
 

 
 

 

 
Materials 2023, 16, 1286. https://doi.org/10.3390/ma16031286 www.mdpi.com/journal/materials 

Article 

Application of the IMPROVED POA-RF Model in Predicting 

the Strength and Energy Absorption Property of a Novel  

Aseismic Rubber-Concrete Material 

Xiancheng Mei 1,2, Zhen Cui 1,2, Qian Sheng 1,2, Jian Zhou 3 and Chuanqi Li 4,* 

1 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China 
2 University of Chinese Academy of Sciences, Beijing 100049, China 
3 School of Resources and Safety Engineering, Central South University, Changsha 410083, China 
4 Laboratory 3SR, CNRS UMR 5521, Grenoble Alpes University, 38000 Grenoble, France 

* Correspondence: chuanqi.li@univ-grenoble-alpes.fr  

Abstract: The application of aseismic materials in foundation engineering structures is an inevitable 

trend and research hotspot of earthquake resistance, especially in tunnel engineering. In this study, 

the pelican optimization algorithm (POA) is improved using the Latin hypercube sampling (LHS) 

method and the Chaotic mapping (CM) method to optimize the random forest (RF) model for pre-

dicting the aseismic performance of a novel aseismic rubber-concrete material. Seventy uniaxial 

compression tests and seventy impact tests were conducted to quantify this aseismic material per-

formance, i.e., strength and energy absorption properties and four other artificial intelligence mod-

els were generated to compare the predictive performance with the proposed hybrid RF models. 

The performance evaluation results showed that the LHSPOA-RF model has the best prediction 

performance among all the models for predicting the strength and energy absorption property of 

this novel aseismic concrete material in both the training and testing phases (R2: 0.9800 and 0.9108, 

VAF: 98.0005 % and 91.0880 %, RMSE: 0.7057 and 1.9128, MAE: 0.4461 and 0.7364; R2: 0.9857 and 

0.9065, VAF: 98.5909 % and 91.3652 %, RMSE: 0.5781 and 1.8814, MAE: 0.4233 and 0.9913). In addi-

tion, the sensitive analysis results indicated that the rubber and cement are the most important pa-

rameters for predicting the strength and energy absorption properties, respectively. Accordingly, 

the improved POA-RF model not only is proven as an effective method to predict the strength and 

energy absorption properties of aseismic materials, but also this hybrid model provides a new idea 

for assessing other aseismic performances in the field of tunnel engineering. 

Keywords: aseismic concrete material; strength; energy absorption property; improved POA  

algorithm; tunnel 

 

1. Introduction 

The research and development of aseismic concrete materials is of great significance 

to reducing the damage caused by earthquakes on tunnel structures. To determine the 

material’s performance and decide its application in the field of tunnel engineering, the 

strength and energy absorption properties are widely used as the main performance eval-

uation indices [1–4]. Among numerous novel concrete materials and various component 

combinations, rubber-concrete material has received much attention for its outstanding 

capabilities in two performance indices mentioned above [5,6]. Meanwhile, the combina-

tion of rubber and traditional concrete material is an effective approach to solving waste 

rubber pollution [7]. 

Reviewing the published research, the experiment tests are direct methods to calcu-

late the strength and energy absorption properties of the rubber-concrete material [8]. The 

strength can be calculated by using the universal testing machine and the Split Hopkinson 
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Pressure Bar (SHPB) device is usually used to measure the energy absorption property 

[9,10]. Nevertheless, elaborate test sample production and complex test programs are ex-

tremely time-consuming [11]. The design and construction of short duration tunnels may 

be delayed due to time loss, resulting in an inability to resist earthquake shocks. 

In recent years, soft computing represented by machine learning (ML) has made re-

markable achievements in the prediction of rubber-concrete material performance, e.g., 

artificial neural networks (ANN) [12,13], support vector machine (SVM) [14,15], back-

propagation neural network (BPNN) [16,17], extreme learning machine (ELM) [18,19], 

multi-layer perceptron (MLP) [20,21] and trees-based models [22,23]. Among the ML 

models, the random forest (RF) model has an excellent resistance to overfitting and a fit-

ting ability in solving prediction problems [24]. Farooq et al. [25] proposed an optimized 

RF model using the gene expression programming (GEP) to forecast the strength of high 

strength concretes. This model has obtained a better performance than the decision tree 

model and artificial neural networks. Mai et al. [26] utilized the RF model to determine 

the strength of a novel concrete material, which contains ground granulated blast furnace 

slag. The prediction results showed that the RF model is a more suitable predictor than 

time-consuming experiments for engineering. However, the RF model is rarely used to 

predict the aseismic performance of rubber-concrete materials. Sun et al. [27] used the RF 

model to predict rubber concrete’s strength, which obtained a good predictive perfor-

mance, the correlation coefficient of which (R) was 0.9596 and the root mean square error 

(RMSE) was 3.9032. In addition, the energy absorption property of the rubber-concrete 

material has not been investigated using soft techniques, especially the ML models. Fur-

thermore, numerous metaheuristic optimization algorithms based on swarm intelligence 

(SI) are used to further improve the predictive ability of ML models for predicting the 

aseismic concrete material’s performance, e.g., particle swarm optimization [28], grey 

wolf optimizers [29], sparrow search algorithms [11], artificial bee colonies [30] and firefly 

algorithms [31]. In addition, building more reasonable initial populations of SI algorithms 

is an effective means to strengthen their optimization abilities [32]. 

Therefore, an optimized RF model using the pelican optimization algorithm (POA) 

is proposed to predict the strength and energy absorption properties of a novel aseismic 

rubber-concrete material in this study. Two functions named Latin hypercube sampling 

(LHS) and Chaotic mapping (CM) are adopted to improve the initial population of POA. 

In total, 140 concrete specimens are generated to test their strength (70 specimens) and 

energy absorption property (70 specimens) for training the prediction models. Four sta-

tistical indices are utilized to evaluate the predictive performance of the improved POA-

based RF model and other comparison models. Finally, sensitive analysis is responsible 

for calculating the parameters’ importance in the strength and energy absorption property 

prediction. 

2. Research Significance 

As a new functional material with special uses, rubber-concrete material is mainly 

aimed at weakening the dynamic impact of engineering structures under strong earth-

quake disturbance. The incorporation of rubber means more impact energy is absorbed 

and converted into other forms of energy removal, but also leads to the reduction of the 

rubber concrete’s strength. A traditional uniaxial compression test and an impact test 

based on the SHPB device are the main technical approaches to measure the strength and 

energy absorption properties of aseismic materials. Although the test results are accurate, 

sample preparation and equipment operation are extremely time consuming. In the face 

of urgent engineering needs, the performance estimation of seismic materials without 

timely estimation is bound to delay the construction period and bring certain economic 

losses. Moreover, ordinary experimental results and regression analysis cannot accurately 

grasp the nonlinear relationship between material properties, material proportions, geo-

metric properties and material performance. Therefore, the development of a novel 
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performance estimation method is of great significance for the close fit between novel 

seismic materials and practical engineering. 

Soft computing represented by ML models may be used to learn this nonlinear rela-

tionship and make fast and accurate predictions of a material’s performance. This study 

contributes (a) to the development of a novel aseismic concrete material consisting of rub-

ber, sand and concrete and (b) to the accurate prediction of the strength and energy ab-

sorption properties of aseismic material, which is significant to get rid of the miscellane-

ous material performance tests based on large-scale equipment and to measure them in 

real time in field engineering. The improved POA-RF model is provided to estimate the 

strength and energy absorption properties of a novel aseismic rubber-concrete material 

using an actual database collected from a series of performance tests in this study. 

3. Experiment of a Novel Aseismic Concrete Material 

To enhance tunnel stability under earthquake resistance, a novel aseismic concrete 

material doped with rubber and river sand is developed and its performance is assessed. 

The rubber is responsible for increasing the elasticity and damping of the novel aseismic 

material, and the river sand is utilized to provide enough strength for it. Although some 

novel fine aggregates were put forward instead of river sand, e.g., blast furnace slag [33], 

waste glass [34] and plastic box waste [35], low workability and some substandard phys-

ical properties (e.g., voids and abrasion) make them difficult to be adopted in practical 

projects [36]. Therefore, river sand is still considered the ideal fine aggregate for compos-

ing the novel concrete material in this work. 

Before testing the strength and energy absorption properties of a novel aseismic rub-

ber-concrete material, the concrete specimens should be prepared according to the test 

standards, and the production procedure is shown in Table 1. As illustrated in Table 2, 

there are 27 mix proportions designed for the rubber-concrete material to test the strength 

(cylindrical shape) and energy absorption properties (disc shape). The rubber mass ratios 

( /rubber RSMRM M M ), where rubberM  is the rubber mass and RSMM  is the rubber-

sand mixtures (RSM) mass, are set to 0, 10, 30, 50, 70 and 100% and four different ranges 

of rubber particle size (RPS) are selected. Thus, the sand mass ratios (

/sand RSMSM M M ), where sandM  is the sand mass, are set to 0, 30, 50, 70, 90 and 

100%. The cement mass ratios ( /cement RCCM M M ), where cementM  is the cement 

mass and RCM is the specimen mass, are selected as 30, 40, 50 and 60%. Three specimens 

are prepared for each mix proportion. Because of the influence of test operation, mechan-

ical failure and other factors, the accuracy of some test data is suspicious. As a result, a 

total of 140 concrete specimens are concreted to carry out experimental tests. Seventy spec-

imens are used to calculate the material strength using the universal testing machine and 

the rest of specimens are tested using SHPB device to obtain the energy absorption prop-

erty as shown in Figure 1. To accurately describe the aseismic performance of this novel 

rubber-concrete material, the uniaxial compressive strength (UCS) and the energy trans-

mission rate (ETR) are adopted to quantify the strength and the energy absorption prop-

erty, respectively [37]. The UCS and the ETR can be defined using Equations (1) and (2), 

respectively. 

max /specimen specimenP S   (1)

2

0

2

0

( ) ( )d

( ) ( )d

t

I bar bar I

t

T bar bar T

E t EM S t t

E t EM S t t

 

 

  

  




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where specimen  and specimenS  represent the UCS and the compression area of the tested 

specimen. maxP  is the maximum collapse load. IE  and I  represent the incident en-

ergy and the measured strains on the incident bar, respectively. TE  and T  indicate the 

transmitted energy and the measured strains on the transmission bar, respectively. For 

the SHPB bar, barEM  is the elasticity modulus,   is the stress wave velocity and barS  

is the cross-sectional area. 

Table 1. A brief description of the preparation procedure for novel concrete specimen. 

Procedures Description 

Step 1—Dosing 
Mixing the rubber and river sand with the cement in pre-designed proportions and thoroughly 

stirring. 

Step 2—Concreting Stirring the mixture for five minutes and quickly pouring it into the mold. 

Step 3—Demolding After 24 h, separating the specimen and polishing it to the specified specification. 

Step 4—Maintaining Maintaining all specimens at required temperature (20 degrees) and humidity (95 %). 

Step 5—Testing After 28 days, testing 140 specimens in the laboratory. 

 

Figure 1. The performance test diagrams of the novel aseismic rubber-concrete material. 

Table 2. Mix proportions of the rubber-concrete material. 

RM (%) SM (%) CM (%) RPS (mm) 

0 100 40 / 

10 90 30 1~2 

10 90 40 0.5~1 

10 90 40 0.075~0.25 

10 90 50 0.25~0.5 

10 90 60 0.075~0.25 

30 70 30 0.5~1 

30 70 40 1~2 

30 70 40 0.075~0.25 
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30 70 50 0.075~0.25 

30 70 60 0.25~0.5 

50 50 30 0.25~0.5 

50 50 30 0.075~0.25 

50 50 40 1~2 

50 50 40 0.5~1 

50 50 40 0.25~0.5 

50 50 40 0.075~0.25 

50 50 50 1~2 

50 50 50 0.075~0.25 

50 50 60 0.5~1 

50 50 60 0.075~0.25 

70 30 30 0.075~0.25 

70 30 40 0.25~0.5 

70 30 40 0.075~0.25 

70 30 50 0.5~1 

70 30 60 1~2 

100 0 40 0.075~0.25 

It should be noted that each specimen is independent and non-repetitive, such as 

composition content (rubber particle with different size, river sand and cement), physical 

properties (mass and density) and size (diameter and length). The detailed information of 

the considered parameters is listed in Tables 3 and 4. Nevertheless, not all parameters are 

favorable for predicting the UCS and ETR of the novel concrete material. The results of 

parameter correlation analysis are shown in Figure 2. As illustrated in Figure 2a, the cor-

relation between rubber, river sand, cement and the specimen mass is significantly higher 

than that between other parameters and is close to 1, respectively. Thus, the specimen 

mass (M) should be removed to reduce the calculation time for predicting the UCS. On 

the other hand, the correlation between the M and specimen density (r) and most other 

parameters is not low, especially the rubber (R), river sand (S) and cement (C) for predict-

ing the ETR (see Figure 2b). In addition, the R and S are negatively correlated, and the 

correlation values are high in both the UCS prediction and the ETR prediction data sets, 

but the reason for this result is that the rubber and river sand are taken as important com-

ponents of this novel material in the form of combination. For example, concrete with low 

rubber content may lead to insufficient elasticity and require more river sand to increase 

its strength. Therefore, neither the rubber nor river sand can be deleted in this study. 

Table 3. The detailed description of all considered parameters for the UCS prediction. 

Variables Sign Unit Min Max Mean Median St. D 

Rubber R g 15.66 90.83 61.21 65.85 22.76 

River sand S g 33.26 207.63 92.82 74.99 50.52 

Cement C g 50.52 236.10 129.47 129.38 51.26 

Rubber particle size RPS mm 0.16 1.50 0.56 0.38 0.48 

Specimen mass M g 168.40 393.50 283.49 279.25 65.71 

Specimen density r g/cm3 0.98 50.59 16.09 1.72 22.42 

Specimen diameter D mm 48.99 50.59 50.11 50.15 0.29 

Specimen length L mm 95.52 102.67 99.05 99.27 1.20 

Uniaxial compressive strength UCS MPa 0.47 18.52 5.82 4.11 5.02 

Note: Min—Minimum value; Max—Maximum value; St. D—Standard deviation value. 
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Table 4. The detailed description of all considered parameters for the ETR prediction. 

Variables Sign Unit Min Max Mean Median St. D 

Rubber R g 7.28 42.53 29.11 30.38 10.91 

River sand S g 16.60 97.96 44.35 36.90 23.64 

Cement C g 24.36 111.48 62.84 60.59 23.65 

Rubber particle size RPS mm 0.16 1.50 0.56 0.38 0.48 

Specimen mass M g 81.20 186.70 136.29 138.00 29.59 

Specimen density r g/cm3 0.91 1.95 1.45 1.46 0.30 

Specimen diameter D mm 48.47 49.98 49.48 49.48 0.30 

Specimen length L mm 46.46 50.15 48.74 48.86 0.67 

Energy transmission rate ETR % 0.00 36.43 2.32 0.13 6.37 

Note: Min—Minimum value; Max—Maximum value; St. D—Standard deviation value. 

 

Figure 2. The demonstration of parameter correlation analysis: (a) UCS prediction and (b) ETR pre-

diction. 

4. Methodologies 

4.1. Random Forest 

Random forest (RF) is generally regarded as an excellent integrated machine learning 

model for solving classification and prediction problems. The significant advantage of this 

model is the data utilization and performance evaluation mechanism, i.e., bootstrap 

resampling technology is responsible for randomly selecting most data from the original 

database (the ratio is two to three) to form the decision trees (DTs) and the rest of data is 

utilized to establish the test set for evaluating the DTs performance; the final performance 

of the RF model is determined by using the average value of the predicted values of all 

DTs. 

As illustrated in Figure 3, the number of trees (Nt) and the random features 

(Maxdepth) are the main hyperparameters that affect its prediction performance. Alt-

hough the increase of the Nt will not cause the overfitting of the model, it is difficult to 

obtain satisfactory predictive performance through the time-consuming manual debug-

ging of hyperparameters’ combinations [38,39]. 
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Figure 3. The common structure of the RF model in the regression problem. 

4.2. Improved Pelican Optimization Algorithm 

4.2.1. Pelican Optimization Algorithm 

Trojovský and Dehghani [40] proposed a novel metaheuristic optimization algo-

rithms-based swarm intelligence to solve the optimization problem, that is, the pelican 

optimization algorithm (POA). The development of the algorithm was inspired by the fact 

that pelicans often hunt prey such as fish in groups. Pelicans’ hunting behavior is full of 

wisdom. For example, pelicans determine the position of prey in advance, and then ap-

proach the prey quickly and complete the hunting behavior with a swotting posture when 

the distance between them is close to 10–20 m [41]. The detailed framework of the POA 

can be represented using following steps: 

(a) Population initialization: Pelicans generally search for prey within a certain range 

of search space, so the initial position of each pelican in the population is random and can 

be expressed as: 

min max min( )  1,...,  iP S rand S S i I      (3)

where iP  represents the initial position of the i-th pelican. I indicates the maximum num-

ber of pelicans. minS  and maxS  are the minimum and the maximum boundaries of the 

search space, respectively. ()rand   represents a random number in (0, 1). 

(b) Exploration phase: At this stage, the main goal of pelicans is to find and determine 

the prey position and change their positions in preparation for an attack. Therefore, the 

position of each pelican is updated using Equation (4): 

1
( ),    

( ),         

i p i p i

i

i i p

P rand P U P f f
P

P rand P P else

    
 

  
 (4)

where 
1
iP  and pP  represent the updated position of the pelican and the prey position in 

the exploration phase, respectively. pf  and if  indicate the objective functions of the 

prey and the pelican, respectively. U is also a random number (1 or 2). 
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(c) Exploitation phase: Once the pelican is in a good position and launches an attack, 

i.e., flying across the water and pushing the fish up into its throat pouch. This strategy can 

be mathematically expressed as: 

   2 1 / 2 1i i iP P z t T rand P         (5)

where 
2
iP  represents the updated position of the pelican in the exploitation phase. z is a 

random number (0 or 2). T is the maximum number of iterations, and t represents the 

current iteration. 

4.2.2. Optimization Methods 

For the metaheuristic optimization algorithms-based SI, the incompatibility of pop-

ulation initialization results in low precision and an easy to fall into local minimum prob-

lem [42]. Numerous researchers have utilized various strategies to optimize the popula-

tion initialization of SI algorithms, e.g., opposition-based learning [43,44], Gaussian mu-

tation [45,46], normal distribution [47] and multi-subgroup [48]. In addition, the chaotic 

mapping (CM) and the Latin hypercube sampling (LHS) have also widely been used to 

improve the performance of the SI algorithms by adjusting the population initialization 

[49,50]. The former is characterized by traversal and random, while the latter has signifi-

cant space-filling impact and convergence features for solving the population initializa-

tion problem [51,52]. Therefore, CM and the LHS are adopted to improve the POA for 

predicting the UCS and the ETR of a novel aseismic rubber-concrete material in this study. 

Chaotic Mapping Method (CM) 

The aim of the CM method is to use mapping functions to generate a more diverse 

population of the POA. The logistic mapping function is a popular method to achieve this 

goal [53,54], which can be expressed using Equation (6). 

1 (1 )   0 4i i iLog Log Log       (6)

where 
iLog  and 

1iLog 
 represent the i-th and i+1-th chaotic sequence of the logistic 

mapping function, respectively.   is a constant. Thus, Equation (3) can be rewritten as: 

log
log(1 ) ,   1,2, ,i iP P f i I        (7)

where 
log
iP  represents the new initial position of the i-th pelican.   indicates an itera-

tion factor. logf  is the logistic mapping function. 

Latin Hypercube Sampling Method (LHS) 

The function of the LHS is to stratify the initial positions in three-dimensional space, 

and then conduct random sampling and disrupt the order of each sample to obtain a more 

stable and diverse population. Therefore, the new population can be described as follows: 

1,1 1, 1,1

,1 , ,

,1 , ,

k K

LHS
i i k i Ki i

I I k I KI I K I K

P P PP

P P PP P

P P PP
 

  
  
  
   
  
  
     

 

   

 

   

 

 (8)

where 
LHS
iP  represents the new initial position of the i-th pelican. k and K indicate the 

current dimension of pelican and the maximum dimension of the search space, respec-

tively. 
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4.3. A Novel Combination of the IPOA and RF Model 

Two improved optimization algorithms consisting of Latin hypercube sampling-POA 

(LHSPOA) and chaotic mapping-POA (CMPOA) are used to optimize the RF model for pre-

dicting the UCS and the ETR of a novel aseismic rubber-concrete material in this study. As 

illustrated in Figure 4, the framework of using the proposed models to predict the aseismic 

performance of the novel concrete material can be organed in three parts: (a) Building the 

database—as mentioned in Section 3, 70 samples were used to predict the UCS of this novel 

aseismic concrete material, and another 70 samples were used to predict the ETR. Whether 

the UCS or the ETR prediction, the ratio of the train set to the test set is four to one. It should 

be noted that all data is normalized to [−1, 1] to eliminate the data discrepancies; (b) Devel-

oping prediction models—the POA and the improved POA were combined with an RF 

model to generate different prediction models, i.e., POA-RF, LHSPOA-RF and CMPOA-RF. 

The population size is a key factor affecting the optimization algorithm’s performance 

[55,56], which is set as 20, 40, 60, 80 and 100 to explore the potential of the model. The itera-

tion is 200 and the RMSE is considered as a fitness function to determine the optimal popu-

lation size. For the RF model, the ranges of Nt and Maxdepth are (1, 100) and (1, 10), respec-

tively; (c) Performance evaluation—four statistical indices were used to evaluate the predic-

tive performance of the proposed hybrid RF models. 

 

Figure 4. The framework of predicting the UCS and ETR of the novel concrete material. 

5. Performance Evaluation 

In this study, four indices were used to evaluate the performance of the proposed 

models for predicting the UCS and the ETR of the novel aseismic concrete material. The 

determination coefficient (R2) is also known as goodness of fit, which reflects the 
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interpretation of the predicted value to the measured value from the fitting perspective. 

If R2 is equal to 1, that means the prediction model is perfect. The variance accounted for 

(VAF) is often used to evaluate the degree to which the prediction model can explain the 

variance of the considered data. The function of the root mean square error (RMSE) is to 

evaluate the model performance by measuring the error between the predicted value and 

the measured value. In addition, the mean absolute error (MAE) can further reflect the 

real situation of error. These statistical indices have been considered to verify the perfor-

mance of different prediction models for solving the regression problem [57–62]. 

2

12

2

1

( )

R 1

( )

T

t t
t

T

t
t

m p

m m





 
 

  
 

 
 





 (9)

var( )
VAF 1 100

var( )
t t

t

m p

m

 
   
 

 (10)

 
2

1

1
RMSE

T

t t
t

m p
T 

   (11)

1

1
MAE

T

t t
t

m p
T 

   (12)

where T indicates the number of used samples. mt and pt represent the t-th measured and 

predicted values, respectively. m  is the average of the measured values. 

6. Results and Discussion 

6.1. The Development Results of the Proposed Models 

To determine the best population size of each prediction model, the fitness values of 

each model with five types of population are calculated during 200 iterations. The devel-

opment results of the proposed models for predicting the UCS of the novel aseismic con-

crete material are shown in Figure 5a. The best population size of the POA-RF model is 60 

by means of the lowest value of the fitness. The LHSPOA-RF model and the CMPOA-RF 

model obtained the lowest values of fitness when the numbers of the population size are 

both 80, as shown in Figure 5b,c. However, it should be noted that the fitness values of 

the best LHSPOA-RF model and the best CMPOA-RF model are lower than the POA-RF 

model (see Table 5). As illustrated in Figure 5d, the POA-RF model with a population size 

of 40 achieved a lower fitness value than other models for predicting the ETR of the novel 

aseismic concrete material. Compared with the best POA-RF model, the most satisfying 

population sizes of the LHSPOA-RF model and the CMPOA-RF model are 80 and 40, re-

spectively (see Figure 5e,f). As a result, the optimal hyperparameter combinations of RF 

models based on the three optimization algorithms for predicting the UCS and the ETR 

are listed in Table 5. 
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Figure 5. The development results of the proposed models for predicting the UCS and ETR of the 

novel aseismic concrete material. 

Table 5. The fitness results of the proposed models based on the different population. 

Population 

Fitness (RMSE) 

UCS ETR 

POA-RF LHSPOA-RF CMPOA-RF POA-RF LHSPOA-RF CMPOA-RF 

20 0.07503 0.06054 0.06338 0.16103 0.13669 0.14078 

40 0.08197 0.06505 0.06265 0.16081 0.13484 0.14024 

60 0.07419 0.06329 0.06277 0.16199 0.13340 0.14158 

80 0.08340 0.05929 0.06154 0.16085 0.13294 0.14239 

100 0.08368 0.06324 0.06159 0.16083 0.13671 0.14238 

Best hyperparameters combination 

Nt 15 22 17 18 13 14 

Maxdepth 2 2 2 1 1 1 

6.2. Performance Evaluation for the UCS and the ETR Prediction 

After establishing the optimal hybrid RF models, each model was first utilized to 

predict the UCS and the ETR of this novel aseismic concrete material based on the train 

set. The performance indices of all the models are listed in Table 6. As can be observed in 

this table, the LHSPOA-RF model is not only the best model with the highest accuracy (R2: 

0.9800, RMSE: 0.7057, MAE: 0.4461 and VAF: 98.0005 %) for predicting the UCS, but also 

obtained better performance indices (R2: 0.9108, RMSE: 1.9128, MAE: 0.7364 and VAF: 

91.0880 %) than other models in the ETR prediction. After this model, the performance 

indices of the CMPOA-RF model are also better than the POA-RF for predicting the UCS 

and ETR.  
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Table 6. The performance indices of the proposed models in the training phase. 

Models 

UCS Prediction 

Performance Indices 

R2 Score RMSE Score MAE Score VAF (%) Score 

POA-RF 0.9654 1 0.9285 1 0.5913 1 96.5393 1 

LHSPOA-RF 0.9800 3 0.7057 3 0.4461 3 98.0005 3 

CMPOA-RF 0.9761 2 0.7710 2 0.4652 2 97.6378 2 

Models 

ETR Prediction 

Performance Indices 

R2 Score RMSE Score MAE Score VAF (%) Score 

POA-RF 0.8814 1 2.2052 1 0.8571 1 88.1907 1 

LHSPOA-RF 0.9108 3 1.9128 3 0.7364 3 91.0880 3 

CMPOA-RF 0.9062 2 1.9608 2 0.7732 2 90.6635 2 

In addition, the rank score is a useful tool to evaluate the model performance by cal-

culating the score of all the performance indices. For example, the score values corre-

sponding to the highest values of R2 and RMSE in the same set are 4 and 1, respectively. 

As demonstrated in Table 6, the LHSPOA-RF model has achieved the highest values of 

ranking scores (12 and 12) for predicting the UCS and the ETR in the training phase. Figure 

6 illustrates the regression diagrams of the proposed hybrid RF models using the train set. 

In each diagram, the blue line represents the perfect prediction function y = x, i.e., the 

predicted value is equal to the measured value. Therefore, the more points that locate on 

the blue line or close to it, the more superior the model’s performance compared with 

others. Of course, the regression lines with 10 % have similar functions for evaluating the 

models’ performance. As can be seen in Figure 6b,e, the LHSPOA-RF model not only ob-

tained the most data points close to or located at the blue line in the UCS prediction, but 

also showed the same excellent prediction performance in the ETR prediction resulting in 

the best performance indices. After the LHSPOA-RF, the CMPOA-RF model has achieved 

a more satisfying predictive performance than the POA-RF model resulting in more data 

points within the 10 % lines for the UCS prediction as shown in Figure 6a,c, and obtained 

the same performance for predicting the ETR (see Figure 6d,f). 

However, the performance evaluation of the model in the training phase is not 

enough to prove its real prediction performance, especially as it is applied to predict un-

known data. Therefore, the test set is responsible for verifying the performance of the pro-

posed models for predicting the UCS and the ETR. Table 7 shows the performance evalu-

ation results of all the models in the testing phase. Compared with the performance results 

obtained using the ETR dataset in the training phase, the performance indices of each 

model are somewhat worse, but not by much. The result indicates that the adverse over-

fitting phenomenon does not appear in the proposed models, which suggests that the pro-

posed model is accepted and may be applied to practical engineering. Furthermore, the 

LHSPOA-RF model is still the best prediction model for forecasting the UCS and the ETR 

resulting in the highest values of R2 (0.9857 and 0.9065) and VAF (98.5909 % and 91.3652 

%), and the lowest values of RMSE (0.5781 and 1.8814) and MAE (0.4233 and 0.9913). After 

the LHSPOA-RF model, the CMPOA-RF model has better performance indices than the 

POA-RF model for predicting the UCS and the ETR. 

The ranking score results of the proposed models for predicting the UCS and ETR in 

the testing phase are also shown Table 7. Based on these results, the order of the three 

hybrid RF models is the LHSPOA-RF model, the CMPOA-RF model and the POA-RF 

model in the UCS prediction. The same ranking score results of each model is obtained by 

using the ETR test data. 
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Figure 6. The regression diagrams of the proposed models for predicting the UCS and ETR in the 

training phase. 

Table 7. The performance indices of the proposed models in the testing phase. 

Models 

UCS Prediction 

Performance Indices 

R2 Score RMSE Score MAE Score VAF (%) Score 

POA-RF 0.9663 1 0.8865 1 0.6060 1 96.6339 1 

LHSPOA-RF 0.9857 3 0.5781 3 0.4233 3 98.5909 3 

CMPOA-RF 0.9726 2 0.7995 2 0.5595 2 97.2639 2 

Models 

ETR Prediction 

Performance Indices 

R2 Score RMSE Score MAE Score VAF (%) Score 

POA-RF 0.8790 1 2.1400 1 1.2675 1 87.9153 1 

LHSPOA-RF 0.9065 3 1.8814 3 0.9913 3 91.3652 3 

CMPOA-RF 0.9047 2 1.8993 2 1.0537 2 90.5980 2 
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The regression diagrams of the proposed hybrid RF models using the test set are 

shown in Figure 7. For the UCS prediction, the LHSPOA-RF model has achieved the most 

satisfactory performance by means of the most points located on the perfect line or closer 

to it than other models as illustrated in Figure 7b. As shown in Figure 7a,c, the predictive 

performance of CMPOA-RF is still better than the POA-RF by means of fewer points out 

of the 10% line. On the other hand, the predictive performance of the proposed models 

for forecasting the ETR is obviously worse than that of the UCS as shown in Figure 7d,e. 

However, the regression results showed that the LHSPOA-RF model and the CMPOA-RF 

model still have better performance than the POA-RF model resulting in the superior per-

formance indices and more effective points close to the perfect line, especially the 

LHSPOA-RF model. As a results, two improved POA-RF models (i.e., the LHSPOA-RF 

model and the CMPOA-RF) are considered to be the superior predictors, rather than the 

initial POA-RF model, in predicting the UCS and the ETR of the novel aseismic rubber-

concrete material in this study. 

 

Figure 7. The regression diagrams of the proposed models for predicting the UCS and ETR in the 

testing phase. 
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Moreover, four common ML models named the BPNN, support vector regression 

(SVR), ELM and kernel-extreme learning machine (KELM) are developed to predict the 

UCS and the ETR of the novel aseismic rubber-concrete material and compare the predic-

tive performances with the proposed models. For the BPNN model, the hyperparameters 

are the number of hidden layers (Nh) and the number of neurons in each hidden layer 

(Ne). The penalty parameter (Pc) and the RBF kernel parameter (k1) are the main parame-

ters affecting the SVR model performance. The ELM model is a special ANN model with 

a single hidden layer, thus the number of neurons in this layer (Nn) can control the per-

formance of the ELM model. The KELM model has similar hyperparameters with the SVR 

model, i.e., regularization coefficient (Rc) and the RBF kernel parameter (k2). After devel-

oping these four ML models, the performance indices of each model with the best hy-

perparameter combination are shown in Table 8. The performance comparison results of 

the proposed models and four common ML models in the UCS and the ETR prediction 

are shown in Figure 8. As can be seen in these pictures, the performance indices of the 

LHSPOA-RF model and the CMPOA-RF model are obviously better than that of the four 

ML models, i.e., higher values of R2 and VAF, and lower values of RMSE and MAE. Mean-

while, it is obvious that the LHSPOA-RF model is the best model to predict the UCS and 

the ETR of the novel aseismic rubber-concrete material in this study. 

Table 8. The performance of the other four AI models using test set. 

Models 

UCS Prediction 

Hyperparameter Performance Indices 

R2 RMSE MAE VAF (%) 

BPNN 0.8782 1.6859 1.1049 88.1409 Nh = 1; Ne = 8 

SVR 0.9406 1.1779 0.8091 94.0956 Pc = 64; k1 = 0.5 

ELM 0.9334 1.2464 1.0643 93.6570 Nn = 40 

KELM 0.9356 1.2257 0.8654 93.5694 Rc = 32; k2 = 0.5 

Models 

ETR Prediction 

Hyperparameter Performance Indices 

R2 RMSE MAE VAF (%) 

BPNN 0.7926 2.8016 1.5106 79.2861 Nh = 1; Ne = 6 

SVR 0.7838 2.8604 1.5438 78.4293 Pc = 35; k1 = 0.25 

ELM 0.6641 3.5650 2.7334 69.6411 Nn = 60 

KELM 0.8388 2.4700 1.3255 83.8904 Rc = 55; k2 = 0.15 
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Figure 8. The performance comparison of the proposed models and four common ML models in the 

UCS and the ETR prediction. 

As illustrated in Figure 9, the Taylor diagram is used to make a clear comparison 

between the proposed models and the four common ML models. This diagram consists of 

the RMSE, the St. D and the R calculated from the predicted values. In particular, the 

measured value is fixed on the horizontal axis since its R is equal to 1 and the RMSE is 

equal to 0. Assuming that the prediction model achieves the best performance, its position 

on the Taylor diagram is the closest to the measured value. Based on this criterion, the 

predictive performance of the proposed models is obviously superior to the other four ML 

models. The LHSPOA-RF is the best prediction model for predicting the UCS and the ETR 

of this novel aseismic material. 

 

Figure 9. The Taylor diagrams of all models for predicting the UCS and ETR of novel material. 
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6.3. Sensitively Analysis 

Although the best prediction model has been determined through performance eval-

uation, the input parameters’ importance for predicting the UCS and the ETR is unknown. 

Therefore, the PAWN method proposed by Pianosi and Wagener [63,64] is utilized to con-

duct sensitive analysis based on the LHSPOA-RF model. The parameter importance re-

sults are shown in Figure 10. As demonstrated in Figure 10a, rubber is the most important 

input parameter with a score of 0.6143 for predicting the UCS of the novel aseismic rubber-

concrete material. After this parameter, cement (0.5714), rubber particle size (0.4857) and 

river sand (0.4009) have higher importance scores than specimen diameter (0.3571), spec-

imen length (0.3250) and specimen density (0.2571). For the ETR prediction (see Figure 

10b), the cement has the highest importance score of 0.5841 among all the input parame-

ters. The values of rubber and specimen diameter were significantly higher than the other 

parameters, i.e., rubber (0.4256), specimen diameter (0.3122), specimen length (0.1521), 

river sand (0.1365) and rubber particle size (0.1123). 

 

Figure 10. The illustration of sensitive analysis results based the LHSPOA-RF model. 

7. Conclusions 

The strength and energy absorption properties of aseismic concrete materials have a 

significance effect on tunnel stability when a tunnel is shocked by an earthquake and other 

dynamic impacts. To clearly investigate the above two aseismic performance indices of a 

novel aseismic concrete material, experimental tests and soft computation techniques are 

combined in this study. Based on the uniaxial compression test and impact tests, an im-

proved pelican optimization algorithm (POA) using the Latin hypercube sampling (LHS) 

method and the Chaotic mapping (CM) method was proposed to optimize the random 

forest (RF) model for predicting the aseismic performance of this novel material. The pre-

diction results demonstrated that the LHSPOA-RF model and CMPOA-RF model have 

better predictive performances than the general POA-RF model for predicting the UCS 

and the ETR, especially the LHAPOA-RF model with a more satisfying performance ac-

curacy of R2, RMSE, MAE and VAF (UCS: 0.9857, 0.5781, 0.4233 and 98.5909 %; ETR: 

0.9065, 1.8814, 0.9913 and 91.3652 %). Furthermore, the comparison results of four com-

mon ML models and the proposed hybrid RF models showed that the LHSPOA-RF model 

is the best prediction performance among all models. 

In addition, rubber plays an important role in strength prediction and cement is the 

most important parameter for predicting the energy absorption property. 

This work indicates that the application of the intelligence models to the aseismic 

material performance is an effective and more simple method that does not lose accuracy 

compared with traditional experiment tests in the laboratory. However, the limitation of 

this combined method is the number of samples in the used database. More and more 

tested or monitored data should be added into the intelligence models’ development to 

improve the prediction accuracy in the further research. 
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