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Abstract: The present manuscript describes the use of natural fibers as natural and sustainable
reinforcement agents for advanced bio-based composite materials for strategic sectors, for example,
the construction sector. The characterization carried out shows the potential of both natural hemp
and linseed fibers, as well as their composites, which can be used as insulation materials because
their thermal conductivity properties can be compared with those observed in typical construction
materials such as pine wood. Nevertheless, linseed composites show better mechanical performance
and hemp has higher fire resistance. It has been demonstrated that these natural fibers share similar
properties; on the other hand, each of them should be used for a specific purpose. The work also
evaluates the use of bio matrixes in composites, demonstrating their feasibility and how they impact
the final material’s properties. The proposed bio-resin enhances fire resistance and decreases the
water absorption capacity of the natural fibers, enabling the use of composites as a final product
in the construction sector. Therefore, it has been demonstrated that it is possible to manufacture a
biocomposite with non-woven natural fibers. In fact, for properties such as thermal conductivity, it is
capable of competing with current materials. Proving that biomaterials are a suitable solution for
developing sustainable products, fulfilling the requirements of the end-user applications, as it has
been demonstrated in this research with the non-woven fibers for the non-structural components.

Keywords: linseed; hemp; biocomposites; bioepoxy; non-woven reinforcements

1. Introduction

The European Commission published the Green Deal, a document that set several
environmental issues and goals and is being used by European countries to move towards a
more sustainable and circular economy [1], in December 2019. Among all the different facts
and references published in it, the Commission’s document shows that the construction
sector is responsible for 20% of European emissions of greenhouse gases. Furthermore,
with transport and energy sectors, this sector all together produces more than 50% of
the total greenhouse emissions in Europe. Therefore, to reach the CO2 neutrality set
for 2050 and the reduction of 55% of CO2 emissions by 2030, it is essential to tackle the
environmental problem in these sectors by adapting their activities and increasing their
environmental sustainability [2–4]. Moreover, the pandemic effects and consequences and
the current problem of the global supply chain have uncovered the need to find new sources
of materials.

Among the different materials options that must be studied and improved in these
sectors, composites are a perfectly suitable alternative to help achieve the environmental
goal in all the above sectors. A composite material is formed by two or more materials,
achieving a performance that would not be achieved by any of these components by them-
selves. This material is composed of reinforcement, a material that enhances mechanical
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properties, and a matrix, which is the component that consolidates all the reinforcement
together through good reinforcement impregnation. The use of natural components in
construction is not a novelty. The Egyptian civilization used composite materials reinforced
with natural fillers in their constructions [5]. For example, they used straw fibers.

Nowadays, the construction sector also uses composites in some situations. Glass
fibers are being used as reinforcement to obtain more resistant and insulating materials [6–9],
allowing the reduction of energy used to maintain a constant and comfortable temperature
inside the buildings. Considering the European market, there are two potential sustainable
solutions to substitute glass fiber in composites: natural hemp and/or linseed fibers. They
are the main alternatives due to their local availability and properties. For this reason, they
have obtained the interest of many researchers and industries [10–14].

Moreover, the implementation of natural fibers as reinforcement in composite materials
is a valuable and strategic opportunity for the European agricultural sector. The use of
hemp and linseed fibers would allow their revalorization while reducing waste production,
reaching the goals established at the international level and moving towards a zero-waste
goal. Nowadays, tons of natural fibers are being produced and wasted each year [15];
therefore, their revalorization could have a huge potential and could bring a real economic
impact to rural agricultural regions in Europe, achieving one of the objectives of the Green
Deal strategy. The use of these kinds of resources would imply the generation of new
economic opportunities, such as their use in the construction sector.

Several studies have already proved the great potential of natural fibers [16] to be used
as reinforcements [17,18], given that the mechanical properties of the composites which
incorporate them can reach similar outcomes to those composites of glass fiber [19–22].
These results open many market niches for natural fibers, but because their cost and
reliability are still under-evaluated, they are found mainly in non-structural parts and less
demanded applications or products [23].

Therefore, there are some challenges and technical limitations that must be overcome
for the use of vegetal fibers at the same level as the current reinforcement materials. As
reported in previous research, the adherence between the matrix and the reinforcement is
a critical requirement to maximize the materials’ potential and their performance [24]. A
review conducted by Baley et al. [25] considered how to boost the mechanical performance
of the fiber itself. The use of binders and/or the modification of resins or fibers can be
required to reinforce the interactions between them, so the final properties of the material
are achieved at the commercial level. Another alternative to the use of binders would be
the treatment of the surface of the fiber, as proposed by Obame et al. [26], which explained
how, through the use of sodium hydroxide, they improved the fiber-matrix adhesion.

Thus, to achieve the circular economy premise for the whole composite system, there
is not only the need to focus on the fibers but also on the resins. The aim of this study
was to optimize the resin formulation to improve its adherence to the fibers in order to
enhance product sustainability, carbon emissions and environmental footprint while taking
biocomposites a step forward for their application into the market through the use of
standardized characterizations. In this sense, plenty of work shows the big potential of
natural fibers and resins and how their nature, structure and surface treatments impact the
final properties of the composites [27]. Some of these researchers have not stopped at the
mechanical performance or the chemical properties, but they have taken into consideration
the environmental impact and the future of these newly developed composites [28,29].

One of the most common types of thermosets in the construction sector is epoxy
resins [30–32]. The final thermoset chemical structure and properties are governed by the
chemical crosslinking, as is the monomer vs. hardener/initiator reactivity and compatibil-
ity [33,34]. Therefore, in order to obtain composites that allow carbon footprint reduction,
new epoxy resins with high bio-based organic carbon content must be developed [9,10].

The chemical industry is moving towards the great variety of molecules that can be
found in nature as a source of raw materials in the production of thermoplastics, thermosets
and other products with industrial use [35]. One of the most abundant and widely used
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resources for the preparation of bio-epoxy resins are unsaturated vegetable oils such as
castor oil, linseed oil, soybean oil and cardanol oil. Their epoxidation by simple and green
oxidation of fatty acids unsaturation allows the synthesis of aliphatic bio-based epoxy
monomers [36]. In this study, epoxidized linseed oil (ELO) has been selected due to its high
functionality (~5.5 epoxy groups/triglyceride) and the large accessibility of linseed crops
in Europe. In the last years, many efforts have been focused on the sustainable synthesis of
ELO-based thermosets [33,34,37]. Moreover, biomolecules that draw plenty of attraction
are sugars [38] and biopolymers such as cellulose [39] and lignin [40]. This interest is due to
their properties and chemical structures because these natural compounds can be used as
raw materials for the fabrication of matrices. Furthermore, in the case of lignin, lignin-based
carbon fibers can be generated [41] and combined with lignin-based resins [42], making
possible the production of a fully lignin-based composite. The industry is more focused on
the use of lignin and cellulosic fibers as a source of reinforcement for the automotive and
construction sectors through the fabrication of green composites, hybrid biocomposites
and even biotextiles [43].

Another relevant compound used in this study is a biorefinery-derived side-product:
humins, which are generated in the production of furandicarboxylic acid [44–47]. Humins
are mainly composed of aromatic rings, containing different functionalities which vary
depending on the biorefinery processing: aldehydes, hydroxyls, carboxylic and ketones.
These reactive groups make the humins a promising building block and an important
compound for the development of thermoset resins [37,44,45,47–49].

The objective of the present study is to prove the concept for the validation of the
designed sustainable composites based on ELO, humins and natural fibers to be used in a
key sector, the construction sector, as described in the frame of LIFE15 ENV/BE/000204
project “RECYSITE”. In this project, different alternatives of bio-based composite materials
were studied for their application in the construction sector as non-structural parts. With
the research shown in this manuscript, the authors also intend to approximate the research
conducted during the last years and within the project to the market through the use of
market-established and legally acceptable characterizations. Enabling market engagement
to bio-based composites.

In order to provide all the information currently required by the market in the method-
ology, it is key to tackle the end-of-life of the proposed materials/products. Nowadays, as
plastics are becoming a challenge for waste management, especially those involving com-
posite materials, these materials cannot be melted due to the crosslinking of covalent bonds
that link network chains, hindering recycling. Therefore, most of the waste of thermoset
composites, from production or end-of-life, is not currently properly recycled (incinerated
41.6%; landfill 27.3%). Nevertheless, new strategies are being researched to propose new
ways that enable to recycle the composite materials.

2. Materials and Methods
2.1. Materials

The epoxidized linseed oil (ELO; average molecular weight = 980 Da; average function-
ality = 5.5 epoxides per triglyceride, viscosity ~1200 Pa.s) was purchased from Valtris Spe-
cialty Chemicals (Independence, OH, USA). CAPCURE® 3-800 is a mercaptan-terminated
product used as a liquid curing agent with unique rapid-cure characteristics for epoxy
resins at ambient temperatures supplied by Gabriel Performance Products (Akron, OH,
USA). The humins were kindly provided by Avantium (Amsterdam, The Netherlands).

The non-woven hemp and linseed fibers were kindly supplied by CENTEXBEL (Gent,
Belgium). All the different consumables used during the infusion process were purchased
from MEL composites (Barcelona, Spain).

2.2. Resin Composition and Preparation

The resin was created by combining the two comonomers, humins and ELO, with the
hardener, Capcure 3-800, in different ratios, as given in Table 1.
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Table 1. Compositions of designed formulations.

Humins (wt%) Capcure 3-800 (wt%) ELO (wt%)

30 52.5 17.5

40 45 15

50 37.5 12.5

50 30 20

60 30 10

A comprehensive study of systems reactivity was previously carried out by the dy-
namic DSC to reach these formulations, evaluating the enthalpies of polymerization reac-
tions and also the interval of the reactions’ temperatures [48,49]. An important objective of
this work was the valorization of humins; therefore, it was used as the primary monomer
with the highest possible ratio (≥50%). For this reason, the selected formulation to be
studied to prepare composites with hemp and linseed fibers was the one containing 50%
humins, 30% Capcure and 20% ELO, as this formulation has a good reactivity and a bio-
based content of ~70%. This formulation also has the advantage of good viscosity, allowing
the fabrication of composites by liquid resin infusion. As shown in Figure 1, the crosslink-
ing temperature of the resin is ~119 ◦C with a viscosity of the system of around 1 Pa·s
(1000 cPs), with the lowest value of viscosity between 80 ◦C and 90 ◦C, where the viscosity
decreases to ~900 cps.
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Figure 1. Evolution of storage (black) and loss moduli (red) with the temperature for the thermoset-
ting resin 50%Hu/30%Cap/20%ELO.

To prepare the thermoset material, we heated the humins up to 75–80 ◦C, allowing
them to flow and be mixed for 5 min with the corresponding quantity of ELO and under
vigorous stirring with the Capcure at 75 ◦C. The final mixture was kept under continuous
stirring for 10 min at 75 ◦C. Due to the slow polymerization rate, it was possible to proceed
with the composites fabrication by liquid resin infusion (LRI) process and to maintain the
composite for 3 h at 130 ◦C achieving complete curing [48].

2.3. Fabrication of Composites by Liquid Resin Infusion (LRI)

There are several technologies allowing the production of thermoset composite mate-
rials; some examples are pultrusion, resin transfer molding or liquid resin infusion (LRI),
among many others [44]. LRI was chosen because of its versatility from a technological
point of view and for its economic feasibility, allowing it to obtain a product that will be
highly competitive in the market. The LRI processing technology consists of the generation
of a vacuum in a covered mold where the reinforcement material has been previously
placed and the use of the generated pressure gradient to pump the matrix into the mold
until all the reinforcement is impregnated. At this point, the entrance is closed, and the
vacuum is maintained through the curing process. Table 2 gives the compositions of
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4 prepared composites with 1 or 3 fiber layers prepared. Once the infusion has been made,
the resin is trapped and cured within the mold [36].

Table 2. Composites compositions based on different layers of hemp and linseed fibers.

Composite
Based on 50%Hu/
30%Cap/20%ELO

Fiber Number of
Layers

Fiber Density
(g/m2)

Fiber Weight
(%)

Resin Weight
(%) Thickness (cm)

A Hemp 1 1300 29.9 ± 1.4 70.1 ± 1.4 5.8 ± 1.0

B Hemp 3 600 31.1 ± 2.0 68.9 ± 2.0 7.1 ± 1.1

C Linseed 1 1300 36.8 ± 1.3 63.2 ± 1.3 3.6 ± 0.5

D Linseed 3 600 28.3 ± 2.3 71.7 ± 2.3 5.1 ± 0.5

Deviations shown in the table are between specimens. Each of the specimens’ thicknesses has a maximum
deviation of 3%.

The process allowed the preparation of composites of ~0.16 m2, based on hemp and
linseed fibers with different densities: 600 g/m2 (3 layers of reinforcement) and 1300 g/m2

(1 layer of reinforcement). Therefore, the final composites vary in terms of fibers and also
in the amount of resin that has been incorporated, as summarized in Table 2.

2.4. Experimental Part
2.4.1. Thermal Conductivity

The thermal conductivity of the prepared materials was measured by the stationary
methodology of the hot plate using a DTC-25 TA instrument (New Castle, UK). After
reaching the thermal equilibrium, the temperature difference across the specimen is mea-
sured along with the output from the heat flux transducer. The thermal conductivity of the
samples was determined by applying the equation:

∆Q/(∆t·A) = −k·(∆T/∆x) (1)

where ∆Q is heat gradient (W); ∆t is time gradient (s); A is the sample area (m2); k is the
material constant thermal conductivity (W/(m·K)); ∆T is the gradient of temperature (K);
∆x is the thickness of material (m).

2.4.2. Tensile Testing

The Young’s modulus and the tensile strength of the linseed and hemp non-woven
composites were measured with an Ibertest STIB-200/W–200 KN (Madrid, Spain) uniaxial
test machine following ISO 527-5. As stated in the ISO, it used a 1 mm/s speed, and
then the speed was increased to 5 mm/s. The tests were performed with 8 specimens of
17.5 cm length × 2.5 cm width from each composite, and the values were averaged. The
manufacture of the specimens was performed through the LRI of a single plaque. It was
afterward cut with a saw to obtain the specimens with a geometry of 2.5 cm width and
17.5 cm length; the thickness of the specimens is defined in Table 2. Taps made of glass
fiber were incorporated at the top and bottom of the specimens with a standard epoxy resin
in order to ensure a proper load transfer from the tensile machine to the specimen by using
the same epoxy resin of the taps as adhesive between sample material and tap.

2.4.3. Flexural Testing

The flexural modulus of the composites was determined by using an Ibertest STIB-
200/W–200 KN (Madrid, Spain) uniaxial test machine in three-points bending test method
following the ISO 178 at a 1 mm/s and 2 mm/s speed. The tests were performed on
8 specimens for each composite of 15 cm length, 5 cm width and a distance between sup-
ports of 10 cm, and the values were averaged (Figure 2). The thickness of the specimens is
defined in Table 2. The composite’s flexural modulus was calculated by using the equation:
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Ef = (∆σf)/(∆εf) (2)

Ef is the flexural modulus (MPa); ∆σf is the variation in the flexural effort (Mpa); ∆εf
is the variation in the deformation (%).
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2.4.4. Cataplasma Test

The cataplasma test was used to study the aging behavior of the materials by mea-
suring the physical changes caused in the samples (weight, shape and thickness) after
their exposition to elevated temperatures and high humidity. The measurements were
performed with Mirta-Kontrol equipment (Zagreb, Croatia) using ISO cataplasma test DIN
EN ISO 9142. The samples were kept under 100% humidity and 70 ◦C for a month, and the
measurements were taken after 1, 7, 14 and 28 days. Before performing the flexural test
(described in Section 2.4.3), The samples were recuperated after 28 days and dried for 12 h
at 60 ◦C. This drying process was applied in order to understand the aging effect, simulated
by the high humidity conditions to which the samples have been exposed. In this way, two
sets of flexural measurements were differentiated: one after the exposition to the conditions
defined in the cataplasma test, after cataplasma (AC), and one previous to the exposition,
before cataplasma (BC). Hence, 6 different specimens were tested with dimensions 15 cm of
length × 5 cm of width (1 before cataplasma, 4 during cataplasma and 1 after cataplasma).

2.4.5. Scanning Electron Microscopy (SEM)

SEM was used to investigate the adhesion between the natural fibers and the humins-
based thermoset matrices and the morphology of the fracture surface of the biocomposites.
Fresh fractures of composites samples were mounted on an SEM stub and coated with
platinum prior to observations. The instrument used is a Tescan Vega 3 XMU SEM (Prague,
Czechia) at an accelerating voltage of 5 kV.

2.4.6. Fire Resistance Test

To test the behavior of the samples under fire conditions, we used Mirta-Kontrol
equipment (Zagreb, Croatia). The reaction to fire tests method followed EN ISO 11925-2, in
which the samples are subjected to a direct single-flame source. The analyses took place
inside a test chamber where the specimen was mounted vertically and subjected to a gas
flame. During the test, time of ignition, burning droplets and whether the flames reach
certain mark (defined by the ISO) within a prescribed time period are registered. In this
way, it is possible to evaluate fire retardancy and generation of burning drops. Three
specimens (25 cm length and 9 cm width) were tested for each sample.

3. Results and Discussion

The first step towards the validation of composite material is the quality of adhesion
between the reinforcement and the polymeric matrix. SEM analyses were used to observe
and evaluate the interaction between both components. The micrographs presented in
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Figure 3 confirm the good adhesion between the natural fiber and the bio-resin. According
to the SEM micrographs, the fibers’ surface is completely covered by the resin, proving the
excellent compatibility between the two components of the biocomposite, the matrix and
the biofiller. This is due to the excellent compatibility of vegetal fibers and the humins (hy-
drophilic macromonomer) as a consequence of their chemical affinity [24]. In Figure 3c–e,
it is possible to observe that the fibers that come out of the matrix are impregnated with the
resin, showing a good adhesion and compatibility between the fiber and the matrix. More-
over, on the fractured composite (Figure 3a), a good homogeneity of the fibers distribution
can be noticed; moreover, a fibrillar breaking of the composite can be observed. That is due
to the fact that the fibers are in a non-woven structure; therefore, once the matrix reaches its
limit force, the fibers start to break. Meanwhile, it is observed that after breaking, the fibers
are completely covered in the matrix, meaning that the adhesion between the fiber and
the resin is stronger than the force that the matrix is able to withstand. This observation
strengthens the previous observation on the adhesion between the fiber and the matrix.
This is a key element in the development of a bio-based resin and in its success in a market
application, as no treatment was given to the fibers to enhance the interaction.
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Figure 3. 50%Hu/30%Cap/20%ELO and hemp 1300 g/m2 composites: (a) general look of the
composite at a broken point; (b) single hemp fiber covered in resin; (c–e) single hemp fiber covered
by the resin in three successive magnifications.

3.1. Composites Properties

The different biocomposite specimens were fully characterized following the condi-
tions previously described.

3.1.1. Thermal Conductivity

For the thermal behaviour of the composite materials, firstly, the thermal conductivity
of the natural fibers was measured. These measurements showed that the fibers’ thermal
properties were in the same range as many other materials typically seen as good insulators,
i.e., sheep wool and glass wool, with heat transmittance values of around 0.04 W/mK. It
was found that natural fibers of hemp and linseed have similar values of heat transmittance
capacity and that the density of these non-woven structures does not affect the final capacity
of the sample to transmit or isolate the heat. The four composite samples have higher
values of thermal transmittance compared to those of the neat fibers. These are multiplied
by 2.5, reaching values of around 0.1 W/mK. This increment in the heat transmittance
properties places the final composite materials in the range of other natural structures such
as pine wood [50]. This result clearly shows the effect of the resin on the properties of the
composite and also shows that the thermal conductivity of the resin is higher than one of
the reinforcement materials.

With the data shown in Figure 4, it is possible to appreciate that the final properties
of these composites are in line with other natural materials typically used in building
structures. Although the densities and the source of the reinforcement are different, the
values obtained for all four different composites are in the same range. Therefore, we can
evaluate these composites made from natural reinforcement and bio-based matrices as a
new possibility for the development of products with isolation properties. However, in
order to generate the best quality composite in terms of isolation properties, it is important
that the amount of matrix is kept to a minimum as the main insulator material of the
composite is the reinforcement: the natural fibers.
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Figure 4. Heat transmittance of each of the different composites compared with the raw fibers
(A: hemp composite 1300 g/m2; B: hemp composite 600 g/m2; C: linseed composite 1300 g/m2;
D: linseed composite 600 g/m2; a: hemp 1300 g/m2; b: hemp 600 g/m2; c: linseed 1300 g/m2;
d: linseed 600 g/m2).

3.1.2. Mechanical Properties

The developed biocomposites have been tested mechanically by two different methods:
tensile and flexural tests.

Tensile Tests

The tensile strength and the elastic modulus have been studied by comparing the
prepared composites from both types of fibers. In these comparisons, it is observed that
the composite materials in which linseed fibers were used as reinforcement have a better
mechanical performance than the hemp-based composites. This is aligned with the data
reported by Padney et al. [51]. The research showed that linseed is one of the most
competitive natural fibers and that it can even be compared to glass fiber. While comparing
the tensile strength of linseed and hemp fibers, it is possible to observe that the linseed
shows twice the strength value of the hemp at both densities and almost three times the
elastic modulus of the hemp. Additionally, a non-significant difference is found depending
on the fiber density, this difference is dependent on the type of fiber as it is not possible
to observe it clearly in hemp (A, B), but it is significant for linseed (C, D). In the case of
the tensile strength, the difference between the density of the two types of non-woven
structures, triggered a drop of the tensile modulus value of a few MPa (more drastic in
the case of the linseed), and for the elastic modulus, a drop of 100 Mpa in the linseed case
(Figure 5).

The comparison of the data results obtained with the reported tensile properties of
woven reinforced composite materials (those gathered by Padney et al. [51] and Del Borello
et al. [12]) show that the non-woven structure cannot compete with the woven structures
due to the lack of directionality of the fabrics. As it is shown by Bochnia et al. [52], the
direction of the reinforcement has a direct impact on the mechanical properties, and this
effect is the same for all kinds of composite materials. The spread of results shown in the
research, depending on the orientation, does not have any influence on these samples, as
the fibers are randomly dispersed in a non-woven structure. These points imply that the
non-woven-based composites can be used in any position as there is no preferred direction,
and the mechanical measurements shown in Figure 5 are met in all of them.
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Figure 5. Tensile test results (A: Hemp composite 1300 g/m2; B: Hemp composite 600 g/m2; C:
Linseed composite 1300 g/m2; D: Linseed composite 600 g/m2).

Bending Tests

The bending test results are shown in Figure 6. They display a similar behavior as those
reported for the tensile properties. The linseed fibers have a higher mechanical performance
than the hemp fibers, and high-density composites show higher bending modulus values.
These results agree with the previous data illustrated in Figure 5, in which the linseed has
already shown higher mechanical performance than hemp. Nevertheless, it is remarkable
that in the case of high-density hemp composites (A), the bending modulus is in the same
range as the low-density linseed composite (D). The smaller difference between both types
of reinforcements in the bending tests in comparison with the values shown for the tensile
properties is related to the matrix properties. As the mats are oriented perpendicularly to
the force applied in the bending test, the bio-based matrix takes a bigger role in the bending
properties and equalizes the values obtained for both types of composites. However, it
must be remarked that even in this case, linseed fibers composites show better mechanical
performance than hemp reinforced.
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Figure 6. Bending tests (A: Hemp composite 1300 g/m2; B: Hemp composite 600 g/m2; C: Linseed
composite 1300 g/m2; D: Linseed composite 600 g/m2).



Materials 2023, 16, 1283 11 of 17

Cataplasma Tests

Physical changes in the composite specimens were measured during the exposure
time. As specimens absorbed water, physical changes in weight, width and thickness were
monitored (Figures 7–9).
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Figure 7. Variations in the weight during the cataplasma test due to the absorption of water (A: Hemp
composite 1300 g/m2; B: Hemp composite 600 g/m2; C: Linseed composite 1300 g/m2; D: Linseed
composite 600 g/m2). Raw data can be found in Table A1.
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Figure 8. Variations in the width during the cataplasma test due to the absorption of water (A: Hemp
composite 1300 g/m2; B: Hemp composite 600 g/m2; C: Linseed composite 1300 g/m2; D: Linseed
composite 600 g/m2). Raw data can be found in Table A2.

Materials 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 8. Variations in the width during the cataplasma test due to the absorption of water (A: Hemp 
composite 1300 g/m2; B: Hemp composite 600 g/m2; C: Linseed composite 1300 g/m2; D: Linseed 
composite 600 g/m2). Raw data can be found in Table A2. 

 
Figure 9. Variations in the thickness during the cataplasma test due to the absorption of water (A: 
Hemp composite 1300 g/m2; B: Hemp composite 600 g/m2; C: Linseed composite 1300 g/m2; D: Lin-
seed composite 600 g/m2). Raw data can be found in Table A3. 

In Figure 10, values for the bending modulus for both composites before and after 
the exposure are compared. After the exposure, the low-density fiber-based composites 
have increased the values of the bending modulus by ~100 MPa, while in the case of high-
density fiber-based composites, the bending modulus decreases by ~200 MPa, ending both 
structures with similar bending moduli. The only thing about the bending modulus that 
does not change is the fact that the linseed fibers still have values of around 550 MPa after 
the exposure, while for the hemp fibers, the values go down to 150 MPa. This implies that 
the linseed fibers are going to absorb similar amounts of water to the hemp, but due to 
their higher mechanical properties, they will still end up having a higher mechanical per-
formance. The cataplasma test demonstrates that after the composite is saturated with 
water, the mechanical performance of natural linseed fibers results in a bending modulus 
four times higher than the hemp, which means 400 MPa higher. To improve the results 
and reduce the impact of water absorption on the final properties of the material, one 
could use different alkali-based surface treatments [26]. 

48

49

50

51

52

Start 1 Day 7 Days 14 Days 28 Days

W
id

th
 (m

m
) A

B

C

D

4

6

8

10

Start 1 Day 7 Days 14 Days 28 Days

Th
ick

ne
ss

 (m
m

)

A

B

C

D

Figure 9. Variations in the thickness during the cataplasma test due to the absorption of water
(A: Hemp composite 1300 g/m2; B: Hemp composite 600 g/m2; C: Linseed composite 1300 g/m2;
D: Linseed composite 600 g/m2). Raw data can be found in Table A3.

As shown in Figures 7–9, the dimensions of the hemp-based composites increased up
to 35% in weight and up to 15% in thickness during the first 24 h of exposure, while their
width increased ~1% compared to the initial value.

In contrast, the weight increases during the first week for the linseed were around
20%, whereas, for the hemp, the increment goes up to 40% of its initial value. At the same
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time, the width and thickness remain equal. Observing all these data and behaviors, we
can say that in the case of both types of natural fibers, the absorption of all the water is
completed after one day of exposure.

In Figure 10, values for the bending modulus for both composites before and after
the exposure are compared. After the exposure, the low-density fiber-based composites
have increased the values of the bending modulus by ~100 MPa, while in the case of
high-density fiber-based composites, the bending modulus decreases by ~200 MPa, ending
both structures with similar bending moduli. The only thing about the bending modulus
that does not change is the fact that the linseed fibers still have values of around 550 MPa
after the exposure, while for the hemp fibers, the values go down to 150 MPa. This implies
that the linseed fibers are going to absorb similar amounts of water to the hemp, but due
to their higher mechanical properties, they will still end up having a higher mechanical
performance. The cataplasma test demonstrates that after the composite is saturated with
water, the mechanical performance of natural linseed fibers results in a bending modulus
four times higher than the hemp, which means 400 MPa higher. To improve the results and
reduce the impact of water absorption on the final properties of the material, one could use
different alkali-based surface treatments [26].
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Figure 10. Variation of the mechanical properties before (BC) and after the cataplasma (AC) test
(A: Hemp composite 1300 g/m2 BC; B: Hemp composite 600 g/m2 BC; C: Linseed composite
1300 g/m2 BC; D: Linseed composite 600 g/m2 BC; a: Hemp 1300 g/m2 AC; b: Hemp 600 g/m2 AC;
c: Linseed 1300 g/m2 AC; d: Linseed 600 g/m2 AC).

3.1.3. Fire Resistance Test

All composite materials produced were tested for both their flame retardancy and the
generation of drops. These tests show that none of the materials generate burning drops
while they are on fire.

Regarding flame retardancy properties, composite materials have shown a lower
capacity to spread fire in comparison with natural fibers. As it is shown in Table 3, the
presence of the resin has a flame retardancy effect on the final specimen. Meanwhile, linseed
fibers were not able to withstand any of the tests carried out. Hemp fibers withstood the
small burner for 15 s. When the composite as a whole is characterized, linseed fiber samples
are able to withstand the small burner for 15 s, passing from class F to class E. In the
case of the hemp, it jumps to the next step where further characterization and techniques
are needed in order to differentiate between class B, C or D. The pattern of experiments
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followed in classifying a material is represented in Figure 11. With the defined experiments,
it is possible to classify all materials into the different categories used for market materials.

Seeing all these data and how the different elements affect the fire propagation and,
therefore, the final classification of the materials in the fire propagation classes, it is easy to
come to two conclusions after observing the data gathered in Table 3. On the one hand, the
presence of the resin and the composite as a whole has higher fire resistance, making the
progress of the flame slower than in those cases where no bio-resin is incorporated in the
sample. On the other hand, the most remarkable point is that even though all-natural fibers
are usually seen in the same way, expecting a similar fire behavior, hemp has demonstrated
to have lower fire transference than linseed, favoring its use for this purpose.

Table 3. Fire resistance classification of bio-based non-woven epoxy composites.

Material Classification

Hemp E

1 Layer of Hemp 1300 g/m2 B, C or D

3 Layers of Hemp 600 g/m2 B, C or D

Linseed F

1 Layer of Linseed 1300 g/m2 E

3 Layers of Linseed 600 g/m2 E

Regarding the propagation to other components through the generation of burning
drops, it can be observed that none of the studied composites generate burning drops.
This has a direct implication for the propagation of the fire toward other components or
materials.
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4. Feasibility of the Scaling up Process

To demonstrate the feasibility of the fabrication of a 1 m2 composite, the LRI was up-
scaled to a mat of 1 m2 with both types of fibers, demonstrating the capacity to manufacture
bigger composite parts.

On the other hand, for comparison with commercial non-structural parts, a sandwich
structure was manufactured with a PET core, as in Figure 12b. To manufacture the sandwich
structure, firstly, a test piece of 0.16 m2 was fabricated to evaluate the best approach, which
finally was a perimetral infusion process. For the large scale, a combination of strategies
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was used to reduce the impregnation time; the perimetral infusion with two entrances was
supported by another four entrances within the geometry to speed up the impregnation
process. The main difficulty of the sandwich structure was to ensure the temperature on
both sides of the sandwich (75–80 ◦C) to enable the resin to flow through the mats and
PET’s holes, joining all the components of the sandwich structure and avoiding possible
delamination issues in the composite during its lifetime. Afterward, it was possible to
scale up the fabrication to a piece of 1 m2 (Figure 12a). In the end, it was possible to
manufacture several pre-industrial scale parts. These demonstrators have proven that
the natural non-woven fibers can be used together with a bio-epoxy matrix to generate a
sandwich structure similar to those commercially available for non-structural parts.
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Figure 12. Size comparison between the demonstrators for industrial purposes (1 m2) and for material
characterization (0.16 m2) (a); sandwich structure linseed-PET-linseed (b).

For the end of life of the composite, as mentioned in the introduction, incineration
is not an option, as nothing would be recovered. Nevertheless, mechanical grinding is a
plausible solution. In order to validate this approximation, some samples were ground
and introduced in other composite materials as reinforcement. Nonetheless, for composites
with a sandwich structure, the key point is the separation of the components. For this
demonstrator, the thermoset and PET core were separated in a water bath, allowing each of
the materials to reach its specific recycling flow.

5. Conclusions

The transition towards biomaterials in the composite industry is a real need, together
with the use of natural fibers as reinforcement. Within this research, the focus has been
placed on non-woven natural linseed and hemp fibers, with different reinforcing mat
densities, and in the application of a market focus research methodology. Composites were
produced by using a bio-resin and combining a biorefinery side-product, humins, with an
epoxidized linseed oil-based monomer. The SEM micrographs provided a solid base for
the application of both structures (matrix and natural fibers) together in the composite, as
no third element was needed to reinforce their interaction.

Regarding the analysis of the obtained composites, the thermal conductivity properties
compete with other typical materials used in the construction sector for both types without
significant differences. The mechanical performance of linseed-based composites showed
superior values compared to that of hemp-based composites. Nevertheless, the hemp-based
composites exceeded the performance of linseed in terms of fire resistance, whereas hemp
has shown better performance in reducing the times for fire propagation.

Hence, each of the non-woven mats (linseed and hemp) has its own advantages,
making hemp fibers the best option for non-structural parts that need an insulation material
and have a higher risk of fire. For linseed fibers, the applications should be directed to the
higher mechanical performance of non-structural parts. It is difficult to select one over the
other without knowing all requirements of the application, as each shows advantages over
the other in different fields. Nevertheless, the methodology and characterization techniques
used demonstrate the potential of a market-oriented methodology to bring developments
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in the field of composites closer to their applications. This has not only been demonstrated
with the production of some large parts but also through the use of standardized systems.
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Appendix A

Table A1. Variation in the weight (g) during the cataplasma test due to the absorption of water.

Start 1 Day 7 Days 14 Days 28 Days

1 Layer of Hemp 1300 g/m2 45.50 ± 2.26 58.15 ± 0.85 58.95 ± 1.05 58.38 ± 0.98 57.16 ± 0.91

3 Layers of Hemp 600 g/m2 45.69 ± 2.48 61.02 ± 2.68 63.82 ± 2.54 61.63 ± 2.16 58.31 ± 2.99

1 Layer of Linseed 1300 g/m2 35.15 ± 0.73 42.07 ± 0.51 41.69 ± 0.69 42.01 ± 0.33 41.67 ± 0.40

3 Layers of Linseed 600 g/m2 28.13 ± 0.55 35.40 ± 0.80 34.73 ± 0.76 32.93 ± 0.99 34.06 ± 0.71

Table A2. Variation in the width (mm) during the cataplasma test due to the absorption of water.

Start 1 Day 7 Days 14 Days 28 Days

1 Layer of Hemp 1300 g/m2 50.38 ± 0.32 50.48 ± 0.38 50.44 ± 0.30 50.49 ± 0.26 50.43± 0.31

3 Layers of Hemp 600 g/m2 50.39 ± 0.40 50.41 ± 0.35 50.53 ± 0.41 50.50 ± 0.38 50.40 ± 0.38

1 Layer of Linseed 1300 g/m2 49.18 ± 0.26 49.56 ± 1.00 49.52 ± 0.95 49.57 ± 0.93 49.53 ± 0.97

3 Layers of Linseed 600 g/m2 50.69 ± 0.37 50.55 ± 0.35 50.58 ± 0.42 50.58 ± 0.44 50.48 ± 0.38

Table A3. Variation in the thickness (mm) during the cataplasma test due to the absorption of water.

Start 1 Day 7 Days 14 Days 28 Days

1 Layer of Hemp 1300 g/m2 6.95 ± 0.38 7.98 ± 0.54 7.75 ± 0.45 7.66 ± 0.46 7.59 ± 0.42

3 Layers of Hemp 600 g/m2 7.88 ± 0.58 8.93 ± 0.68 8.87 ± 0.49 8.94 ± 0.50 8.96 ± 0.51

1 Layer of Linseed 1300 g/m2 4.20 ± 0.20 4.43 ± 0.04 4.54 ± 0.03 4.48 ± 0.05 4.41 ± 0.02

3 Layers of Linseed 600 g/m2 4.56 ± 0.33 4.78 ± 0.53 4.81 ± 0.34 4.89 ± 0.30 4.79 ± 0.33
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