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Abstract: A finite element dynamic model of the sandwich composite plate was developed based
on classical laminate theory and Hamilton’s principle. A 4-node, 7-degree-of-freedom three-layer
plate cell is constructed to simulate the interaction between the substrate, the viscoelastic damping
layer, and the piezoelectric material layer. Among them, the viscoelastic layer is referred to as the
complex constant shear modulus model, and the equivalent Rayleigh damping is introduced to
represent the damping of the substrate. The established dynamics model has too many degrees of
freedom, and the obtained dynamics model has good controllability and observability after adopting
the joint reduced-order method of dynamic condensation in physical space and equilibrium in state
space. The optimal quadratic (LQR) controller is designed for the active control of the sandwich
panel, and the parameters of the controller parameters, the thickness of the viscoelastic layer, and
the optimal covering position of the sandwich panel are optimized through simulation analysis.
The results show that the finite element model established in this paper is still valid under different
boundary conditions and different covering methods, and the model can still accurately and reliably
represent the dynamic characteristics of the original system after using the joint step-down method.
Under different excitation signals and different boundary conditions, the LQR control can effectively
suppress the vibration of the sandwich plate. The optimal cover position of the sandwich plate is
near the solid support end and far from the free-degree end. The parameters of controller parameters
and viscoelastic layer thickness are optimized from several angles, respectively, and a reasonable
optimization scheme can be selected according to the actual requirements.

Keywords: sandwich composites; finite element modeling; model order reduction; LQR controller;
parameter optimization

1. Introduction

With the development of the social economy and the improvement of people’s living
standards, more and more industrial products have come into thousands of households,
especially in recent years. The automotive industry is in the midst of rapid development.
Many car-making enterprises use the MVH performance of the car as the technical highlight.
In the design process will encounter the problem of excessive system vibration. The system
structure vibration has become a hot issue in today’s society [1]. Classified from the
control point of view, it can be divided into passive control, active control, and integrated
active-passive control. For example, damping coatings, foam materials, constrained layer
damping structures, composite damping structures, and ABA thermal wall liners. All
belong to passive control methods [2], and Figure 1 shows a typical constrained damping
sandwich panel structure. The mechanical energy generated by the structure is mainly
transformed into strain energy and finally dissipated in the form of thermal energy through
the damping layer in the middle [3]. This approach has the advantages of simple design,
stable operation, and low cost, and it can effectively control the high-frequency vibration of
the system. However, the shortcomings of this approach are that the damping provided is
fixed, the control band is narrow, it lacks flexibility, and the control effect is limited in the
low-frequency range [4]. The emergence of active control compensates for this deficiency
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by using smart materials such as piezoelectric ceramics as piezoelectric layers pasted
on the surface, which can achieve the mutual conversion of electrical and kinetic energy
through the piezoelectric effect, effectively achieving control of low-frequency vibrations [5].
However, the shortcomings of this approach are limited damping characteristics, high
cost, major system failure when the controller fails, low stability, and limited effect on
vibrations in the high-frequency range [6]. Therefore, integrated active and passive control
can combine the advantages of the first two control methods, and the disadvantages
compensate for each other [7]. Figure 2 shows a typical active restrained damping sandwich
panel structure, which combines passive damping and active control [8].and differs from
Figure 1 by replacing the uppermost restrained layer with a piezoelectric material layer. By
applying piezoelectric forces to the structure through the piezoelectric ceramic material,
the system can be effectively controlled in the low-frequency range, and the damping
in the middle can further reduce the cost and improve the stability of the system. This
approach is characterized by a simple structure, fast response, small additional mass, and
wide controllable frequency domain [9].
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Establishing a mathematical model of the structure is the premise of research control.
At present, common methods include the analytical method, numerical method, and
experimental method. Analytical methods can be used to establish the dynamic equation
of a simple structure, including geometry, material, and other parameters. In the face of a
complex structure, a higher-order differential equation will be generated. Generally, the
Galerkin method or mode method is needed to solve the equation approximately. There
are many shortcomings in practical application [10]. The numerical method can solve
some complex sandwich structure models. Common numerical methods include the Ritz
method, Galerkin method, Finite Element Method (FEM), and Spectral Finite Element
Method (SFEM). The Ritz method and Galerkin method are very dependent on the choice
of basis functions and are not suitable for complex boundary conditions. When the SFEM
method is applied to a complex sandwich composite structure, the characteristic equation
is complicated, the order is too high, and the parameters are unknown, so it is quite difficult
to obtain the dynamic shape function [11]. The finite element method (FEM) is a well-
known and highly effective technique for the computation of approximate solutions to
complex and boundary value problems. Among the approximate solution methods, the
FEM follows a systematic way by dividing the system into parts to solve complex problems.
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It gives the opportunity to easily take into account the support conditions, the continuous
and sudden changes of external effects, and irregular geometries. The FEM method is
very suitable for the modeling of the sandwich composite plate structure in this paper.
The experimental method is used to verify the accuracy of the above two methods and
is generally not used separately in engineering modeling [12]. On the other hand, the
modeling characteristics of viscoelastic materials (VEM) should also be considered when
using FEM sandwich composite panels for modeling, among which the common models
are: the complex constant shear modulus model, ADF model, and GHM model. The degree
of freedom of the mathematical model obtained through FEM modeling is too large for
the subsequent active control work, so the model needs to be downscaled, and different
downscaling methods have been proposed by domestic and foreign scholars, mainly used
in conjunction with the two disciplines of finite element analysis and control theory. The
common methods can be divided into two categories: step-down in physical space and step-
down in state space. For sandwich composite plate structures, common control methods
include proportional-integral differential (PID) control, linear quadratic optimal control,
independent modal space control, robust control, etc. Baz [13] used the spectral transfer
matrix method (STMM) and the spectral finite element method (SFEM) to model the ACLD
sandwich beam, respectively, solved the exact solutions of the two methods, and discussed
their advantages and disadvantages. Liao [14] established the model of EACLD beam
structure by the Ritz method, characterized viscoelastic materials by the GHM model,
and obtained discrete equations by the Galerkin method. The boundary conditions are
simply supported at both ends. Shen [15] studied the control effect of the first and second
bending vibration modes of ACLD sandwich plates using the Galerkin method. Huang [16]
obtained the constrained damped sandwich plate dynamics equations based on first-order
shear deformation and Hamilton’s principle and discussed the effects of layer thickness and
loss factor of viscoelastic material on the inherent characteristics of the system. Zhang [17]
developed an active control model for the stern bearing structure and designed an adaptive
controller using the FXLMS algorithm. Huang and Mao [18] investigated the optimal
coverage position of the piezoelectric sheet for the piezoelectric smart sandwich plate
and the intelligent control using velocity feedback control. Cao [19] used classical plate
theory to derive the control equations for a dual piezoelectric composite damping plate and
compared the intrinsic characteristics and displacement parameters of the system with and
without the control voltage.LI [20] established an ACLD cantilever beam dynamics model
by experimental method and used different excitation signals to verify the reasonableness
of the model. Because of the hysteresis effect of the viscoelastic layer, the obtained phase
values were small. Lu [21] et al. established the dynamics equations of mechanically
constrained layer-damped thin plate structure by invoking the ADF damping model
and the GHM damping model Cao Y Q [22] designed a controller using optimal control
theory and adaptive feedforward filtering algorithm to perform theoretical simulation
analysis of the SCLD sandwich plate structure. Zhang [23] designed a feedback LQG and
feedforward FXLMS-based adaptive control composite controller to investigate the ACLD
plate structure to simulate and analyze the vibration problem and compare the performance
of the composite controller. Zheng [24] et al. used proportional differential (PD) control for
closed-loop vibration control of ACLD plate and cylindrical shell.

It can be seen through the literature that there are more studies on composite sandwich
structures, but there are also some shortcomings: (1) the problem of accuracy of composite
sandwich panel modeling, whether it can adapt to the actual application scenario, and
whether it can remain stable under different boundary conditions and different covering
methods. The dimensionality of the model is too large, leading to the inconvenient design
of the controller. (2) For the problem of parameter selection of the controller, the problem
of optimizing the structural parameters of the sandwich panel, for example, the problem
of the best-covering position of the sandwich panel when the system adopts the local
covering method. To address the above deficiencies, this paper adopts the finite element
method to mathematically model the sandwich composite panel structure; the complex
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constant shear modulus model is used to characterize the VEM material properties; the
Rayleigh damping is used to express the base layer properties to derive the system dynamics
equations. The controllable system is established by the joint reduced-order method of
dynamic condensation in physical space and internal equilibrium in state space. The
LQR controller is used to control the vibration of the sandwich panel, and the selection
scheme of the controller parameters, the optimal covering position of the sandwich panel
unit, and the optimization scheme of the viscoelastic layer thickness are derived through
simulation analysis.

2. Finite Element Method Modeling

The sandwich panel is divided into several small cells, as shown in Figure 3. Each cell
has four nodes, and each node has 7 degrees of freedom, respectively, x- and y-directional
displacements in the piezoelectric material plane, x- and y-directional displacements in the
neutral plane of the substrate, transverse displacements along the z-direction of the overall
structure of the cell, and the unit’s turning angle around the x- and y-axis directions, which
are expressed as vc, vc, up, vp, w, θx, θy so a rectangular cell has 28 degrees of freedom. The
modeling using the finite element method satisfies the seven assumptions mentioned in
the literature [25,26].
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2.1. Unit Deformation and Motion Relationship

According to the assumptions and the analysis of unit degrees of freedom, Figure 4
shows the coupled geometric deformation relationship of the sandwich composite plate
unit, the displacement of the viscoelastic material layer in the x-axis direction and y-axis
direction are as follows [2,27]:

uv =
1
2
[(uc + up) +

hc − hp

2
∂w

∂x
], vv =

1
2
[(vc + vp) +

hc − hp

2
∂w

∂x
] (1)

The shear strain resulting from the rotation of the viscoelastic layer in the x- and y-axis
directions is:

βx =
uc − up

hv
+

d
hv

∂w

∂x
, βy =

vc − vp

hv
+

d
hv

∂w

∂x
(2)

where uc, uv, up are the displacements of the neutral surfaces of the piezoelectric material
layer, the viscoelastic layer, and the substrate layer in the x-direction, respectively, and the
displacements of the neutral surfaces of the piezoelectric material layer, the viscoelastic
layer and the substrate layer in the y-direction, respectively, and the thicknesses of the
piezoelectric material layer, the viscoelastic layer, and the substrate layer, respectively [28].
Where d =

hc+hp
2 + hv.
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2.2. Unit Displacement Patterns and Form Functions

As shown in Figure 3, the composite plate unit is rectangular in shape, the dimensional
length is 2a× 2b, each unit has 4 nodes (A, B, C, D), and each node has 7 degrees of freedom,
assuming that the displacement vector of the node degrees of freedom is [25,29]:

{∆i} =
[
uci vci upi vpi wi θxi θyi

]T (3)

The displacement vector of the composite sandwich plates unit can be obtained as:

{Ue} =
{

∆1 ∆2 ∆3 ∆4
}T (4)

According to the nodal displacement pattern:

uc = a1 + a2x + a3y + a4xy, vc = a5 + a6x + a7y + a8xy
up = a9 + a10x + a11y + a12xy, vp = a13 + a14x + a15y + a16xy

w = a17 + a18x + a19y + a20x2 + a21xy + a22y2 + a23x3 + a24x2y + a25xy2 + a26y3 + a27x3y + a28xy3

θx = ∂w
∂x

; θy = − ∂w
∂y

(5)

where a1, a2, . . . . a28 are determined by the 28 degrees of freedom displacement vectors of
the four nodes of the unit. Therefore, the displacement position of any point within the
composite sandwich plates unit can be derived from the interpolation of the displacement
vector of the unit nodes as follows:

∆ = [uc vc up vp w θx θy]
T
= NUe (6)

where: N = [N1 N2 N3 N4 N5 N6 N7]
T respectively correspond to the spatial

interpolation vectors (shape functions) of uc vc up vp w θx θy. Substitute the
shape function matrix obtained above into Equations (1) and (2), and the shape function
matrix of the viscoelastic layer can be obtained as follows:

N8 =
1
2
[(N1 + N3) +

hc − hp

2
(−N7)], N9 =

1
2
[(N2 + N4) +

hc − hp

2
(N6)] (7)

The shape function matrix of the shear strain of the viscoelastic layer is:

N10 =
1
hv

[(N1 − N3)− (
hc + hp + 2hv

2
)(N7)], N11 =

1
hv

[(N2 − N4)− (
hc + hp + 2hv

2
)(N6)] (8)
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2.3. Finite Element Dynamics Equations

According to the classical thin plate theory, the kinetic energy, potential energy, and
piezoelectric strain of each layer of the sandwich composite plate are derived by using the
energy method and the principle of virtual work so that the mass matrix, stiffness matrix,
and piezoelectric force matrix between each layer can be derived. The mass matrix of each
layer of the sandwich plate unit is written directly [30,31].

The piezoelectric layer mass matrix is:

M(e)
c = pchc

2a∫
0

2b∫
0

(NT
1 N1 + NT

2 N2 + NT
5 N5)dxdy (9)

The viscoelastic layer mass matrix is:

M(e)
v = pvhv

2a∫
0

2b∫
0

(NT
8 N8 + NT

9 N9 + NT
5 N5)dxdy (10)

The Base layer quality matrix is

M(e)
p = pphp

2a∫
0

2b∫
0

(NT
3 N3 + NT

4 N4 + NT
5 N5)dxdy (11)

where pc, pv, pp are the densities of the piezoelectric layer, viscoelastic layer, and Base layer,
respectively. Then the sandwich composite panel structural unit mass matrix is:

M(e) = M(e)
c + M(e)

v + M(e)
p (12)

Write the stiffness matrix of each layer of the sandwich composite plates unit directly.
The piezoelectric layer stiffness matrix is:

k(e)c = hc

∫ 2a

0

∫ 2b

0
BT

c DcBcdxdy +
hc

12

∫ 2a

0

∫ 2b

0
BT DcBdxdy (13)

The viscoelastic layer stiffness matrix is:

k(e)v = hv

∫ 2a

0

∫ 2b

0
BT

v DvBvdxdy +
hv

12

∫ 2a

0

∫ 2b

0
BT DvBdxdy (14)

The shear stiffness matrix of the viscoelastic layer is:

k(e)βv = Ghv

∫ 2a

0

∫ 2b

0
NT

10N10 + NT
11N11dxdy (15)

The Base layer stiffness matrix is:

k(e)p = hp

∫ 2a

0

∫ 2b

0
BT

p DpBpdxdy +
hp

12

∫ 2a

0

∫ 2b

0
BT DpBdxdy (16)

where:

B = [N5, xx; N5yy; 2N5, xy], Bc = [N1, x; N2, y; N2, x + N1, y], Bv = [N8, x; N9, y; N8, x + N9, y],

Bp = [N3, x; N4, y; N3, x + N4, y], Di =
Ei

1−µ2
i

 1 µi 0
µi 1 0
0 0 1−µi

2
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Bi in ‘,’ denotes the derivative,

i = c, v, p.

where: Ec, Ev, Ep are Young’s modulus of the piezoelectric layer, viscoelastic layer, and sub-
strate layer, respectively, µc,µv,µp are Poisson’s ratio of the piezoelectric layer, viscoelastic
layer, and Base layer, respectively. The stiffness matrix of the sandwich panel structural
unit is:

Ke = Ke
c + Ke

v + Ke
p + k(e)βv (17)

The active control piezoelectricity matrix is:

F(e)
c =

1
2

Vc(t)
2a∫

0

2b∫
0

BT
c Dc[d11 d22 0]

T
dxdy +

1
4

hcVc(t)
2a∫

0

2b∫
0

BT Dc[d11 d22 0]
T

dxdy (18)

where: Ve
c is the value of applied voltage along the thickness direction of the piezoelectric

layer, d11 and d22 are the piezoelectric constants.
The viscoelastic damping material is modeled with a complex constant shear modulus,

so that G can be expressed as [32–34]:

G = GV(1 + ηi) (19)

Considering that the Base has elastic damping, the proportional damping is used and
expressed as:

D = aMp + bKp (20)

Using Hamilton’s principle, the kinetic equation of the sandwich composite plates
unit can be derived as:

Me
..
X

e
+ De

.
X

e
+ KeXe = Fe

d + Fe
c (21)

The total dynamic equation of the sandwich composite panel structure can be obtained
by the conventional set of unit matrices and the introduction of boundary conditions as

M
..
X + D

.
X + KX = Fd + Fc (22)

where: M, D, K is the total mass matrix, damping matrix, and stiffness matrix; Fd and Fd are
the external excitation matrix and piezoelectric force matrix.

3. Model Downgrading

In order to facilitate the applicability of this model to various controller designs, this
paper adopts a joint downscaling method of dynamical condensation in physical space and
equilibrium in state space. The resulting system has greatly reduced degrees of freedom
and is well-controllable and observable [30,31,35].

3.1. Dynamical Condensation in Physical Space

Rewrite Equation (22) in the following chunked matrix form:[
Mmm Mms
Msm Mss

][ ..
Xm..
Xs

]
+

[
Dmm Dms
Dsm Dss

][ .
Xm.
Xs

]
+

[
Kmm Kms
Ksm Kss

][
Xm
Xs

]
=

[
Fcm
Fcs

]
(23)

The subscripts m and s in the formula denote the primary and secondary degrees
of freedom of the system, respectively. The dynamical condensation matrix between
the primary and secondary degrees of freedom of the structure is:R = K−1

ss [(Msm +
MssR)M−1

R KR − Ksm], After (N) iterations the dynamical condensation matrix is:
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RN+1 = K−1
ss [(Msm + MssRN)

(
MN

R
)−1KN

R − Ksm], where the initial value of R is: R0 =
K−1

ss Ksm. Similar to R, the final condensation matrices MR, DR, KR can be obtained by
iterating:

MN
R = Mmm + (RN)

T Msm + (RN)
T MssRN + MmsRN , DN

R = Dmm + (RN)
T Dsm + (RN)

T DssRN + DmsRN .
KN

R = Kmm + (RN)
TKsm + (RN)

TKssRN + KmsRN ,FN
CR = Fcm + (RN)

T Fcs.

In this paper, the X- and Y-directional displacements within the piezoelectric layer and
Base level and the z-directional displacement of the structure in the sandwich composite
plate structure are selected as the primary degrees of freedom, and the rest are selected as
the second degrees of freedom. The final kinetic equations after the reduced order is:

MN
R

..
Xm + DN

R
.

Xm + KN
R Xm = FN

CR (24)

3.2. Equilibrium Descending Order in State Space

Rewriting Equation (24) into the equation of state in state space is:{
x = A

.
x + Bu

y = Cx + Du
(25)

where A, B, and C are denoted as the state matrix, input matrix, and input matrix of the system,
respectively. The controllability Grammian matrix of the system is: Wc =

∫ ∞
0 eAτ

T BT BeAτ , The
Grammian matrix of system observability is: Wo =

∫ ∞
0 eAτ

TCTCeAτdτ.
In the above equation, when the controllability WC matrix of the system is full rank, it

means that the system is controllable; when the observability matrix WO of the system is full
rank, it means that the system is observable. Define a non-singular transformation matrix
H and perform the equilibrium transformation: x = Hx and substitute this transformation
into Equation (25) to obtain the new controllability and observability matrices as:

Wc = HWcH−1, Wo = HWo H−1 (26)

When an appropriate similar transformation matrix H is chosen,
Wc = Wo = diag(g1, g2 · · · g2n), such that an internal equilibrium change is achieved.
At this point g has been sorted from large to small, and g indicates the observable and
controllable index of the system modality. Therefore, the smaller weakly controllable and
weakly observable values are removed so that the model can be downgraded, and the
following is the downgrading process. The state variable of the new system after the
transformation is expressed as: x=[xr xd]

T , xr is the retained quantity and xd is the deleted
quantity, at which point the state equation of the system is:[ .

xr.
xd

]
=

[
Arr Adr
Ard Adr

][
xr
xd

]
+

[
Br
Bd

]
u, y = [CrCd]

[
xr
xd

]
+ Du (27)

Let xd = 0, that is, remove the state variables, then the new equation of state after the
equilibrium step-down can be obtained as:{ .

xr = Arrxr + Bru
y = Crxr + Du

(28)

Equation (28) further reduces the model freedom dimension compared with Equation
(25), and the model system is guaranteed to be observable and controllable.

4. Model Validation and Case Analysis

This section verifies the accuracy of the finite element model of the composite sandwich
panel before and after the joint step-down, respectively. The optimum covering position of
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the piezoelectric sheet under different boundary conditions is derived from the arithmetic
analysis, which provides a theoretical basis for the subsequent cell covering method during
vibration control of the sandwich composite plates. The geometric and material parameters
of each layer are as follows [21,36,37]:

Piezoelectric layer: pc = 7450 kg/m3, Ec = 74.5 GPa,µc = 0.32, viscoelastic layer:
pV = 789 kg/m3,µV = 0.3, Ev = (2(1 + uv))Gv.

GV = 0.01(1 + 0.8i) Mpa; Base layer: pp = 2800 kg/m3, Ep = 70 GPa,µp = 0.3, Size
of the substrate: 0.20 m in full length and 0.10 m in width. hc = 0.3 mm, hv = 0.8 mm, hp =
1 mm. Piezoelectric constant: d11 = d22 = 2.8e− 9.

To verify the correctness of the finite element modeling method derived in this paper,
the MATLAB programming of the equations derived in the paper was used to derive
the numerical solutions and the results of the large-scale finite element analysis software
ANSYS for comparison, and the model accuracy was further verified with the help of
references and modal experimental results. As shown in Table 1, the inherent frequencies of
the base plate were calculated under three boundary conditions. The boundary conditions
of the four sides of the plate are represented by letters, and their meanings are C-fixed
support and F-free. CFFF means that one side is fixed, and the other three sides are free:
CFCF means that two opposite edges are fixed, and the other two edges are free. The size of
the numerical solution of the intrinsic frequency derived from MATLAB software is similar
to the ANSYS finite element results, as well as literature comparisons and experimental re-
sults, with the maximum error controlled within 5%. By changing the boundary conditions,
the exact solution can still be calculated by the method in this paper.

Table 1. Comparison of Natural Frequencies of base under Different Boundary Conditions.

Mode CFFF CFCF CCCC

(HZ) MATLAB ANSYS [21] Test MATLAB ANSYS Test MATLAB ANSYS Test Error

1 20.704 20.5635 20.446 20.312 134.55 132.4372 131.571 572.73 569.21 587.02 0.5%
2 89.305 87.1448 88.778 88.753 216.79 209.4320 210.242 704.08 691.26 698.61 1.2%
3 130.77 125.620 126.54 127.52 373.48 362.7831 368.721 1029.5 1010.53 1021.4 2.0%
4 291.06 281.926 283.41 284.25 491.15 479.9264 482.414 1571.3 1534.64 1565.7 3.2%
5 368.78 354.211 357.14 358.24 634.85 621.2412 628.457 2310.2 2284.41 2301.8 4.4%

As shown in Figure 5, the base layer is discrete into eight units with 15 nodes in total.
(1–8) represents unit location, and (1–15) represents nodes location. The sandwich plate
units are covered sequentially to derive the law of variation of the inherent characteristics
of the system [38,39]. Thus, the optimal covering position of the piezoelectric sheet under
different boundary conditions is found. As shown in Table 2, when the boundary condition
is CFFF: the inherent frequency of the structure decreases gradually when the covered units
increase, and the trend of decrease is faster and faster, and the frequency decrease is most
obvious when the covered unit is (7.8). Therefore, when the boundary condition is CFFF,
the best position of the piezoelectric sheet is the solid support end of the (1.2) cell, and
the free end of the (7.8) cell should be avoided. When the boundary condition is CFCF:
when covering the unit increases, the inherent frequency of the system gradually decreases,
and the change of the inherent characteristics of the system is more obvious in the middle
position (3–6 units), and the change of the decrease is smaller when covering (1.2.7.8 units).
Therefore, when the boundary condition is CFCF, the best position of the piezoelectric sheet
is the solid support end of (cell 1.2.7.8), and it avoids covering the middle position.
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Table 2. Natural Frequencies of Sandwich plate Element Covered in Order under Two Boundary
Conditions.

Mode Not Covered Cover 1–2 Units Cover 1–4 Units Cover 1–6 Units Cover 1–8 Units

(HZ) CFFF CFCF CFFF CFCF CFFF CFCF CFFF CFCF CFFF CFCF

1 20.704 134.55 20.912 132.04 20.620 109.82 18.676 96.811 15.229 96.135
2 89.305 216.79 89.361 211.86 84.974 176.44 74.891 156.46 64.773 155.11
3 130.77 373.48 128.58 344.70 110.05 318.16 104.31 277.80 93.775 266.59
4 291.06 491.15 280.54 450.47 239.99 419.02 235.78 365.94 208.01 350.58
5 368.78 634.85 340.74 610.48 313.75 504.63 284.07 459.06 263.43 453.34

In order to verify the accuracy of the model after the joint downscaling method,
the dynamic characteristics of the system before and after the downscaling process are
compared, on the one hand, to analyze and compare the time-domain characteristics of the
model before and after the downscaling, and on the other hand, to compare the frequency-
domain characteristics of the model. As shown in Figure 6, it can be seen that the frequency
response curve in the low-frequency mode range after the joint downscaling of the original
system is basically the same as the frequency domain response curve of the original model.
As shown in Figure 7, the time domain response of the original system under the impulse
excitation after the two downscaling and the time domain response curve fitting degree
shows that the time domain impact on the system after the two downscaling is small. As
shown in Table 3, both the WC and WO matrices of the system are not full rank before the
step-down, and the system is uncontrollable and uncontrollable, and after the step-down by
equilibrium in the state space, both the WC and WO matrices are full rank, and the system
reaches controllable and controllable. In summary, the proposed step-down approach in
this paper is effective and not only reduces the system’s degrees of freedom significantly
but also, the final system is considerable and controllable, which provides favorable help
for the design of active controllers.
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Table 3. Judgment indexes of controllability and observability before and after model reduction.

Size (WC) Rank (WC) Size (WO) Rank (WO)

Full model 168 72 168 81
Dynamic condensation 92 46 92 51

State-space 10 10 10 10
Note: Size () represents the matrix dimension, Rank () represents the rank of the matrix, WC represents the
controllability matrix, and WO represents the observability matrix.

5. LQR Control and Simulation Analysis

When using LQR control, the reduced-order state-space equations of the system should
be obtained, as in Equation (28) [40,41]. Design the optimal feedback controller such that
the objective function J is minimized as:

J =
∫ ∞

0

(
xT

r Qxr + uT Ru
)

dt (29)
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where Q and R are the output vector weighting matrix, the control vector weighting
matrix, and u is the control voltage of the system, respectively. u = −kxr, k = R−1Br

T P,
P satisfies the Riccati equation: PArr + Arr

T p− pBrR−1Br
T p + Cr

TQCr = 0 [42,43]. The
corresponding closed-loop system equation of state is:

.
x = (Arr − BrK)xr + Bru (30)

5.1. Simulation of Vibration Control of Sandwich Composite Plates

In order to verify that the reduced-order model can be applied to the LQR controller,
three signal excitations are used under the boundary conditions of CFFF and CFCF, respec-
tively; namely, impulse excitation, band-limited white noise signal, and sinusoidal periodic
signal. The sinusoidal period signal is determined by the first, second order intrinsic
frequency value of the system. The control effect is judged by comparing the response
curves in the time domain before and after the control.

As shown in Figure 8a,b: under the pulse signal excitation, the amplitude of the CFFF
sandwich plate is reduced by about 62% before and after the application of the control
voltage, and the convergence time is shortened from 1.8 s to about 0.6 s. The amplitude of
the CFCF sandwich plate is reduced by about 68% before and after the application of the
control voltage, and the convergence time is shortened from 3.4 s to about 0.5 s. As shown
in Figure 8c,d: Under the excitation of the band-limited white noise signal, the RMS value
of the displacement of the CFFF sandwich plate before and after the application of the
control voltage is reduced by about 65%, and the maximum displacement is reduced from
1.5 mm to 0.5 mm. the RMS value of the displacement of the CFCF sandwich plate before,
and after the application of the control voltage is reduced by about 73%, and the maximum
displacement is reduced from 0.37 mm to 0.25 mm. as shown in Figure 8e,f The RMS value
of the amplitude of the CFFF sandwich panel before, and after the application of the control
voltage is reduced by about 49%, and the maximum displacement is reduced from 1.48 ×
10−4 m to 0.51 × 10−4 m under the excitation of the sinusoidal periodic signal. The RMS
value of the amplitude of the CFCF sandwich panel before and after the application of the
control voltage is reduced by about 68%, and the maximum displacement is reduced from
1.42 × 10−3 m to 0.43 × 10−3 m. In summary, the LQR controller designed in this section
can effectively control the composite sandwich plate structure, and it can maintain a stable
and effective control effect under different boundary conditions and different excitation
signals. The simulation basis is provided for the optimization of the controller parameters
and the optimization of the parameters of the sandwich composite panels structure in the
next section.

5.2. Controller Parameter Optimization

The fundamental point of the optimal controller design is to solve the Riccati equation,
and the determination of the control gain matrix k is essentially the objective function J
to reach the minimum. The values of Q and R weighting matrices in the equation have a
great influence on the control effect of the structure, and it is worth studying and exploring
how to determine the size and form of the Q and R matrices in the optimal controller.
In this section, the form of the Q and R matrices is set as follows: Q is the diagonal
matrix, and the optimal values of the Q and R matrices need to be derived by continuous
trial and simulation, where are the coefficients of the matrices and I is the unit matrix.
Simulation analysis is performed by changing the coefficients of the weighted matrix when
the coefficients of the Q matrix change, R = I0. When the coefficients of the R matrix change,
the coefficients of the Q matrix are 1 × 104.
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Figure 8. System control before and after response diagram. (a) CFFF Plate Response under Pulse
Excitation; (b) CFCF Plate Response under Pulse Excitation; (c) CFFF plate response under band-
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under sinusoidal period signal; (f) CFCF plate response under sinusoidal period signal.
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As shown in Figure 9, the maximum displacement is about 7.9 × 10−4 m with the
LQR control with a Q matrix factor of 1 × 103, the vibration convergence time is about 15 s,
and the required maximum control voltage is about 0.3 V. The maximum displacement is
about 7.78 × 10−4 m with the LQR control with a Q matrix factor of 1 × 104, the vibration
convergence time is about 9 s, and the required maximum control voltage is about 0.8 V.
The maximum displacement is about 7.64 × 10−4 m with the LQR control with a Q matrix
factor of 1 × 105, and the required maximum control voltage is about 2.5 s. The maximum
displacement is about 7.64× 10−4 m, the vibration convergence time is about 2.5 s, and the
required maximum control voltage is about 2.3 V. The maximum displacement is about
6.62 × 10−4 m, the vibration convergence time is about 0.7 s, and the required maximum
control voltage is about 8 V under LQR control with a Q matrix factor of 1× 106. As shown
in Figure 10, the maximum displacement is about 1.08 × 10−3 m with LQR control of R
matrix factor 100, the vibration convergence time is about 2.5 s, and the required maximum
control voltage is about 0.6 V. The maximum displacement is about 1.06 × 10−3 m with
LQR control of R matrix factor 10, the vibration convergence time is about 2 s, and the
required maximum control voltage is about 2.1 V. The maximum displacement is about
0.87 × 10−3 m, the vibration convergence time is about 1.4 s, and the required maximum
control voltage is about 6.5 V. The maximum displacement is about 0.72 × 10−3 m, the
vibration convergence time is about 0.4 s, and the required maximum control voltage is
about 14 V under LQR control with an R matrix coefficient of 0.1.
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In summary, the following conclusions can be found: (1) When the Q matrix coefficient
increases, the amplitude convergence time of the system is greatly reduced, the required
voltage value also increases, and the control effect is enhanced. (2) When the R matrix
coefficient decreases, the amplitude convergence time of the system is greatly shortened,
and the required voltage value also increases, which enhances the control effect. (3)
The effect of changing Q and R matrix coefficients on the reduction of the maximum
displacement of the sandwich composite plate is not strong, but the convergence time
changes more obviously. This is also in line with the characteristics of the LQR controller.
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Changing the parameters of the controller alone is not the best optimization strategy, so it
needs to be optimized from the structure.
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5.3. Sandwich Composite Plates Cover Position Optimization

The optimal covering position of the composite sandwich panel is derived from the
example analysis in Section 3. This section further verifies the conclusion by comparing
the simulation analysis results with the results of the calculation example analysis. The
coverage method in this section is different from the coverage method in the example
analysis, which covers only two units at a time, the first coverage (units 1., 2), the second
coverage (units 3, 4), and the third coverage (units 7, 8). Compare the response curves of
the three coverage methods when the control voltage is not applied, the response curves of
the sandwich laminate when the control voltage is applied, and the graph of the required
voltage versus time.

Figure 11 shows that the maximum amplitude of the system is 0.4 × 10−3 m, and
the convergence time is 1.5 s when covering (1, 2) units without applying control voltage.
When covering (3, 4) units, the maximum amplitude of the system is 1.3 × 10−3 m, and
the convergence time is 1.6 s. When covering (7, 8) units, the maximum amplitude of the
system is 2.6 × 10−3 m, and the convergence time is 1.8 s. Analysis of the data shows that:
(1) When the covering position is different, the vibration amplitude of the system is not
the same, which is because without applying the control voltage, the composite sandwich
panel can suppress the structural vibration by passive control. (2) When the covering
position is up to (1.2) unit, the maximum displacement reduction effect is obvious, but
the convergence time effect is not obvious. Figure 12 shows: When the control voltage is
applied, the system is given an initial displacement, and no excitation signal is applied. The
maximum amplitude of the system is 1.7 × 10−3 m, and the convergence time is 1.4 s when
covering (1, 2) cells. When covering (3, 4) cells, the maximum amplitude of the system is
3.1× 10−3 m, and the convergence time is 1.5 s. When covering (7, 8) cells, the maximum
amplitude of the system is 4.3 × 10−3 m, and the convergence time is 1.8 s. After applying
the control voltage, the parameters of the controller are the same, the amplitude is different
for different coverage positions, and the active control effect is also different. (2) When
covering (1, 2) units, the active control effect of the sandwich composite panel is the best,
and the most important result is that the required voltage is also the least.
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(a) Composite sandwich plates displacement time response; (b) Composite sandwich panel voltage-
time curve.

In summary: (1) The system vibration can be suppressed well by changing the unit
coverage position, especially the maximum amplitude of the system can be reduced, but the
convergence effect is not obvious. (2) For the sandwich composite plate with the boundary
condition of CFFF, the best coverage is near the solid support end (1 and 2) units, and
the conclusion of the simulation analysis is the same as the results of the calculation in
Section 3. The optimal placement of the piezoelectric sheet by the modal vibration and
modal strain energy method in the literature [23] and the position optimization based on
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the modal parametric number in the literature [15] are consistent with the results of the
method in this paper.

5.4. Optimization of Viscoelastic Material Layer Parameters

The sandwich composite plate has active and passive integrated control functions.
When the active controller fails, the passive control will play a role. Among them, the
viscoelastic material layer plays a decisive role in the sandwich panel, and the parameters of
the damping material determine the effect of passive control. In this section, the thickness
of the viscoelastic material layer is investigated to compare the response curves when the
control voltage is not applied at different thicknesses. And the response curves when the
control voltage is applied at different thicknesses.

Figure 13 shows that when the control voltage is not applied, and the pulse excitation
signal is applied to the system, the damping layer can convert the kinetic energy into
thermal energy to achieve passive control, and when the thickness of the damping layer
increases, the vibration of the system can be effectively suppressed. The advantages and
disadvantages of passive control by simply changing the thickness of the damping layer
are as follows: the average amplitude value is reduced significantly, the system has a
good suppression effect in the high-frequency vibration region, and the control cost is low.
Disadvantages: from the point of view of convergence is not good. The system has been in
a low-frequency vibration state. The control effect is limited, and increasing the thickness
will lead to an excessive mass of the system. Figure 14 shows: apply a control voltage to the
system, under the pulse signal excitation, the controller Q and R parameters are the same.
At this time, the viscoelastic material layer in different thicknesses of the system response
difference is not significant by changing the thickness of the damping layer way for active
control effect is not obvious. In summary; (1) the stability of the composite sandwich panel
can be enhanced by changing the thickness of the damping layer when the controller fails,
but the effect is not proportional, as can be seen from Figure 13 when the thickness increases
from 0.8 mm to 0.9 mm, the effect is not obvious. (2) The increase of the thickness of the
damping layer does not improve the active control effect of the system, but on the contrary,
the increase of the thickness leads to the overall mass of the structure being too large, so it
is necessary to set the thickness of the damping layer reasonably.
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6. Conclusions

In this paper, the dynamics model of sandwich composite panel structure under three
different boundary conditions is established using the finite element method, where the
covering method contains partially covered sandwich units and fully covered sandwich
units. The accuracy of the model is improved by introducing the complex constant shear
modulus model through the viscoelastic layer and the proportional damping through
the base layer. The model suitable for the LQR controller can be obtained by the joint
order reduction of the dynamic condensation under the physical space and the equilibrium
method in the state space. The parameters of the LQR controller, the parameters of the
viscoelastic material layer, and the optimal covering position of the sandwich panel are
optimally designed by simulation analysis. The study shows that:

(1) The finite element model established in this paper is still valid under different bound-
ary conditions and different covering methods. The introduction of the complex
constant shear modulus damping model and the proportional damping of the base
layer further improves the accuracy of the structural dynamics model. The mathemat-
ical model obtained by the joint reduced order method has low degrees of freedom,
good controllability, and observability. The dynamical characteristics of the reduced-
order model are essentially unchanged in both the time and frequency domains. It
can be directly used for system controller design.

(2) Through simulation, it can be seen that the sandwich composite plates can effectively
suppress the structural vibration with good adaptability under different boundary
conditions and different excitation signals using the LQR controller. And the Q and
R weighting matrix coefficients affect the system control effect, which provides a
theoretical basis for further determining the optimal form and size of the Q and R
matrices to obtain the global optimal control effect and has practical application value.

(3) Through the analysis of calculation and simulation, it can be seen that changing the
unit coverage position can play a good role in suppressing the system vibration,
especially in reducing the maximum amplitude of the system, but the convergence
effect is not obvious. When the boundary condition is CFCF of the composite sandwich
panel, the best coverage of the sandwich panel is near the solid support end (1, 2)
unit. When the boundary condition is CFFF, the best coverage of the sandwich panel
is near the solid support end (1, 2, 7, 8) units.

(4) The thickness of the damping layer affects the stability of the system after the failure of
active control, and an appropriate increase in the thickness of the damping layer can
enhance the passive control effect of the sandwich composite plates. The advantages
of this method are a good suppression effect in the high-frequency vibration region
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and low control cost. The disadvantage is that the control effect is limited, the effect
on the low-frequency region of the system vibration is not obvious, and the one-
sided increase in thickness will lead to the overall mass of the system being too large.
Therefore, the choice needs to be made according to the designer’s needs and the
specific use scenario.
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