,f,h,j. Increasing the
PMMA content from 20% to 30% increases the interconnected pore in porous Al composites.
These interconnected pores aid in the better decomposition of the space holder during
the sintering process [27]. As a result, the composites with 25 wt.% of PMMA content
exhibited well-defined pore structure and least cracks as evident from Figure 5c,e,h and
thus revealed greater compressive properties. The maximum values for plateau stress and
energy absorption capacities ranged from 20.27–40.2 MPa and 5.12–13.66 respectively, at
25 wt.% of PMMA content.
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Figure 5. SEM micrography of porous Al composites at three particle size of PMMA viz 75 µm,
125 µm and 150 µm with varying PMMA particle content of (a,d,g) 20 wt.%, (b,e,h) 25 wt.%, and
(c,f,i) 30 wt.% respectively.

3.5. Optimization Results
3.5.1. Analysis of Means

The plateau stress and energy absorption capacity were regarded as response variables
to improve the compressive properties. To increase their applicability, the values of plateau
stress and energy absorption capacities should be maximized. As a result, the signal-to-
noise (S/N) ratio for the response factors was determined by keeping the option “larger the
better”. Figures 6 and 7 show the main effect plot that explains the influence and impact of
input factors on plateau stress and energy absorption capacity respectively. The results of
compressive properties were analyzed using the MINITAB 18 software developed in 2017
in the University of Pennsylvania (Philadelphia, PA, USA) and the characteristic values
were transformed to S/N ratio values. The mean of means and mean of S/N ratio graphs
show that plateau stress increases with an increase in diamond weight percentage up to 8%
and then reduces insignificantly. But for PMMA size, maximum plateau stress values are
obtained at level 1 (75) and level 3 (150) and in case of PMMA content the plateau stress
increases up to 25 wt.%, on further addition it decreases. Similarly, from means of means
graph of energy absorption capacity, it increases with an increase in diamond content and
maximum value was acquired at level 3 (12 wt.%); for different sizes of PMMA particles it
decreases then increases and maximum value was acquired at level 3 (150); and for PMMA
content it increased up to 25 wt.% beyond this it decreased, however the value at level 3
(30 wt.%) was found to be still higher than at lowest level 1 (20 wt.%) as shown in Figure 7.
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3.5.2. Analysis of Variance (ANOVA)

ANOVA serves to investigate the effect of parameters and their relationships by
analyzing the mean square against response errors at predefined confidence levels. The
ANOVA allows to find the effect of each factor on the overall variance of the results. The
ANOVA results for the response factors; plateau stress and energy absorption capacity, are
shown in Tables 5 and 6 respectively. The analysis was conducted at a 10% significance level,
which corresponds to a 90% level of confidence. Each ANOVA table contains a percentage
contribution to total variation for each factor’s variable. The contribution of each factor that
has a large impact on response factors (plateau stress and energy absorption capacity), as
shown in Figure 8, is analyzed using the ANOVA table results. The diamond content shows
the most significant (40.76%) effect on the plateau stress followed by PMMA size (22.85%)
and PMMA content (14.41%), as evident from Table 5 and Figure 8a. Correspondingly,
Table 6 and Figure 8b show that the diamond content highly affects the energy absorption
capacity (56.96%) followed by a PMMA content (13.52%) and a PMMA size (8.54%). This
could be a reason for the diamond content to influence the plateau stress and energy
absorption capacity significantly, which is around 40.76% and 56.96% respectively.
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Table 5. ANOVA variance table for plateau stress.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Diamond 2 122.95 40.76% 122.95 61.47 1.85 0.350
PMMA size 2 68.91 22.85% 91.66 45.83 1.38 0.420

PMMA 2 43.46 14.41% 43.46 21.73 0.66 0.604
Error 2 66.29 21.98% 66.29 33.14
Total 8 301.61 100.00%

Table 6. ANOVA variance table for energy absorption capacity.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Diamond 2 35.326 56.96% 35.326 17.663 2.72 0.269
PMMA size 2 5.300 8.54% 6.047 3.024 0.46 0.683

PMMA 2 8.388 13.52% 8.388 4.194 0.64 0.608
Error 2 13.009 20.97% 13.009 6.504
Total 8 62.023 100.00%
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absorption capacity.

As a result, the effect of diamond content in this study is maximum as compared to the
PMMA size and PMMA content. The influence of the PMMA content is minimal (14.41%)
in case of plateau stress, and PMMA size is minimal (8.54%) in case of energy absorption
capacity. The addition of diamond particles increases the load bearing capacity of porous Al
composites. As the modulus of the diamond particles is much greater than that of the matrix,
the diamond particles bear the load directly by stress concentration. Moreover, during
compression process, the additional stress concentration as a result of diamond particle
jamming increases the particle’s load-carrying capacity, thereby improving compressive
properties [39].

The linear polynomial model can be obtained from the analysis of variance, it de-
fines the plateau stress and energy absorption capacity as a function of diamond content,
PMMA size, and PMMA content. The greatest R2 predictions for plateau stress and energy
absorption capacity were determined to be 94.49% and 99.18%, respectively, indicating
that the model will predict new observations almost as well as it matches the sample data.
Furthermore, the regression equation adequately explains this study.

3.6. Regression Analysis

The statistical model based on linear regression equations was acquired applying L9
orthogonal using MINITAB software. Based on each response factor, regression equations
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(or linear polynomial model) for plateau stress and energy absorption capacity were derived
and presented as follows:

Plateau stress = 28.99 − 5.18 D1 + 3.21 D2+ 1.97 D3+ 2.18 Ps1 − 5.33 Ps2 + 3.15 Ps3
− 2.14 Pc1 + 3.69 Pc2 − 1.55 Pc3

(3)

Energy absorption capacity = 8.379 − 2.78 D1 + 1.10 D2 + 1.68 D3 − 0.04 Ps1 −
1.03 Ps2 + 1.08 Ps3 − 1.12 Pc1 + 1.47 Pc2 − 0.35 Pc3

(4)

where D is the diamond content, Ps is the PMMA particle size, and Pc is the PMMA content.
The percentage deviations were obtained by calculating the response plateau stress

and energy absorption values using linear regression Equations (3) and (4). The significant
residual errors of each test, and the maximum errors of 1.12 and 1.39 (Tables 7 and 8)
were acquired for plateau stress and energy absorption capacity, respectively. To check the
discrepancy in the experimental and model fit values, the data for each experiment run is
illustrated in Figure 9. A rate of change of plateau stress and energy absorption capacity
are produced by the device errors and processing errors. In addition, experimentation also
relies on other factors including mixing parameters, and composition as the properties
depend on these factors as well.
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Table 7. Fits and diagnostics for all observations for plateau stress.

Obs Plateau Stress Fit SE Fit Resid Std Resid Del Resid

1 24.80 23.85 5.50 0.95 0.55 0.43
2 20.27 22.17 4.62 −1.90 −0.55 −0.43
3 26.37 25.42 5.50 0.95 0.55 0.43
4 36.68 32.83 4.62 3.85 1.12 1.30
5 30.06 30.56 4.62 −0.50 −0.15 −0.10
6 29.86 33.21 5.08 −3.35 −1.23 −1.79
7 26.79 31.59 4.62 −4.80 −1.40 −6.62
8 25.89 23.49 5.50 2.40 1.40 6.62
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Table 8. Fits and diagnostics for all observations for energy absorption capacity.

Obs
Energy

Absorption
Capacity

Fit SE Fit Resid Std Resid DFITS

1 4.89 4.43 2.43 0.46 0.60 1.4955
2 5.12 6.03 2.05 −0.91 −0.60 −0.6289
3 6.78 6.32 2.43 0.46 0.60 1.4955
4 10.75 9.09 2.05 1.66 1.09 1.6322
5 9.77 9.92 2.05 −0.15 −0.10 −0.0922
6 7.93 9.44 2.25 −1.51 −1.26 −3.6402
7 7.55 9.66 2.05 −2.11 −1.39 −7.2209
8 8.96 7.90 2.43 1.06 1.39 17.1717
9 13.66 12.60 2.43 1.06 1.39 17.1717

3.7. Response Optimization

The response optimization study was conducted to find the best results as shown in
Table 9. The intention for conducting this study is to control the compressive properties
of porous Al composites. In this study, the goal was to maximize the results in order to
optimize plateau stress and energy absorption capacity. Table 9 shows the lower value of
plateau stress, which can be considered the predicted value. The target and lower values
have maximum and minimum variations, but this is impractical. Compression properties
are also affected by alloy composition, crosshead speed during compression testing, and
other factors. It may produce extremely high or low values. As a result, the fit values
mentioned in Table 9 and shown in Figure 10 can be considered safe and reasonable values
for plateau stress and energy absorption capacity, which can be attained with a combination
of Ti-coated diamond content of 12 wt.%, PMMA particle size of 150 µm and PMMA
particle content of 25 wt.%.

Table 9. Response optimization: composition and characteristics.

Response Goal Lower Target Upper Weight Importance

Energy Absorption capacity Maximum 4.89 13.66 1 1
Plateau stress Maximum 20.27 40.20 1 1

Solution

Solution Diamond PMMA
size PMMA Energy Absorption

capacity Fit

Plateau
Stress

Fit

Composite
Desirability

1 12 150 25 12.6029 37.7998 0.879515

Variable Settings

Diamond 12
PMMA size 150

PMMA 25

Response Fit SE Fit 95% CI 95% PI Fit

Energy Absorption capacity 12.60 2.43 (2.13, 23.08) (−2.57, 27.77)
Plateau stress 37.80 5.50 (14.16, 61.44) (3.56, 72.04)
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Figure 10. Optimization plot for plateau stress and energy absorption capacities.

3.8. Interaction Plots

From interaction plots of plateau stress as shown in Figure 11, it can be observed
that for diamond and PMMA size interaction, at PMMA size of 75 µm and 125 µm, the
plateau stress increases up to 8 wt.% of diamond on further addition it decreases however
for PMMA size of 150 µm, it increases with increase in diamond content from 4–12 wt.%.
Similarly, for diamond and PMMA content interaction plot, the plateau stress values for
PMMA content of 20 and 30 increases first from 4 to 8 wt.% of diamond content, on further
addition it decreases. Even though for PMMA size of 25 wt.% it increases linearly on
addition of diamond from 4 to 12 wt.%. Moreover, for PMMA size and PMMA content
interaction plot, plateau stress for PMMA content of 20 and 25 increased on increasing the
PMMA particle size, however for 30 wt.% it decreases.
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Moreover, the interaction plots for energy absorption capacity in Figure 12 revealed
that in the interaction plot of diamond and PMMA size, the energy absorption capacity
increases first from 4 to 8 wt.% diamond content and on further addition it decreases in case
of PMMA size of 75 µm and 125 µm, but for PMMA size of 150 µm, it increases with increase
in diamond content from 4–12 wt.%. Moreover, for diamond and PMMA content interaction
plot, the energy absorption capacity values for PMMA content of 30 wt.% increase first
from 4 to 8 wt.% of diamond content, on further addition it decreases. Although for PMMA
content of 20 and 25 wt.% it increases on addition of diamond from 4 to 12 wt.%, still the
increase is more prominent in case of PMMA content of 25 wt.%. Moreover, for PMMA
size and PMMA content interaction plot, energy absorption capacity for PMMA content
of 25 wt.% increases on increasing the PMMA particle content but it decreases for 20 and
30 wt.% of PMMA content.
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3.9. Contours Plot

Comparison of the plateau stress and energy absorption capacity responses using
contour plots in Figures 13 and 14 shows three contour plots such as PMMA size versus
diamond content, PMMA content contrasted with diamond content and PMMA content in
competition with PMMA size based on the plateau stress and energy absorption capacity
results. The contour plot variations were expressed as color variation, with different ranges
for the individual colors based on the intensity of the experimental results. The contour
plots show the influence in rise/decline of plateau stress and energy absorption capacity
at withhold value of the PMMA content of 25 wt.% in Figures 13a and 14a, PMMA size
of 112.5 µm Figures 13b and 14b, and diamond content of 8 wt.% in Figures 13c and 14c,
respectively. In combination with the parameters of Figure 12a, the plateau stress increases
with an increase in diamond content and the influence of PMMA size showed increment
followed by decrement of plateau stress. Figure 12b shows that the plateau stress increases
with increase in PMMA content. However, for increased diamond content, it first increases
then decreases. Moreover, Figure 12c shows the plateau stress increases while PMMA
content increases, whereas for PMMA size, it decreases followed by increase with higher
value for plateau stress. Moreover, it has been observed from Figure 12a that with an
increase in PMMA size, the energy absorption decreases while as with increase in diamond
content, it increases. Figure 13b reveals the energy absorption capacity increases with
increase in PMMA size as well as diamond content. However, the diamond content has
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maximum influence thus providing higher value. Similar effect is seen in the contour
plot of PMMA vs. PMMA size, also the value of energy absorption capacity is higher
with the higher values of combined parameters (Figure 13c). The increase in compressive
properties with increase in space holder content is attributed to the increase in the presence
of well-defined pores that improve the compressive properties of the porous composites.
Moreover, with the increase in space holder size, the cell size as well as cell wall thickness
increases thereby increasing the compressive properties. Thus, with these contour results,
it has been demonstrated that the selected inputs have an effect on changing the response
of the present work.
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3.10. Surface Plots

Similarly, Figures 15 and 16 show the surface plots comparison for plateau stress
and energy absorption capacity as the three-in-one diagram. The results of plateau stress
and energy absorption capacity are compared with two factors in each graph, including
diamond content compared with PMMA size, PMMA content contrasted with diamond
content, and PMMA size as opposed to PMMA content, respectively. Furthermore, results
were extracted from some of the chosen input combinations for the contours and the
maximum values were found with these data. These surface plots are the three-dimensional
view of the contour plots, and they can observe the significant changes in a surface with
numerical values of each combined parameter with one hold value. Figure 15 shows the
plateau stress range that can be understood by the contours’ color, ranging from light to
dark. Based on Figure 15 with the response of plateau stress, each values surface plot has
hold values such as PMMA 25 in Figure 15a, which means that the obtained results of
response will be varying by size and diamond and constant values are the hold values with
these combination response showing the optimum results for the output value. Moreover,



Materials 2023, 16, 921 16 of 19

Figure 15b,c show the results considering one hold value and other parameters varying.
Generally, the response value depends on the input parameters and their levels. With these
surface plots, the phenomena of input parameters combination and three-dimensional
variation for a suitable output can be realized.
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Similarly, the surface plots for energy absorption capacity have been illustrated in
Figure 16. In these plots, the hold values are the same as in Figure 14 and the parameters
combination after all the phenomenon of three-dimensional variation is completely changed.
This is because the combination of input parameters behaves differently, therefore the
surface is varied in a different way. However, with these results, it can be realized how
significant is the impact of the input parameters and their level on the response values.
Considering these kinds of studies will result in choosing the best possible combination of
parameters to fit the values of the optimum response.

3.11. Confirmation Test

The final step in the DOE approach is experiment confirmation. Following the investi-
gation of the optimal test conditions, the confirmation was carried out with the optimal
level of factors, diamond content of 12 wt.%, PMMA particle size of 150 m, and PMMA par-
ticle content. Finally, the obtained results were compared to the predicted results. Figure 17
depicts the stress–strain diagram showing the comparison of confirmation test result with
the highest value obtained from Taguchi L9 runs demonstrated in Table 3. From Figure 17,
it is clear that the confirmation test results exhibited the highest plateau stress, that was
more stable as compared to the result obtained in the prior test.
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Table 10 also shows the comparative results obtained with the best parameters. It
was discovered that the experimental and predicted results were in close agreement. How-
ever, an error of 6.4% and 11.1% was observed in plateau stress and energy absorption
capacity, respectively.

Table 10. Comparison of confirmation test with predicted values.

Responses Prediction Experimentation Error (%)

Plateau stress (MPa) 37.79 40.21 −6.4
Energy absorption capacity (Mj/m3) 12.60 11.20 11.1

4. Conclusions

1. In this study, the effect of reinforcement content, space holder size, and space holder
particle content on the compressive properties of porous Al composites using experi-
mental, numerical, and optimization methods was investigated.

2. The developed composites exhibited a spherical porous structure with Ti-coated
diamond particles distributed uniformly within the Al matrix alloy.

3. The densities and porosities also improved due to the presence of Ti-coated diamond
particles that were well bonded with the Al matrix alloy, revealing improved wetta-
bility and also by the inclusion of additives like Mg, Sn, Cu, and B, which aided in
liquid sintering.

4. The higher values of plateau stress and energy absorption were obtained at the
diamond content of 12 wt.%, PMMA particle size of 150 µm, and PMMA particle
content of 25 wt.%.

5. The effect of input factors on compressive properties was investigated by applying
statistical and regression analyses, model prediction, contour, and surface plots. The
linear regression equation values were compared to the results of the experimental
tests. The response optimized results included Ti-coated diamond content of 12 wt.%,
a PMMA particle size of 150 m, and a PMMA particle content of 25 wt.%.

6. Finally, the findings were validated by running the confirmation test under opti-
mal conditions. With the lowest percentage deviation in plateau stress and energy
absorption capacity, the model was found to be reliable and significant.
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7. The findings of the present study agree well with the −6.4% and 11.1% marginal
discrepancy in plateau stress and energy absorption capacity values, respectively. This
difference can be attributed to the other factors, such as processing parameters and
varying compositions, that also affect the compressive properties.
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