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Abstract: There are many possible sources of potential geometrical inaccuracies in each layer of
corrugated board during its manufacture. These include, among others, the processes of wetting
the corrugated layers during profiling, the process of accelerated drying, the gluing process, and
any mechanical impact of the pressure rollers on the cardboard. Work taking into account all the
above effects in numerical modeling is not well described in the literature. Therefore, this article
presents a simple and practical procedure that allows us to easily account for geometric imperfections
in the calculation of the effective stiffness of corrugated board. As a main tool, the numerical
homogenization based on the finite element method (FE) was used here. In the proposed procedure,
a 3D model of a representative volumetric element (RVE) of a corrugated board is first built. The
numerical model can include all kinds of geometrical imperfections and is used to calculate the
equivalent tensile and bending stiffnesses. These imperfections were included in the 3D numerical
model by appropriate modeling of individual layers, taking into account their distorted shape, which
was obtained on the basis of a priori buckling analysis. This paper analyzes different types of buckling
in order to find the most representative one. The proposed procedure is easy to implement and
fully scalable.

Keywords: multilayer corrugated board; numerical homogenization; effective stiffness; geometrical
imperfections; buckling

1. Introduction

Currently, the growing consumption and the increase in the number of individual
shipments make it necessary to ensure the safe storage and transport of goods. At the
same time, more emphasis is placed on ecology, which is why companies quickly began to
abandon plastic, which not only harms the environment, but also has a negative impact
on the reputation of enterprises. For these reasons, corrugated cardboard has begun to
conquer the packaging market. It owes its huge popularity to numerous advantages that
largely meet the needs of today. Cardboard packaging is recyclable, easy to dispose of,
biodegradable, durable under appropriate conditions, and takes up little space before
folding. In addition to the positives for the environment, there are also useful properties
for companies. Corrugated cardboard products can be easily shaped by adding holes,
ventilation holes, or by printing a brand logo on them. It is also possible to create boxes
with perforations, which are often used in the food industry. Such packages are opened
by tearing off a part of the material along the previously designed perforations, and then
immediately put on the shelf. Such a procedure allows for significant time savings, which
brings profits for large companies.

In addition to all the above-mentioned advantages, packaging should, above all, effec-
tively protect the goods. For this reason, the load-bearing capacity of packaging has been
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studied by scientists since the 1950s. The first methods were analytical methods determined
for boxes with a rectangular base. In 1952, Kellicutt and Landt introduced an approach
based on box perimeter, overall ring crush strength, and paper and box constants [1]. Four
years later, Maltenfort presented the box compressive strength depending on the critical
force, paper parameters, box dimensions, and empirical constants [2]. In 1963, McKee
et al. proposed a relationship that has been commonly used in the packaging industry
for many years to estimate the compressive strength of cardboard boxes [3]. The popular
McKee formula is based on the edge crush resistance (ECT) value, flexural stiffnesses, box
perimeter, and correction factors. Due to the simplicity of the formula, it is possible to
obtain a result quickly, but it can only be used for simple standard boxes. In the following
years, scientists tried to extend and modify the McKee formula. In 1985, Allerby et al.
changed the constants and exponents [4] and, in 1987, Schrampfer et al. extended the
approach to new cardboard cutting methods and equipment [5]. In 1993, Batelka and Smith
included the dimensions of the packaging in the formula [6].

In practice, the compressive strength of the packaging depends on many factors
related to the construction and storage conditions [7]. From the construction point of view,
attention should be paid to aspects, such as openings, ventilation holes, perforations, and
offsets [8–12], because they significantly affect the behavior of the box under pressure.
Load-bearing capacity is also influenced by moisture content [13,14], stacking load [15],
storage time and conditions [16], and many other factors.

With the development of technology, numerical computations have become popular.
The well-known finite element method (FEM) is often used to determine the compressive
strength of packaging. Urbanik and Frank compared the compressive strength of boxes
calculated using FEM with the results of the McKee formula extended by Poisson’s ra-
tio [17]. Furthermore, FEM simulations were used by Nordstrand and Carlsson to compare
analytical, experimental, and numerical values of transverse shear moduli [18,19]. The issue
of transverse shear was studied by Aviles et al. [20] and Garbowski et al. [21,22], where the
role of transversal shear stiffness in orthotropic sandwich material is presented. Urbanik
and Saliklis used FEM to observe buckling and post-buckling phenomena in cardboard
boxes [23]. Maneengam et al. used the FE model to study the vibration and damping
characteristics of honeycomb sandwich structures reinforced with carbon nanotubes [24].
Corrugated board reinforced with metal liners has also been investigated by Gu et al., where
uniaxial compression tests were conducted to analyze the damage and failure modes [25].
Sohrabpour and Hellström presented a review of analytical and numerical methods for
estimating box compressive strength [26].

Due to the orthotropy of the paper and layered structure, corrugated board is quite
difficult to analyze numerically. To facilitate the computations, the homogenization process
is used, which consists of replacing a complicated cardboard cross-section with a homoge-
neous board with equivalent parameters. Homogenization methods can be divided into
analytical and numerical. In analytical approaches, the equations of the classical theory of
material strength and the classical theory of laminates are used [27]. Numerical homog-
enization is based on a finite element method framework. In this study, a method based
on strain energy equivalence between a 3D cardboard model and a flat plate is used. This
homogenization procedure was introduced by Biancolini [28] and later extended by Gar-
bowski and Gajewski to include transversal shear stiffnesses [29]. In 2003, Hohe presented
a representative element of heterogeneous and homogenized structures derived from the
strain energy equations [30]. Homogenization was also used to determine substitute panel
parameters, such as membrane and bending characteristics [31] and torsional stiffness [32].
In 2018, a multiscale asymptotic homogenization was used by Ramírez-Torres et al. for
layered hierarchical structure analysis [33,34]. Suarez et al. used numerical homogeniza-
tion to analyze seating made of multi-wall corrugated cardboard [35]. Garbowski et al.
presented the influence of different creasing and perforation on cardboard parameters [36].
In 2022, Mrówczyński et al. presented non-local sensitivity analysis in the optimal design of
three- [37] and five-layered [38] corrugated cardboard. A review of homogenization meth-
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ods and their accuracy was made by Nguyen-Minh et al., based on analysis of corrugated
panels [39].

During the production process, the corrugated board may be deformed due to changes
in temperature and humidity. Two types of emerging imperfections can be distinguished,
namely global and local. A model describing systematic, large-scale deviation from the
intended flat shape of cardboard was presented by Beck and Fischerauer [40]. However,
more attention was paid to local imperfections. In 1995, Nordstrand presented the effect
of the size of imperfections on the compressive strength of cardboard boxes [41], and in
2004 extended the nonlinear buckling analysis of Rhodes and Harvey orthotropic plates
to include local imperfections [42]. Lu et al. investigated the effect of imperfections
on the mechanical properties of cardboard during compression [43]. The problem of
non-ideal shape during bending of double-walled corrugated cardboard was analyzed
analytically by Garbowski and Knitter-Piątkowska [44]. Mrówczyński et al. presented a
method of including the initial imperfections in the analysis of single-walled cardboard [45].
Recently Cillie and Coetzee presented an experimental and numerical study on the in-plane
compression of corrugated paperboard panels with global and local imperfections [46].

In the article, the authors focused on the issue of local imperfections in double-walled
corrugated board. The method presented here allows us to quickly and easily obtain the
effective cardboard stiffnesses reduction due to the imperfect shape of its component layers.
The described approach is an extension of the homogenization method proposed in the
authors’ previous works. Due to the specificity of the production process and very thin
layers of paper, cardboard always has some imperfections, so it is important to be able
to include this aspect in determining its mechanical parameters. The approach proposed
in this paper extends the discussion carried out in our previous work [45], where the
influence of imperfections on the stiffness of three-ply cardboard was investigated. The
mechanics of both types differ significantly and, therefore, in this work other techniques,
adequate to solve this problem, were used. The extension consists of taking into account
the influence of the geometrical imperfections of individual layers on the calculated cross-
section’s effective stiffness. These imperfections were taken into account in the model by
appropriate modeling of geometrical imperfections, which were determined in a priori
buckling analysis and were appropriately included using the innovative technique based
on numerical homogenization of double-walled corrugated board. Thanks to this approach,
it is possible not only to quickly obtain homogenized stiffnesses data for complex cross-
sections, but also to easily take into account the effects of geometrical imperfections.

2. Materials and Methods
2.1. Corrugated Cardboard–Material and Geometry

Corrugated cardboard is a composite material made of several flat and corrugated
layers of paper, called “liners” and “flutings”, respectively. Due to the fibrous structure
of the paper, the cardboard is characterized by a strong orthotropy. For this reason, the
mechanical properties of the entire composite depend on the direction of fiber arrangement
in individual layers. Two main directions can be distinguished, namely the machine
direction (MD) and cross direction (CD) (see Figure 1). They result from the production
process, in which layers of paper are rolled from multi-tone bales. The cardboard in the
MD is stiffer but less ductile than in the CD (see Figure 2). The lower strength of the layers
in the cross direction is partly compensated by the corrugation of the layers, which “adds”
the material in this direction.
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Linear elastic orthotropic material can be represented by the stress–strain relationship,
as follows: 

ε11
ε22

2ε12
2ε13
2ε23

 =


1/E1 −ν21/E2 0 0 0
−ν12/E1 1/E2 0 0 0

0 0 1/G12 0 0
0 0 0 1/G13 0
0 0 0 0 1/G23




σ11
σ22
σ12
σ13
σ23

, (1)

where εij and σij are the strain and stress vector components, E1 and E2 are the Young’s
moduli in the machine and cross directions, respectively, ν12 and ν21 are the Poisson’s
coefficients, G12 is the in-plane shear modulus, G13 and G23 are the transverse shear moduli.
The compliance/stiffness matrix is symmetrical, so the relationship between Poisson’s
ratios can be written as follows:

ν12

E1
=

ν21

E2
. (2)

In this work, the paper layers were modeled using the linear elastic classical orthotropy
described above. The material data were taken from the literature [28] and are presented in
Table 1. The thickness of both flat and corrugated layers was assumed to be 0.30 mm.
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Table 1. Material data for orthotropic constitutive model of corrugated cardboard layers.

Layers
E1 E2 ν12 G12 G13 G23

(MPa) (MPa) (-) (MPa) (MPa) (MPa)

Liners 3326 1694 0.34 859 429.5 429.5
Fluting 2614 1532 0.32 724 362 362

2.2. Imperfections–Numerical Study

The main goal of the work is the numerical analysis of many cases of a corrugated
board samples with imperfections and their impact on the stiffness values. In Figure 3,
two imperfection shapes are presented; these were considered in this study. The first
shape is the most common and corresponds to compression in the machine direction
(see Figure 3a). It is formed as a result of thermal and moisture processes during the
production of cardboard. The second imperfection mode (see Figure 3b) corresponds to
the compression of the sample in the cross direction. This buckling shape was selected
in [45] as the most representative for single-walled corrugated board. In both cases, it was
assumed that only liners are involved in buckling analysis, and flutes (waves) only support
the liners in the right position.
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All calculations were made for double-walled cardboard composed of high B flute
and low E flute (EB cardboard). In Table 2, the geometry of the corrugated layers is
presented. The variants also include four imperfection levels, namely 0, 1, 2, and 3% for
both imperfection shapes. The amount of the imperfection was taken as a certain part of
the buckling length of the liners. Three different buckling lengths can be specified for the
analyzed double-walled corrugated board (see Figure 4). The lengths L1 and L3 correspond
to the periods of the B and E waves, respectively. The buckling length L2

′ can take different
values depending on the relative position of the crests of E and B waves. The maximum
possible value of L2 is equal to the period of the lower wave, but most often every second
segment is divided into two parts by the top of the B wave. For this reason, the buckling
length of the middle liner was assumed to be 2/3 of the E wave period.

Table 2. Geometric parameters of cardboard flutes.

Wave (Flute) Wavelength (mm) Height (mm) Take-Up Factor (-)

B 6.5 2.46 1.32
E 3.5 1.15 1.27
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Additionally, due to the irregular arrangement of the B and E flutes, the effect of the
flute offset on the reduction in cardboard stiffness was verified. For this purpose, for each
set of shape and level of imperfection, 10 cases of shifting the lower wave relative to the
higher one, ranging from 0% to 90% in increments of 10%, were considered. In Figure 5, all
simulated cross-sections are shown.
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Figure 5. Cross-sections of corrugated board along the wave with offsets of (a) 0%, (b) 10%, (c) 20%,
(d) 30%, (e) 40%, (f) 50%, (g) 60%, (h) 70%, (i) 80%, and (j) 90%.

Taking into account all the variants described above, each case can be marked with
the symbol XX-Y-ZZ. The first two letters XX can be “MD” or “CD”, which indicates the
imperfection shape corresponding to compression in the MD and CD, respectively. The
third sign Y represents the imperfection value and can be 0, 1, 2, or 3, and ZZ is the offset of
the lower wave relative to the higher flute and can be 00, 10, 20, 30, 40, 50, 60, 70, 80, or 90.

2.3. Homogenization Procedure

The effect of imperfections on the effective stiffnesses of corrugated board was inves-
tigated with the numerical homogenization method proposed by Biancolini in 2005 and
extended by Garbowski and Gajewski in 2021. It consists of ensuring the equivalence of
the strain energy between the full 3D model of a representative volume element (RVE) and
a simplified model of a flat 2D plate. The RVE is a small repeatable fragment of the full
3D model, which in this case is one period of the higher flute of the corrugated board. In
the paper, only the main assumptions of the homogenization method used were presented.
Detailed information and full derivation can be found in [29].

The homogenization procedure is based on the finite element method. Displacements
from linear analysis can be represented by the following basic formula:

Ke ue = Fe, (3)
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where Ke is the stiffness matrix of the RVE after static condensation, ue is a displacement
vector of the external nodes, and Fe is the vector of external forces applied to the considered
nodes. The finite element mesh and external nodes are presented in Figure 6.
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The static condensation procedure is based on the removal of unnecessary unknown
degrees of freedom (DOF) and leaving the considered degrees of freedom (called principal
DOFs or primary unknowns). In the case of cardboard, the primary unknowns are external
RVE nodes. This results in bringing the stiffness matrix only to the external nodes of
the model. The FE stiffness matrix after static condensation can be calculated from the
following equation:

Ke = Kee −Kei K−1
ii Kie, (4)

where the components of the stiffness matrix are written for internal (subscript i) and
external (subscript e) nodes, as follows:[

Kee Kei
Kie Kii

][
ue
ui

]
=

[
Fe
0

]
. (5)

By the static condensation, the equation of the total elastic strain energy is simplified
to the multiplication of the nodal displacements and the external forces acting on these
nodes, as follows:

E =
1
2

uT
e Fe. (6)

Maintaining the appropriate properties of the simplified model is ensured by the
balance of the total energy between the 3D model of corrugated board and the 2D plate
model. The appropriate definition of displacements at the external edges of the RVE and
allowing for bending and membrane behaviors works to ensure the energy balance. The
relationship between generalized displacements and strains can be represented by the
transformation matrix Hj, as follows:

uj = Hj εj. (7)

and considering a single node (xj = x, yj = y, zj = z) the above equation can be written in
matrix form, as follows:
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
ux
uy
uz
θx
θy


j

=


x 0 y/2 xz 0 yz/2 z/2 0
0 y x/2 0 yz xz/2 0 z/2
0 0 0 −x2/2 −y2/2 −xy/2 x/2 y/2
0 0 0 0 −y −x/2 0 0
0 0 0 x 0 y/2 0 0


j



εx
εy

γxy
κx
κy
κxy
γxz
γyz


j

. (8)

Substituting the basic FEM equation and the relationship between generalized dis-
placements and strains into Equation (6) results in the following:

E =
1
2

uT
e K ue =

1
2
εT

e HT
e K He εe (9)

and considering a finite element subjected to standard load conditions, such as bending,
stretching, shear, elastic internal energy, this can be represented by the following equation:

E =
1
2
εT

e Hk εe{area}, (10)

where the matrix Hk is the RVE stiffness matrix, which can be determined from the following:

Hk =
HT

e K He

area
. (11)

The stiffness matrix Hk consists of several submatrices corresponding to the basic load
conditions, as follows:

Hk =

A3×3 B3×3
B3×3 D3×3

R2×2

, (12)

where A represents the tensile and in-plane shear stiffnesses, D represents the bending and
torsional stiffnesses, B is the coupling subarray of the tension and bending stiffnesses, and
R is the transversal shear stiffnesses.

The stiffness values in subarray A do not depend on the position of a neutral axis. This
is not true in the case of subarray B, in which the values change depending on the position
of the neutral axis. In most symmetrical cases, the stiffness matrix B is a zero matrix, unlike
for asymmetric cross-sections (e.g., multi-walled corrugated cardboard), for which some
components of the matrix B are not zero, which affects the stiffness in the subarray D. This
effect can be suppressed in two ways. The first is to choose the position of the neutral axis
so as to minimize the values in the subarray B. An alternative solution is to calculate the
uncoupled matrix D from the following formula:

D = D′ − BA−1B, (13)

where D′ contains the original (coupled) bending and torsional stiffnesses for the non-zero
matrix B.

Numerical computations consisted in applying the selected buckling shape and im-
perfection value, and then calculating the stiffness matrix of the RVE. In all analyses, the
four-node quadrilaterals shell elements with full integration (S4 elements) were used [47].
All models were built in FE commercial software, from where the stiffnesses in all nodes
were generated. Next, the effective stiffness matrix was determined using the homoge-
nization method described above. An approximate global size equal to 0.1625 mm was
assumed. Due to the different variants of offset, the number of elements changed. For the
MD-0-00 case, the model consisted of 9922 nodes, 9760 elements, and 59,532 degrees of
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freedom. The sensitivity study of the mesh size was already studied in our previous works;
therefore, here this part of the research is omitted. It is worth noting that in the presented
homogenization method, the use of the finite element method is limited only to building a
global stiffness matrix, and no formal loads or boundary conditions are defined. They are
directly implemented through the He matrix in Equation (11).

3. Results

The first step was to properly create the corrugated cardboard RVE model in FE
software. In the cases of samples with imperfections, the geometry of the liners was
changed and replaced with the correct buckling shape (see Figure 3). Then, the material
parameters contained in Table 1 were assigned to both liners and waves. Following the
homogenization procedure described in Section 2.3, stiffness matrices were determined
for all analyzed cases. In Table 3, an example of the stiffness matrix Hk is presented for a
model without imperfections and with 0% offset. No buckling mode is assigned to this
case, because the imperfection value is equal to zero; therefore, it was marked with the
XX-0-00 symbol.

Table 3. Constitutive stiffness matrix Hk for the XX-0-00 model.

A and B B and D R
1 2 3 1 2 3 4 5

A
an

d
B 1 3460 630 0 741 128 0

2 630 2806 0 128 732 0
3 0 0 1122 0 0 296

B
an

d
D 1 741 128 0 7692 1357 0

2 128 732 0 1357 5375 0
3 0 0 296 0 0 2231

R

4 206 0
5 0 167

As expected, non-zero components of the B matrix appeared in the stiffness matrix
Hk, which results from the asymmetry of the double-walled corrugated board sample.
Tables 4–10 show the main diagonal components of the stiffness matrix for all analyzed
cases. The components (∗)12 are omitted, but this does not create an error in the analysis
because these elements are related to the components (∗)11 and (∗)12 in each stiffness
matrix. The following tables do not list the elements of matrix B, but its effect on matrix D
has been taken into account by applying Equation (13). The components of the R matrix
were also omitted. The data contained in Tables 4–10 are also presented in the form of
graphs in Figure 7.

Table 4. The selected stiffnesses in models without imperfections and with different offsets.

XX-0-00 XX-0-10 XX-0-20 XX-0-30 XX-0-40 XX-0-50 XX-0-60 XX-0-70 XX-0-80 XX-0-90

A11 (N/mm) 3460 3459 3451 3441 3424 3427 3447 3454 3461 3468
A22 (N/mm) 2806 2796 2793 2798 2805 2803 2795 2793 2800 2809
A33 (N/mm) 1122 1125 1126 1124 1122 1122 1125 1126 1124 1122
D11 (N·mm) 7533 7538 7549 7543 7510 7514 7552 7544 7536 7533
D22 (N·mm) 5183 5167 5137 5111 5106 5106 5120 5151 5176 5186
D33 (N·mm) 2153 2152 2146 2134 2124 2127 2140 2149 2153 2154
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Table 5. The selected stiffnesses with 1% imperfections of compression in the MD shape and with
different offsets.

MD-1-00 MD-1-10 MD-1-20 MD-1-30 MD-1-40 MD-1-50 MD-1-60 MD-1-70 MD-1-80 MD-1-90

A11 (N/mm) 3437 3446 3420 3408 3388 3382 3409 3425 3413 3460
A22 (N/mm) 2806 2797 2792 2798 2804 2801 2794 2793 2799 2809
A33 (N/mm) 1122 1125 1125 1124 1121 1122 1125 1125 1124 1122
D11 (N·mm) 7259 7283 7314 7307 7238 7237 7263 7307 7247 7297
D22 (N·mm) 5094 5085 5066 5041 5019 5023 5026 5079 5085 5108
D33 (N·mm) 2111 2113 2113 2101 2084 2088 2096 2115 2110 2117

Table 6. The selected stiffnesses with 2% imperfections of compression in the MD shape and with
different offsets.

MD-2-00 MD-2-10 MD-2-20 MD-2-30 MD-2-40 MD-2-50 MD-2-60 MD-2-70 MD-2-80 MD-2-90

A11 (N/mm) 3361 3375 3332 3314 3291 3266 3305 3339 3313 3406
A22 (N/mm) 2804 2796 2790 2796 2802 2799 2793 2791 2796 2809
A33 (N/mm) 1122 1124 1125 1123 1121 1122 1124 1125 1123 1121
D11 (N·mm) 6799 6848 6902 6896 6798 6772 6787 6893 6790 6884
D22 (N·mm) 5002 5000 4993 4968 4931 4937 4931 5004 4992 5029
D33 (N·mm) 2069 2074 2080 2068 2043 2049 2051 2082 2068 2081

Table 7. The selected stiffnesses with 3% imperfections of compression in the MD shape and with
different offsets.

MD-3-00 MD-3-10 MD-3-20 MD-3-30 MD-3-40 MD-3-50 MD-3-60 MD-3-70 MD-3-80 MD-3-90

A11 (N/mm) 3252 3266 3210 3185 3158 3105 3158 3220 3181 3327
A22 (N/mm) 2802 2794 2788 2793 2799 2796 2790 2788 2793 2808
A33 (N/mm) 1121 1124 1125 1123 1120 1121 1123 1125 1123 1121
D11 (N·mm) 6243 6320 6399 6393 6276 6213 6216 6387 6250 6377
D22 (N·mm) 4911 4916 4921 4896 4844 4852 4837 4930 4900 4950
D33 (N·mm) 2027 2036 2047 2036 2004 2010 2007 2048 2026 2045

Table 8. The selected stiffnesses with 1% imperfections of compression in the CD shape and with
different offsets.

CD-1-00 CD-1-10 CD-1-20 CD-1-30 CD-1-40 CD-1-50 CD-1-60 CD-1-70 CD-1-80 CD-1-90

A11 (N/mm) 3427 3429 3423 3411 3395 3395 3419 3426 3429 3439
A22 (N/mm) 2795 2787 2784 2790 2797 2794 2787 2785 2792 2800
A33 (N/mm) 1121 1124 1125 1123 1121 1122 1124 1125 1123 1121
D11 (N·mm) 7318 7329 7342 7335 7310 7302 7348 7342 7323 7324
D22 (N·mm) 5100 5082 5057 5027 5028 5026 5042 5069 5095 5100
D33 (N·mm) 2127 2125 2121 2107 2099 2101 2115 2122 2127 2126

Table 9. The selected stiffnesses with 2% imperfections of compression in the CD shape and with
different offsets.

CD-2-
00

CD-2-
10

CD-2-
20

CD-2-
30

CD-2-
40

CD-2-
50

CD-2-
60

CD-2-
70

CD-2-
80

CD-2-
90

A11 (N/mm) 3342 3351 3346 3335 3319 3313 3347 3351 3348 3364
A22 (N/mm) 2767 2763 2761 2767 2776 2772 2767 2764 2769 2776
A33 (N/mm) 1119 1122 1123 1121 1119 1120 1122 1123 1121 1119
D11 (N·mm) 6922 6956 6969 6965 6954 6914 6985 6990 6932 6952
D22 (N·mm) 4967 4947 4933 4895 4908 4900 4921 4943 4967 4966
D33 (N·mm) 2097 2094 2092 2077 2070 2073 2086 2093 2098 2096
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Table 10. The selected stiffnesses with 3% imperfections of compression in the CD shape and with
different offsets.

CD-3-00 CD-3-10 CD-3-20 CD-3-30 CD-3-40 CD-3-50 CD-3-60 CD-3-70 CD-3-80 CD-3-90

A11 (N/mm) 3232 3249 3246 3234 3223 3208 3256 3253 3244 3267
A22 (N/mm) 2728 2730 2730 2736 2749 2742 2740 2736 2739 2744
A33 (N/mm) 1115 1119 1119 1119 1115 1117 1119 1120 1118 1116
D11 (N·mm) 6455 6514 6532 6528 6540 6458 6561 6574 6473 6511
D22 (N·mm) 4814 4791 4790 4742 4771 4755 4783 4799 4819 4810
D33 (N·mm) 2064 2060 2059 2044 2038 2041 2055 2060 2066 2062
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For each shape and level of imperfection, the average stiffness values from all offset
cases were calculated. Then, the obtained values for models with imperfections were
compared to the average stiffnesses of perfectly shaped cardboard. In Figure 8, the tensile
and bending stiffness reduction due to geometrical imperfections is shown.
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As can be seen in Tables 4–10 and Figure 7, the stiffnesses vary depending on the
offset. Considering each set of shape and level of imperfection, the difference between the
maximum and minimum stiffness values was calculated. Then, the obtained difference
was related to the average stiffness obtained from all 10 offset cases, obtaining a percentage
relative spread. In Table 11, the relative spread for all analyzed sets of imperfection
is presented.

Table 11. Relative spread of the extreme stiffnesses for the selected shape and level of imperfection.

Case
Relative Spread (%)

A11 A22 A33 D11 D22 D33

MD-3-ZZ 6.9 0.7 0.4 2.9 2.3 2.2
MD-2-ZZ 4.2 0.7 0.4 1.9 2.0 1.9
MD-1-ZZ 2.3 0.6 0.4 1.1 1.8 1.6
XX-0-ZZ 1.3 0.6 0.4 0.6 1.6 1.4
CD-1-ZZ 1.3 0.6 0.4 0.6 1.5 1.4
CD-2-ZZ 1.5 0.5 0.4 1.1 1.5 1.3
CD-3-ZZ 1.8 0.8 0.5 1.8 1.6 1.3

4. Discussion

All crucial results have been shown in Tables 3–11 and Figures 7 and 8. In Table 3, an
example of a stiffness matrix determined for the XX-0-00 model is presented, in which the
submatrices A, B, D, and R are distinguished. The B matrix contains non-zero components
because the XX-0-00 case cross-section, as in all other models, is asymmetric. For this
reason, Equation (13) was used in all corrugated board cases to calculate the uncoupled
matrix D, whose values are gathered in Tables 4–10. Comparing the stiffness values D11,
D22, and D33 from Tables 3 and 4, it can be seen that the values in Table 4 are smaller, which
results from the uncoupling of the D matrix.

Considering Tables 4–10 and Figure 7, where the stiffness results for all models are
presented, it can be seen that as the level of imperfection increases, the cardboard stiffness
decreases, as expected. The line diagrams also show that depending on the applied wave
offset, the stiffnesses change their value. This is shown in more detail in Table 11, which
shows the relative spread of the extreme stiffnesses. The greatest fluctuations occur for the
A11 stiffnesses, are slightly smaller for all bending stiffnesses, and are negligibly small for
the A22 and A33 stiffnesses. In most cases, it is clear that the relative spread increases as the
amount of imperfection increases. In addition, the data in this table show that the stiffnesses
of the models with the MD imperfection shape are more sensitive to offset changes than
the cases with the CD buckling mode.

Based on Tables 4–10 and Figures 7 and 8, it can be concluded that geometric imperfec-
tions have a huge influence on the bending stiffness D11. Large decreases were also noted
for the stiffnesses A11, D22, and D33. The effect of imperfections on the stiffness A22 is
small, and the effect is negligible on the A33 stiffness. These results are very similar to those
obtained from the analysis of the effect of imperfections on the stiffness of single-walled
corrugated board conducted by Mrówczyński et al. [45], where the largest decreases were
also obtained for D11, and the smallest were obtained for A33. The implementation of the
MD buckling mode results in a greater average reduction in stiffnesses A11, D11, and D33
compared to the CD imperfection shape, for which a higher average reduction occur for
the stiffnesses of A22, A33, and D22. These differences are not that significant and amount
to a maximum of 2.75 % (for the stiffness D11 between the MD-3-ZZ and CD-3-ZZ models).

To simplify computations and save computational time, it is desirable to select one case
that should be computed as representative instead of carrying out an entire numerical study.
To determine this, several observations from the conducted analyses should be considered.
The imperfection shape of the compression in the CD has smaller relative spread values
than the buckling mode of compression in the MD, so the change in the offset does not affect
the stiffnesses so significantly. In addition, considering the MD shape does not significantly
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reduce the stiffnesses A22 and A33, which seems to be an unfavorable effect. Based on the
calculations, it can be concluded that a reasonable solution is to choose the CD imperfection
shape as a representative model. Due to the quite small relative spread, the choice of a
representative offset value is not so important, so its value can be chosen arbitrarily. The
conclusions drawn from the presented numerical study are consistent with the work of
Mrówczyński et al. [45], in which the authors showed that the CD imperfection shape is
also the most representative buckling mode for single-walled corrugated cardboard.

All the observations discussed above prove that there is a direct influence of imperfec-
tions on the stiffnesses A, B, and D. However, the basic question arises whether it is possible
to verify the presented theoretical approach with experimental data. Although testing
corrugated board is not very laborious or particularly expensive, nevertheless validating
the theoretical analysis presented here is not an easy task, because, firstly, it is practically
impossible to produce corrugated board with a given level of imperfection and, secondly, it
is also very laborious to check the actual level of imperfection in the cardboard produced.
Nevertheless, below, we present a comparison (validation) of the results obtained using the
method presented here and the method presented in paper [44] in comparison with the
results of laboratory tests conducted by Czechowski et al. and presented in paper [48].

All experimental details are described in [48], while analytical assumptions, in which
imperfections are also included, are given in [44]. Here, only the results of the experimental
campaign (namely, results of 4-point bending tests of various asymmetric double-walled
boards) are shown together with the results obtained using numerical and analytical
models. All these results are presented in Table 12, together with the results obtained
using the methods presented here with the same amount of imperfection of flat layers
as assumed in [44]. It is worth noting that only one of all stiffnesses is checked, namely
the bending stiffness in MD. The obtained results do not differ by more than 5% from the
results obtained using the analytical model, while the average absolute error (compared to
the experimental data) was 7.5%.

Table 12. Bending stiffness in MD for all considered models.

Board ID Face-Up EXP (Mean) [48] FEM [48] Analytical [44] Present Model
(Nm) (Nm) (Nm) (Nm)

Board 1
EB 8.32 7.62 7.13 7.54
BE 8.47 7.58 7.84 8.34

Board 2
EB 10.97 9.88 11.15 11.78
BE 11.58 9.81 11.65 12.20

Board 3
EB 7.25 7.61 7.15 7.54
BE 9.50 7.53 7.85 8.16

Board 4
EB 9.10 7.53 7.24 7.69
BE 11.10 7.45 7.98 8.26

Board 5
EB 11.46 10.42 10.89 11.33
BE 12.97 10.37 11.52 12.02

Board 6
EB 8.20 8.45 8.86 9.01
BE 9.12 8.40 9.27 9.88

5. Conclusions

The article presents an approach of numerical homogenization of double-walled
corrugated board, taking into account the initial imperfections of its layers. The creation of
many cardboard models in various configurations made it possible to study various aspects
of the considered problem. In the study, corrugated cardboard was homogenized using
the numerical method based on the strain energy equivalence between a representative 3D
model and a simplified plate. The analysis of five-layered cardboard with imperfections is
not such an easy task. The cross-sectional shape of the cardboard depends on the storage
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and load conditions. For this reason, it is important to indicate a representative case that
adequately reflects the properties of the material.

Based on the conducted analyses, it can be seen that the bending stiffnesses and
the tensile stiffness along the wave are the most sensitive to the imperfect shape of the
cardboard. Calculations were made for a wide range of cases, which allowed us to choose
a representative imperfection model. The conclusions drawn from the numerical analyses
are consistent with the research that was carried out in the previous work for single-walled
corrugated board.
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