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Abstract: Results of studying the properties of composite fluoropolymer-containing coatings formed
by the cold spray (CS) method on the surface of constructional steel are presented. Different ways of
protective coating formation are proposed. The composition of coatings was studied using SEM/EDX
analysis. The incorporation of super-dispersed polytetrafluoroethylene (SPTFE) into the coating
increases the corrosion resistance of the copper-zinc-based cold-sprayed coating. Analysis of the
electrochemical properties obtained using EIS (electrochemical impedance spectroscopy) and PDP
(potentiodynamic polarization) indicates that samples treated with SPTFE on a base copper-zinc coat-
ing showed lower corrosion current density and higher impedance modulus (jc = 8.5 × 10−7 A cm−2,
|Z|f=0.1 Hz = 5.3 × 104 Ω·cm2) than the specimen with cold-sprayed SPTFE (jc = 6.1 × 10−6 A cm−2,
|Z|f=0.1 Hz = 8.1 × 103 Ω·cm2). The best anticorrosion properties were revealed for the sample with a
cold-sprayed base Cu-Zn layer annealed at 500 ◦C for 1 h, followed by SPTFE friction treatment and
re-annealed at 350 ◦C for 1 h. The corrosion current density jc of such a coating is 25 times lower than
that for the base Cu-Zn coating. The antifriction properties and hydrophobicity of the formed layers
are described. Obtained results indicate that cold-sprayed polymer-containing coatings effectively
improve the corrosion and wear resistivity of the treated material.

Keywords: steel; corrosion degradation; antifriction properties; electrochemical methods; cold spray
technique; protective coating; composite material; polymer

1. Introduction

The good mechanical properties of mild steel have promoted its widespread use over
the past few decades. The application of this type of steel has greatly contributed to the
development of society due to its combination of good mechanical properties and low
cost [1,2]. It is well known that the scope of low-alloy steel as one of the main structural
materials largely depends on its mechanical properties [3].

However, the problem of corrosion failure of steel structures is still relevant. The
industry constantly suffers significant losses as a result of corrosion, including degradation
processes in reinforced concrete products [4]. The corrosion process affects the strength
of the material and, accordingly, structures made from it, and products of degradation
can cause failure of electrical equipment, plumbing, and heating systems [5]. In addition,
there are indirect losses associated with the negative impact of corrosion products on the
environment and a threat to safety [6].

Steel structures are actively used in all areas: railway communication, construction
of buildings and structures, water supply, heat supply, and so on. A distinctive feature
of steel is that it is often used in aggressive operating conditions (acid gases, aerosols of
solutions of inorganic salts, dirt particles, temperature drops, UV radiation, static and
dynamic loads [7–9]).

Currently, there are several ways to protect steel against corrosion, including the
following: metal alloying with elements that are more resistant to participation in redox
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reactions (chromium, vanadium, nickel, manganese, and others); applying a protective
coating; and change in the chemical composition of the environment. There are a number
of works [10–12] related to the use of corrosion inhibitors in aggressive environments. For
example, in [10] it was shown that the use of a “green” corrosion inhibitor made from
the leaves of Mangifera indica L. in small quantities promotes the formation of a stable
protective layer on the surface of steel, preventing the further process of metal degradation.
In the work [12], the authors have shown a high efficiency of inhibitors (thiocarbohydrazide
functionalized glucose derivatives) for carbon steel protection in simulated oilfield water.

However, the most rational, effective, and inexpensive method of protection is the
application of coatings [13–29]. It is possible to use a paintwork material [13,19,30] (includ-
ing those with additives of nanoparticles [25,31–38] and inhibitors [13,14,20,39–47]) and
zinc coating to protect the material against its intensive destruction [48]. There is also a
plasma electrolytic oxidation (PEO) method that allows one to create dense heterooxide
coatings on valve metals (for example, Al, Mg, Ti, Nb, etc.) [49–57]. Unfortunately, this
method is not practically applicable to steel due to the feature of the PEO process and the
particulars of iron oxides. In this regard, another promising method proposed for applying
a protective coating to steel is the cold spray (CS) [58–60].

Cold spray is a technology used to form, on the material surface, functional coatings
with different thicknesses (10–100 µm) of various substances, mainly metals or compos-
ites [15,61]. This is a solid-state processing method in which micron-sized particles are
accelerated (up to supersonic speeds) towards the substrate at relatively low temperatures
(up to 600 K) [62]. When accelerating to supersonic speeds, the particles acquire high kinetic
energy, and upon collision with the treated surface, both the particles and the substrate
are deformed with the formation of a strong chemical and mechanical bond between the
sprayed particles and the substrate [59]. Powder melting does not occur in this method.
In contrast to the thermal spray method [63] and beam (laser or electronic) deposition
methods, in the CS, the particles remain in a solid state (at least for the vast majority
of metallic materials) throughout the entire process [64]. Due to the application of low
temperatures, the coating obtained by the CS method has unique properties [15,61,65,66].
The microstructure and properties of the original powders are preserved, which avoids
the formation of oxides or any other unfavorable structural changes, which increases the
durability and effectiveness of the coatings. The adhesion of the substrate to the coating
and the integrity of the protective layer are related to the plastic deformation of the particles
upon impact. Coating adhesion can occur in the solid state of the deposited components
without significant damage to the substrate, even for heat-sensitive materials. Although
CS was originally used to deposit metals, it is also currently used to deposit polymers
or ceramics [15,67]. Another way to enhance the mechanical and corrosion behavior of a
wide range of steels is application of the cold spray technique with friction stir processing
technology. The combination of these methods helps to improve the microstructure of the
material by decreasing its porosity and number of voids [68–70].

The application of fluoropolymer materials as a coating component is found in [71–73].
In the work [71], fluoropolymer was incorporated into the pores of PEO coating on alu-
minum alloy. The formed layer effectively protected the material against corrosion. The
use of super-dispersed polytetrafluoroethylene (SPTFE) is justified by the uniqueness of
this material, which has a greater adhesion to the surface as compared to PTFE. SPTFE is
characterized by a high content of the low molecular weight fraction of the fluoropolymer.
This fluoropolymer was chosen because it provides hydrophobicity to the surface, which
helps to reduce the intensity of the corrosion processes. In our previous work related to the
formation of a composite PEO coating with fluoropolymer, the bonding strength of SPTFE
to the substrate was studied [73]. It was revealed that for composite coatings, values of
LC2 (the load at which the coating adhesion strength alteration began) are close to those
of LC3 (the load at which scratching the coating down to the substrate occurred (plastic
abrasion of the film to the metal)), which indicates a sufficient bonding strength of SPTFE
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to the substrate. In this work, SPTFE was applied to the metal surface using the cold spray
technique for the first time.

In this article, the new composite polymer-containing coating consisting of metal
matrix that was treated with polymer material was formed. A comparative analysis of
the obtained copper-zinc and fluoropolymer protective coatings, formed by the cold spray
technique, is carried out to protect mild steel St3. The morphological, electrochemical, and
tribological characteristics of the coatings were studied. The effect of the application method
(friction method or cold spray) of super-dispersed polytetrafluoroethylene (SPTFE) on the
properties of the resulting protective coatings was also investigated. To the best of our
knowledge, in the other studies that have dealt with the formation of cold-sprayed coatings,
one can find only the results of mechanical tests [74–77]. Therefore, the data presented in
the manuscript should help in improving the process of formation, the protective properties,
and the efficiency of the CS composite layers.

Moreover, the problem of effective anticorrosion and antifriction protection of struc-
tural steel has not been completely solved yet in the world. The information presented in
this work helps to improve the performance characteristics of the material, as well as to
increase the efficiency of its application.

2. Materials and Methods
2.1. Preparing Samples

To study the morphological and electrochemical characteristics of the coatings, sam-
ples of St3 structural carbon steel (elemental composition in Table 1) with dimensions of
50 mm × 50 mm × 3 mm were prepared. Corundum powder grade K-00-04-02 (DIMET®)
(powder particle size 200–250 µm) was used for cleaning and jet-abrasive preparation of the
sample surface for metal coating. Powder grade C-01-11 (DIMET®) (powder particle size
5–50 µm) was used to apply a copper-zinc coating. The composition of the powder was as
follows (wt. %): copper—38.3, zinc—28.6, corundum—33.1. The polymer layer was applied
using a super-dispersed polytetrafluoroethylene powder (SPTFE, trademark FORUM®).

Table 1. Elemental composition of St3 steel.

Element C Si Mn Ni S P Cr N Cu As Fe

wt. % 0.14–0.22 0.15–0.3 0.4–0.65 <0.3 <0.05 <0.04 <0.3 <0.008 <0.3 <0.08 balance

The procedure for obtaining coatings is presented in Figure 1, where S is a sample of
bare St3 steel without coating; S-FCS—sample S with SPTFE applied by cold spray; SC—St3
steel sample with cold-sprayed base copper-zinc coating; SC-FF—friction-treated with
SPTFE sample SC; SC-FCS—sample SC with SPTFE applied by cold spray; SC-500—SC
sample annealed at 500 ◦C for 1 h; SC-500-FF—friction treated with SPTFE sample SC-500;
SC-500-FF-350—sample SC-500-FF re-annealed at 350 ◦C for 1 h. Information about the
types of sample treatment is summarized in Table 2.

The deposition of materials by the CS method was carried out using DIMET® equip-
ment, as shown in Figure 2, using compressed air at a pressure of 5 bar, without preheating.
Round nozzle with a diameter of 5 mm was used. The distance from the nozzle to the
substrate surface was equal to ~4 cm. The nozzle was moved relative to the substrate at a
speed of ~1 cm/s. To apply SPTFE by the friction method, a plastic brush with PVC bristles
~200 µm in diameter was used. Thermal treatment of the samples was carried out in a
muffle furnace L 9/13/B180 (Nabertherm, Lilienthal, Germany).

The thickness of the formed coatings was controlled using a model 908.750 micrometer
(Schut Geometrical Metrology, Groningen, Germany). Weight control of the samples was
performed using an analytical balance AUW120D (Shimadzu, Kyoto, Japan).



Materials 2023, 16, 918 4 of 19Materials 2022, 15, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Scheme of sample preparation: CS—cold spray; FM—friction treatment; C-01-11—copper 
and zinc powder (DIMET®); SPTFE—super-dispersed polytetrafluoroethylene (FORUM®). Designa-
tion of samples is given in the text and Table 2. 

Table 2. Designation of the sample with different coatings formed on St3 steel. 

Sample Type of the Treatment 
S Without coating 

SC S with cold-sprayed base copper-zinc coating 
SC-500 SC annealed at 500 °C for 1 h 

SC-500-FF SC-500 friction-treated with SPTFE 
SC-500-FF-350 SC-500-FF re-annealed at 350 °C for 1 h 

SC-FF SC friction-treated with SPTFE 
SC-FCS SC with SPTFE applied by cold spray 
S-FCS S with SPTFE applied by cold spray 

The deposition of materials by the CS method was carried out using DIMET® equip-
ment, as shown in Figure 2, using compressed air at a pressure of 5 bar, without preheat-
ing. Round nozzle with a diameter of 5 mm was used. The distance from the nozzle to the 
substrate surface was equal to ~4 cm. The nozzle was moved relative to the substrate at a 
speed of ~1 cm/s. To apply SPTFE by the friction method, a plastic brush with PVC bristles 
~200 μm in diameter was used. Thermal treatment of the samples was carried out in a 
muffle furnace L 9/13/B180 (Nabertherm, Lilienthal, Germany). 

 
Figure 2. Scheme of the cold spray DIMET® equipment. 

Figure 1. Scheme of sample preparation: CS—cold spray; FM—friction treatment; C-01-11—copper
and zinc powder (DIMET®); SPTFE—super-dispersed polytetrafluoroethylene (FORUM®). Designa-
tion of samples is given in the text and Table 2.

Table 2. Designation of the sample with different coatings formed on St3 steel.

Sample Type of the Treatment

S Without coating
SC S with cold-sprayed base copper-zinc coating

SC-500 SC annealed at 500 ◦C for 1 h
SC-500-FF SC-500 friction-treated with SPTFE

SC-500-FF-350 SC-500-FF re-annealed at 350 ◦C for 1 h
SC-FF SC friction-treated with SPTFE

SC-FCS SC with SPTFE applied by cold spray
S-FCS S with SPTFE applied by cold spray
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2.2. Analysis of Coatings

The surface morphology of the samples was studied using an EVO 40 scanning electron
microscope (Carl Zeiss, Jena, Germany) equipped with an INCA X-act instrument module
(Oxford Instruments, Oxford, UK) for elemental analysis by means of energy-dispersive
X-ray spectroscopy (EDX).

Electrochemical studies were carried out using potentiodynamic polarization and
electrochemical impedance spectroscopy using a Modulab XM MTS electrochemical system
(Solartron Analytical, Oak Ridge, TN, USA). The tests were carried out at room temperature
in a three-electrode cell in a 3.5 wt. % NaCl solution. The area of the investigated surface
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was 1 cm2. The platinized niobium mesh served as a counter electrode, and the silver
chloride (Ag/AgCl) electrode (potential versus a normal hydrogen electrode is equal to
0.197 V) served as a reference electrode. Before electrochemical measurements, the samples
were kept in the electrolyte for 15 min to stabilize the electrode potential. The frequency
value during electrochemical impedance spectroscopy varied in the range from 100 kHz to
10 mHz with a logarithmic sweep of 10 points per decade. Potentiodynamic measurements
were carried out at a sweep rate of 1 mV/s. The sample was polarized in the anodic
direction in the potential range from Ec − 0.2 V up to Ec + 0.7 V. The corrosion potential,
Ec, and the corrosion current density, jc, were determined from the intersection of the
extrapolated anodic and cathodic Tafel segments of the polarization curve. The polarization
resistance (Rp) was calculated in a separate experiment using a linear polarization resistance
test in accordance with Equation (1) [78]. The specimens were polarized from (Ec − 0.02) V
to (Ec + 0.02) V. The scan rate was equal to 0.167 mV s−1.

Rp = ∆E/∆I (1)

The tribological properties of composite coatings were studied on a Tribometer TRB-
S-DE (CSM Instruments, Peseux, Switzerland) (rotation mode with a sliding speed of
50 mm/s and a normal load of 15 N). The 10 mm corundum ball (α-Al2O3) was used as
a counterbody. The wear track diameter was equal to 10 mm. To estimate the wear, the
profiles were studied after the tests, using a Surtronic 25 profilometer (Taylor Hobson,
Leicester, UK). The wear (P, mm3/(N ×m)) was estimated using Equation (2):

P = ∆V/NF, (2)

where ∆V is the sample volume loss during the test, N is the distance, and F is the applied
normal load. The sample volume loss was calculated according to ∆V = S·l, where l is the
length of the track, and S is the area of the cross-section.

The wettability of the formed coatings was studied by the sessile drop method on a
DSA100 drop shape analyzer (KRÜSS, Hamburg, Germany). The latter comprises an optical
contact angle (CA) technique. This technique is used to estimate the wetting properties
of the localized area on a solid surface. According to this method, the angle between the
baseline of the drop and the tangent at the three-phase boundary was measured. The test
liquid was distilled water. The volume of the drop was 10 µL. For calculations of CA, the
Young–Laplace method, taking into account the gravitational distortions of liquid drop
form, was used. At least five measurements were carried out to obtain contact angle values.

The scheme of the performed tests is shown in Figure 3.
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3. Results and Discussion
3.1. Morphology Analysis

The appearance of the test samples is shown in Figure 4. The morphologies of the
various coatings formed using the CS method are depicted in Figure 5. The coating with
a rough surface was formed by applying a copper-zinc powder by cold spray on a steel
substrate (Figure 5, SC). EDX maps of the element distribution of the SC sample showed
a uniform distribution of copper and zinc (as the main components of the cold-sprayed
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material) in the coating structure. Oxygen is also present on the surface, which is associated
with partial oxidation of the powder. In some regions, the presence of iron (the main
component of steel) is visible. This is related to a feature of the cold spray process where
partial erosion of the substrate surface occurs to fix the powder particles, and not to the
incomplete filling of the sample surface with copper and zinc powder. Inclusions of
aluminum oxide were determined (this component is present in powder C-01-11). The
coating thickness was about 30–40 µm.
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After heat treatment at 500 ◦C for 1 h, the oxide microstructure in the form of needle-
shaped crystallites is formed on the coating (Figure 5, SC-500). The formation of such a
structure significantly increases the surface roughness compared to the base SC coating.
This morphological feature indicates the possibility of further functionalization of the
coating, which will change the properties of the surface layer.

SEM images of the surface of SC-FF and SC-500-FF samples obtained after SPTFE
friction treatment of SC and SC-500, respectively, are shown in Figure 4. Dark areas of the
specimen correspond to the zones containing SPTFE, and light areas to the base copper-zinc
coating. An analysis of the results indicates a higher continuity of the SPTFE layer on
the surface of the SC-500-FF sample compared to SC-FF, which is a consequence of the
positive effect of the temperature treatment of the SC sample on the surface modification
with the polymer.

Further heat treatment of the SC-500-FF sample at 350 ◦C results in the removal of
the volatile SPTFE fraction, which can cause a change in the protective properties of the
formed layer.

It should be noted that the cold spray of SPTFE (Figure 5, SC-FCS, S-FCS) significantly
covers the metal surface compared to the friction method of applying the polymer (Figure 5,
SC-FF). Maps of the element distribution of the SC-FCS sample (Figure 5, SC-FCS) showed
a copper-zinc site and SPTFE site on the surface. This indicates the functionalization of the
copper-zinc base coating with fluoropolymer powder.
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The SEM image of the cross-section and maps of the element distribution of the sample
SC-500 are presented in Figure 6. The SEM image shows that the surface layer is represented
by needle-shaped crystallites. The coating is dense, and the particles of copper and zinc
are evenly distributed in the coating. There are also particles of corundum in the coating
composition. An oxide layer was formed on the surface of the coating, as evidenced by the
distribution of oxygen.
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3.2. Electrochemical Properties
3.2.1. Electrochemical Impedance Spectroscopy Studies

The results of the impedance spectroscopy are shown in Figures 7 and 8. The spectra
of samples S and SC are described by an equivalent electrical circuit (EEC) using a single
R-CPE element (Figure 9a). The spectra of samples SC-500, SC-500-FF, SC-500-FF-350,
SC-FCS, SC-FF, and S-FCS are described by an equivalent electrical circuit using two series-
parallel connected R-CPE chains (Figure 9b). The calculated parameters of all EEC elements
are presented in Table 3. Samples S and SC (R1-CPE1) correspond to a layer of natural
oxide film on the steel surface (sample S) and a layer of copper-zinc coating (sample SC).
After annealing the SC sample at 500 ◦C for 1 h, an oxide layer is formed on the surface
of the coating (Figure 5, SEM image of SC-500). To describe the impedance spectrum of
this sample, two series-parallel connected R-CPE elements were used, where R1-CPE1
corresponds to the oxide layer of the copper-zinc coating, and R2-CPE2 describes the base
Cu-Zn coating.
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Table 3. Calculated EEC element parameters for samples with different coatings.

Sample Rs (Ω cm2)
CPE1

R1 (Ω cm2)
CPE2

R2 (Ω cm2) χ2

Q1 (S cm2 sn) n Q2 (S cm2 sn) n

S 33 8.4 × 10−4 0.78 1.4 × 103 4.1 × 10−4

SC 28 4.8 × 10−3 0.56 5.4 × 102 1.0 × 10−3

SC-500 29 9.9 × 10−6 0.84 3.8 × 103 1.1 × 10−4 0.38 1.4 × 104 1.1 × 10−3

SC-500-FF 31 2.1 × 10−6 0.63 1.2 × 103 2.0 × 10−5 0.43 6.5 × 104 7.2 × 10−4

SC-500-FF-350 32 1.9 × 10−7 0.82 4.1 × 105 4.8 × 10−6 0.35 7.1 × 105 3.6 × 10−4

SC-FF 30 5.3 × 10−8 0.87 2.1 × 103 1.4 × 10−5 0.34 4.9 × 104 1.0 × 10−3

SC-FCS 30 2.3 × 10−6 0.72 1.5 × 103 1.7 × 10−4 0.33 1.0 × 104 1.0 × 10−3

S-FCS 33 6.3 × 10−5 0.44 1.5 × 103 2.3 × 10−4 0.84 2.1 × 103 5.6 × 10−4

It should be noted that all spectra of samples with different SPTFE deposition can be
described by an EEC consisting of two series-parallel connected R-CPE chains, where R1-
CPE1 corresponds to the part of the coating containing SPTFE layer, and R2-CPE2 describes
the other part of the coating without polymer. For example, to describe the spectrum of
sample SC-500-FF, two series-parallel connected R-CPE chains were used, where R1-CPE1
corresponds to the outer part of the coating that is mostly covered with SPTFE, and R2-CPE2
describes the inner part of the protective layer. A similar description of the spectrum is
proposed for SC-500-FF-350, since the difference from the previous sample lies in the partial
evaporation and melting of SPTFE and, accordingly, its deep impregnation due to heat
treatment. Table 3 includes R1, R2 and CPE1, CPE2 (n and Q are the exponential coefficient
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and CPE constant, respectively), which describe the resistive and capacitive character of the
abovementioned layer, respectively. Rs is the solution resistance, and χ2 is chi-square value.

According to electrochemical impedance spectroscopy data, thermal treatment of the
sample at 500 ◦C (SC-500 sample) forms an additional barrier layer on the surface. The
impedance modulus at a frequency of 0.1 Hz increased nine times compared to the SC sam-
ple (|Z|f=0.1 Hz = 1.17 × 103 Ω·cm2 for the SC sample and |Z|f=0.1 Hz = 1.05 × 104 Ω·cm2

for the SC-500 sample).
Further modification of the coating using SPTFE treatment increases its protective

properties without changes in the equivalent electrical circuit. This is due to the fixation of
SPTFE at the microdefect sites in the coating (Figure 5, SC-500 and SC-500-FF). Samples
with SC-500-FF and SC-FF coating have comparable values of the impedance modulus
at the lowest frequency, |Z|f=0.1 Hz, namely 5.33 × 104 Ω·cm2 and 4.25 × 104 Ω·cm2,
respectively, which indicates similar characteristics of the protective properties of these
layers and a higher corrosion resistance of the SC-FF coating as compared to the SC-500
(|Z|f=0.1 Hz = 1.05 × 104 Ω·cm2). Further heat treatment of the sample SC-500-FF at 350 ◦C
(SC-500-FF-350) improves the protective properties of the resulting coating, due to the
SPTFE partial melting and penetration to the inner part of surface layer that provides the
closing defects with polymer (|Z|f=0.1 Hz = 8.49 × 104 Ω·cm2). Deposition of SPTFE on
bare steel by cold spray showed lower impedance modulus at a frequency of 0.1 Hz than
on steel with copper-zinc coating (|Z|f=0.1 Hz = 3.41 × 103 Ω·cm2 for the S-FCS sample and
|Z|f=0.1 Hz =8.14 × 103 Ω·cm2 for the SC-FCS sample). The impedance modulus measured
at 0.1 Hz for all coatings, depending on the St3 surface treatment, is shown in Figure 10.
The analysis of the calculated parameters of the EEC elements showed the changes in the
surface morphology (changing the thickness and integrity of the protective layer according
to Q1 and Q2 evolution) and the resistance of the formed coatings due to the cold spray,
oxide layer formation, and polymer treatment (Table 3).

Materials 2022, 15, x FOR PEER REVIEW 13 of 22 
 

 

Table 3. Calculated EEC element parameters for samples with different coatings. 

Sample Rs (Ω cm2) 
CPE1 

R1 (Ω cm2) 
CPE2 

R2 (Ω cm2) χ2 
Q1 (S cm2 sn) n Q2 (S cm2 sn) n 

S 33 8.4 × 10−4 0.78 1.4 × 103    4.1 × 10−4 
SC 28 4.8 × 10−3 0.56 5.4 × 102    1.0 × 10−3 

SC-500 29 9.9 × 10−6 0.84 3.8 × 103 1.1 × 10−4 0.38 1.4 × 104 1.1 × 10−3 
SC-500-FF 31 2.1 × 10−6 0.63 1.2 × 103 2.0 × 10−5 0.43 6.5 × 104 7.2 × 10−4 

SC-500-FF-350 32 1.9 × 10−7 0.82 4.1 × 105 4.8 × 10−6 0.35 7.1 × 105 3.6 × 10−4 
SC-FF 30 5.3 × 10−8 0.87 2.1 × 103 1.4 × 10−5 0.34 4.9 × 104 1.0 × 10−3 

SC-FCS 30 2.3 × 10−6 0.72 1.5 × 103 1.7 × 10−4 0.33 1.0 × 104 1.0 × 10−3 
S-FCS 33 6.3 × 10−5 0.44 1.5 × 103 2.3 × 10−4 0.84 2.1 × 103 5.6 × 10−4 

According to electrochemical impedance spectroscopy data, thermal treatment of the 
sample at 500 °C (SC-500 sample) forms an additional barrier layer on the surface. The 
impedance modulus at a frequency of 0.1 Hz increased nine times compared to the SC 
sample (|Z|f=0.1 Hz = 1.17 × 103 Ω∙cm2 for the SC sample and |Z|f=0.1 Hz = 1.05 × 104 Ω∙cm2 for 
the SC-500 sample).  

Further modification of the coating using SPTFE treatment increases its protective 
properties without changes in the equivalent electrical circuit. This is due to the fixation 
of SPTFE at the microdefect sites in the coating (Figure 5, SC-500 and SC-500-FF). Samples 
with SC-500-FF and SC-FF coating have comparable values of the impedance modulus at 
the lowest frequency, |Z|f=0.1 Hz, namely 5.33 × 104 Ω∙cm2 and 4.25 × 104 Ω∙cm2, respectively, 
which indicates similar characteristics of the protective properties of these layers and a 
higher corrosion resistance of the SC-FF coating as compared to the SC-500 (|Z|f=0.1 Hz = 
1.05 × 104 Ω∙cm2). Further heat treatment of the sample SC-500-FF at 350 °C (SC-500-FF-
350) improves the protective properties of the resulting coating, due to the SPTFE partial 
melting and penetration to the inner part of surface layer that provides the closing defects 
with polymer (|Z|f=0.1 Hz = 8.49 × 104 Ω∙cm2). Deposition of SPTFE on bare steel by cold 
spray showed lower impedance modulus at a frequency of 0.1 Hz than on steel with cop-
per-zinc coating (|Z|f=0.1 Hz = 3.41 × 103 Ω∙cm2 for the S-FCS sample and |Z|f=0.1 Hz =8.14 × 103 
Ω∙cm2 for the SC-FCS sample). The impedance modulus measured at 0.1 Hz for all coat-
ings, depending on the St3 surface treatment, is shown in Figure 10. The analysis of the 
calculated parameters of the EEC elements showed the changes in the surface morphology 
(changing the thickness and integrity of the protective layer according to Q1 and Q2 evo-
lution) and the resistance of the formed coatings due to the cold spray, oxide layer for-
mation, and polymer treatment (Table 3). 

 
Figure 10. Evolution of impedance modulus measured at a frequency of 0.1 Hz for sample with 
different coatings. 
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3.2.2. Potentiodynamic Polarization Measurements

The shift of the corrosion potential to the more negative value for the sample SC as
compared to sample S from −436.8 mV to −946.1 mV (Table 4) was established. This is due
to the presence of zinc in the composition of the coating. Zn, as a more electrochemically
active metal, will play the role of protector and the first of the coating components to
corrode, protecting the substrate material and structure as a whole. Therefore, there is
also a slight decrease in the corrosion current density from 14.2 µA·cm−2 for sample S to
11.5 µA·cm−2 for sample SC (Figure 11). Further surface treatment (thermal action and
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formation of a SPTFE layer) contributes to an increase in the corrosion potential value to
–203.5 mV and a decrease in the corrosion current density down to 0.85 µA·cm−2 (Figure 11a,
SC-500-FF). Thermal treatment of SC-500-FF at 350 ◦C improved the corrosion resistance of
the coating: the corrosion current decreased down to 0.52 µA·cm−2.

Table 4. Calculated Tafel parameters for samples with different coatings.

Sample βa (mV/Decade) −βc (mV/Decade) Ec (mV vs. Ag/AgCl) jc (A cm−2) Rp (Ω cm2)

S 51.3 284.2 −436.9 1.4 × 10−5 6.8 × 103

SC 22.3 264.2 −946.1 1.2 × 10−5 2.5 × 103

SC-500 128.3 327.9 −240.1 3.7 × 10−6 1.3 × 104

SC-500-FF 346.9 211.7 −294.2 8.5 × 10−7 4.1 × 104

SC-500-FF-350 519.2 226.7 −273.1 5.2 × 10−7 9.8 × 104

SC-FF 288.5 218.9 −196.3 4.5 × 10−6 1.2 × 104

SC-FCS 233.5 241.2 −372.3 6.1 × 10−6 6.5 × 103

S-FCS 33.6 239.9 −286.9 1.4 × 10−6 8.0 × 103
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at different types of SPTFE deposition (b).

Cold spray treatment using SPTFE of the base copper-zinc coating and bare steel
changes the corrosion potential to the more noble value and reduces the corrosion current
by an order of magnitude (Figure 11b).

3.3. Tribological Properties

Tribological tests of the investigated samples (Figure 12, Table 5) revealed some
differences in the behavior of coatings obtained by various methods. The moment of the
coating abrasion to the metal is marked with an arrow. Sample S withstood 2.0·102 cycles
until the maximum value of the coefficient of friction was reached (µ = 0.77); the surface was
protected by a natural oxide film. Copper-zinc coating (SC sample) withstood 1.2 × 103

rotation cycles until µ = 0.72. However, after heat treatment, this coating could only
withstand 6.6 × 102 cycles, which was associated with diffusion and chemical processes
occurring in the coating during heat treatment. Treatment using the SPTFE friction method
increased abrasion resistance up to 1.2 × 104 cycles. Post heat treatment decreased the
amount of SPTFE in the coating and, therefore, the number of cycles also decreased down
to 8.7 × 103.
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Table 5. Tribological tests of the specimens with different types of coatings.

Sample Number of Cycles Wear (mm3 N−1 m−1)

S 2.0 × 102 8.3 × 10−4

SC 1.2 × 103 5.4 × 10−4

SC-500 6.6 × 102 6.8 × 10−4

SC-500-FF 1.2 × 104 9.0 × 10−5

SC-500-FF-350 8.7 × 103 2.1 × 10−4

SC-FF 4.4 × 103 9.3 × 10−5

SC-FCS 5.4 × 103 2.9 × 10−4

S-FCS 4.1 × 104 5.1 × 10−5

Samples with the SPTFE layer coated on the surface of copper-zinc using both the
friction method and cold spray method show approximately the same number of cycles
up to coating wear: 4.4 × 103 and 5.4 × 103, respectively. The maximum number of
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rotation cycles withstood by a sample was that of bare steel with SPTFE coated by the cold
spray method.

3.4. Wettability of Coatings

Analysis of the wettability data indicates that all coatings are hydrophobic (Table 6).
However, the hydrophobicity of the specimens is not only a result of the chemical na-
ture of SPTFE. Comparing the contact angles for the SC-FF and SC-FCS samples enables
one to conclude that the developed relief of the surface is a very important factor for
hydrophobicity, since SPTFE coated by friction deposition forms a smooth layer on the
surface, while polymer particles deposited by cold spray remain on the surface in their
original form and provide more convoluted relief. Perhaps, the higher contact angle for
SC-FCS caused the multimodal roughness of this sample (this specimen has the highest
measured value of Ra—arithmetical mean deviation of the profile). The contact angle of
SC-500 is similar to that of S-FCS. However, the microlevel roughness described by the
parameter of Ra cannot completely reveal the reason for the wettability change (Table 6).
The multimodal roughness includes the microscale and nanoscale morphology features
of the surface. Therefore, the evolution of the contact angle is a result of the nanoscale
roughness effect of the investigated surface.

Table 6. Wettability and roughness parameters of the specimens with different types of coatings.

Sample Contact Angle (◦) Ra, µm

S 97.7 0.7
SC 135.9 3.0

SC-500 144.1 1.6
SC-500-FF 118.7 1.5

SC-500-FF-350 140.2 1.7
SC-FF 112.1 2.9

SC-FCS 158.8 3.1
S-FCS 154.2 1.1

3.5. Mechanism of the Protective Effect of the Composite Coating

Protective layer formation using the cold spray technique makes it possible to preserve
the original qualitative composition of the sprayed powder in the coating. The formed CS
coating showed good wear resistance (sample SC, 1.2 × 103 cycles), which was 10 times
higher than unprotected steel (sample S, 2.0 × 102 cycles). Undoubtedly, SPTFE plays a
significant role in the formation of more stable and corrosion-resistant coating (impedance
modulus at a frequency of 0.1 Hz for SC-500-FF-350 |Z|f=0.1 Hz = 8.49 × 104 Ω·cm2, in-
creased by 73 times as compared to SC sample |Z|f=0.1 Hz = 1.17 × 103 Ω·cm2). It was
established that base copper-zinc coating, due to the developed surface, makes it easier
for SPTFE particles to attach to the surface. SPTFE also increases the wear resistance of
protective coating (sample SC-500-FF, 1.2 × 104 cycles).

Despite the good electrochemical properties of some coatings, their wear resistance
indicates the limited application of such coatings. Summarized information regarding the
corrosion properties and wear resistance of the formed coatings is presented in Table 7.
Two of the best coatings are: SC-500-FF-350 (S with cold-sprayed base copper-zinc coating
annealed at 500 ◦C for 1 h with friction treated with SPTFE re-annealed at 350 ◦C for 1 h)
and S-FCS (S with SPTFE applied by cold spray).
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Table 7. Results of various coating tests (where 1—the best, 7—the worst; the smaller the number, the
better protective properties). Estimated parameter for columns: EIS—the impedance modulus at a
frequency of 0.1 Hz, PDP—the corrosion current density, wear—the number of cycles to the coating
wear, wettability—the contact angle, total—summarized score (the smaller the score, the better
protective properties). The samples with the best protective coatings are marked with green color.

Sample EIS PDP Wear Wettability Total

SC 7 7 6 5 25
SC-500 4 4 7 3 18

SC-500-FF 2 2 2 6 12
SC-500-FF-350 1 1 3 4 9

SC-FF 5 5 5 7 22
SC-FCS 6 6 4 1 17
S-FCS 3 3 1 2 9

In accordance with the obtained data, the following scheme (Figure 13) was proposed
for the description of the protective effect of the coating containing SPTFE applied by cold
spray. SPTFE creates a barrier layer that prevents the penetration of water with aggressive
ions to the deeper layers of the coating and to the substrate. In the event of defect formation
on the surface of the coating, zinc will play the role of protector, dissolving first. After the
dissolution of all the zinc, the iron substrate will begin to corrode.
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the cold spray method.

The obtained data promote more efficient use of mild steel by means of the composite
coatings with a new composition formed using the cold spray technique. Moreover, this
study provides information additional to the other works, where only the mechanical
properties of CS coatings were investigated [74–77]. Therefore, the significance of this work
regarding expansion of the practical applications of this structural material in corrosive
media was highlighted.

4. Conclusions

The results obtained in this study enable one to conclude the following:

− The composite fluoropolymer-containing protective coatings were formed on the
surface of St3 low carbon steel using the cold spray method;

− The treatment of the base copper-zinc CS-layer with super-dispersed polytetrafluo-
roethylene increases the corrosion and wear resistance of the material (according to
electrochemical and tribological tests);
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− According to the performed analysis, the best protective properties were registered
for the SC-500-FF-350 sample with cold-sprayed base copper-zinc coating annealed at
500 ◦C for 1 h, friction-treated with SPTFE, and re-annealed at 350 ◦C for 1 h, and the
S-FCS sample with SPTFE applied by cold spray;

− The multi-stage treated coating is not inferior to the one with cold-sprayed SPTFE in
terms of the combination of protective properties;

− The obtained data promote more efficient use of mild steel by means of the composite
coatings with a new composition intended to expand the practical applications of this
structural material in corrosive media.
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