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Abstract: Polarization doping in a GaN-InN system with a graded composition layer was studied
using ab initio simulations. The electric charge volume density in the graded concentration part
was determined by spatial potential dependence. The emerging graded polarization charge was
determined to show that it could be obtained from a polarization difference and the concentration
slope. It was shown that the GaN-InN polarization difference is changed by piezoelectric effects. The
polarization difference is in agreement with the earlier obtained data despite the relatively narrow
bandgap for the simulated system. The hole generation may be applied in the design of blue and
green laser and light-emitting diodes.
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1. Introduction

Wurtzite crystalline symmetry permits emergence of a macroscopic vectorial quantity
known as polarization [1]. Macroscopically, polarization occurs due to relative translation
of the center of the negative electrons with respect to the position of positive atomic
nucleus, i.e., creation of electric dipole density [1]. This is associated directly with the
iconicity of metal–nonmetal bonding. Nitride semiconductors such as GaN, AlN and InN
have different fractions of the covalent and ionic components in their bonding. Therefore,
the chemically induced charge effect is different, which leads to a difference in their
spontaneous polarization. In addition, external strain can downgrade the symmetry of the
lattice, which could induce or change the polarization charge [2,3].

Polarization affects physical properties of semiconductor systems by the emergence of
the electric fields of various magnitudes and ranges. In large size systems, the large scale
electric fields are negligible due to screening which is described in Debye-Hückel or Thomas-
Fermi approximation [3–5]. A much stronger influence of polarization-related electric fields
is observed in nanometer size systems. A glaring, positive example is the localization of
electrons in the GaN-based field-effect transistor (FET) [6]. For III-nitride multi-quantum
well (MQWs) laser diodes (LDs) and light-emitting diode (LED) performance, these fields
are highly detrimental. The electron–hole wavefunction overlap and accordingly the
radiative recombination dipole strength is reduced by the so called quantum-confined Stark
effect (QCSE) [7–9]. The efforts to avoid the fields in the devices using nonpolar MQWs
were not successful due to the poor material quality in such structures [10].

In devices containing heterostructures, polarization difference entails a sheet charge [11,12]
and a surface dipole layer [12] at the heterointerfaces. The sheet charge is equivalent to the
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electric field difference across the interface. The phenomenon is well understood; however
the magnitude is still under debate [13–15]. At the dipole layer region, the electric potential
jumps between both sides of the interface. The effect was identified a long time ago, but it is
still disputed [16].

Chemically induced electric phenomena are not limited to sharp interfaces. The
transition between two chemically different substances may be also more or less diffuse.
Predictably, the diffuse interface generates the extended charge density [17–23]. The nitride
alloys concentration change leads to the polarization difference and creation of a bulk
charge density, inducing a phenomenon known as polarization doping [18–23]. Since
the polarization is proportional to metal concentration, linearly graded materials have a
uniform bulk charge density. In insulating systems, without screening the potential profile,
it can be used to determine the polarization-related charge density via the Poisson equation.
The method was successfully used to determine the polarization density constant for the
Al-Ga-N system in [23]. In addition, the mechanism for the generation of the mobile charge
was described and used to design the UV laser diode (LD).

The development of blue nitride-based lasers was one of the most spectacular achieve-
ments, in terms of scientific achievements, development of technology and contribution to
society [24,25]. Unfortunately, the extension of the emission spectrum towards UV [26,27]
and green [28,29] light emission encounters considerable difficulties. The problem of p-type
doping is one of the roadblocks towards high power green UV lasers which have many
promising applications. The best possible remedy is to use Mg and polarization doping si-
multaneously [30]. In this work, we will use the methods developed in [23] for the Ga-In-N
system to obtain polarization-doping constants, verify the creation of mobile charge and its
application to device design.

2. Methods

Ab initio simulations reported in this paper employed the density functional theory
(DFT) package SIESTA. SIESTA uses numeric atomic orbital series to solve Kohn–Sham
equations [23,24]. The following atomic orbitals were used: for In—3s: DZ (double zeta),
3p: TZ (triple zeta), 3d: DZ; N—2s: DZ, 2p: TZ, 3d: SZ (single zeta) and for Ga- 4s: DZ
(double zeta), 4p: TZ (triple zeta), 3d: DZ. The pseudopotentials approximation was used
for all atoms which allowed us to increase the number of atoms and consequently, the size
of supercell used. The pseudopotentials were generated by the authors using the ATOM
program designed for all-electron calculations. In SIESTA the norm-conserving Troullier–
Martins pseudopotentials, in the Kleinmann–Bylander factorized form are used [31–34].
The calculations were performed within Generalized Gradient Approximation (GGA) with
the PBEsol modified version of the original Perdew, Burke and Ernzerh of the exchange–
correlation functional [35,36].

The lattice parameters of bulk indium nitride, calculated for a periodic infinite crystal,
are aDFT

InN = 3.525 Å and cDFT
InN = 5.716 Å. They are in sufficient agreement with the

experimental data for wurtzite bulk InN obtained from X-ray diffraction measurements:
aexp

InN = 3.537 Å and cexp
InN = 5.703 Å [37]. Ab initio calculations of GaN gave aDFT

GaN = 3.198 Å
and cDFT

GaN = 5.199 Å, again showing agreement with the X-ray data aexp
GaN = 3.1890 Å

and cexp
GaN = 5.1864 Å [38]. PBEsol approximation provides an erroneous result for band

structure in which the gap is closed. Therefore, the band diagrams were plotted from
calculations using Ferreira et al. GGA-1/2 approximation [39,40]. It provides effective
masses, bandgap (BG) energies, and more generally, the band structures are in agreement
with experimental data [40]. The GGA-1/2 approximation calculations were used for the
positions of atoms and a periodic cell parameter relaxed to equilibrium in GGA-PBEsol
approximation. All atom positions were changed to reduce the single atom forces at a
level below 0.005 eV/Å. The bandgap of the InN crystal was: EDFT

g (InN) = 0.75 eV .
The bandgap of InN was the subject of initial controversy. Finally, the experimental data
of several papers established InN gap value as (Eexp

g (InN) = 0.65 eV ) [41–43]. The ab
initio gap value of GaN was EDFT

g (GaN) = 3.51 eV . This could be compared to the well-
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established experimental GaN bandgap Eexp
g (GaN) = 3.47 eV [44,45]. A convergence

criterion for a self-consistent field (SCF) loop termination was that the maximum difference
between the output and the input for any element of the density matrix had to be below 10−4.

3. Results

Ab initio calculations were used to simulate the In-Ga-N supercell composed of
the three chemically different regions, arranged along the c-axis, i.e., along [0001] direc-
tion: (i) uniform GaN layer, (ii) uniform In0.5G0.5N layer, (iii) graded InxGa1−xN layer
(0.0 ≤ x ≤ 0.5). This is a direct implementation of the calculation method successfully used
in determination of polarization doping in an AlN-GaN system [23]. As in the standard
supercell DFT calculations, the periodic boundary conditions are imposed on all boundaries
of the supercell. The atomic arrangement in the supercell is (Figure 1):

(i) Four Ga-N double atomic layers (metal and nonmetal layers);
(ii) Four In0.5Ga0.5N double atomic layers (metal and nonmetal layers);
(iii) Sixteen linearly graded Ga-In-N double atomic layers, with Ga content increasing

or decreasing along [0001] direction (metal layers composed of Ga and In, nonmetal
layer composed of N).
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Figure 1. (a) InxGa1−xN/GaN/In0.5Ga0.5N and (b) InxGa1−xN/In0.5Ga0.5N/GaN supercells that
were subject to ab initio calculations. The GaxIn1−xN layer is graded linearly, with (a) increasing and
(b) decreasing In concentration towards the bottom of the ([0001] direction). Ga, In and N atoms are
represented by yellow, green and blue balls, respectively.

In the ternary alloy section, the metal atoms are distributed randomly within each
layer independently. The number of In atoms in the neighboring layers changes every
two layers. Thus, the number of the In and Ga atoms is set in the layer so that average
concentration is changed along the z-axis linearly (Figure 2). The lattice positions of In
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and Ga atoms within the layer are generated based on a random number of generators
employed in many Monte Carlo simulations. Therefore, the selection enforces uniform
sampling in the lattice sites, i.e., the method not prone to systematic errors, generating a
relatively high level of numeric noise. The potential profiles presented in Figure 3 confirm
that the random factor is not important. This remarkable effect results from a long range
of Coulomb interactions that smooth out the potential profile. In the effect, the potential
profile does not show any considerable local variations related to InGaN configuration.
The selected positions of In and Ga atoms in the neighboring layers are uncorrelated. In
addition, several configurations were used to obtain the averaged quantities.
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Figure 2. Indium concentration (x) along the [000-1] axis in the structures presented in Figure 1. The 

zero coordinate is set at the bottom of the cell. The red circles and the blue squares represent indium 

concentration in the lattice plotted in Figure 1a,b, respectively. The line is for guiding the eye only. 

Figure 2. Indium concentration (x) along the [000-1] axis in the structures presented in Figure 1. The
zero coordinate is set at the bottom of the cell. The red circles and the blue squares represent indium
concentration in the lattice plotted in Figure 1a,b, respectively. The line is for guiding the eye only.
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Figure 3. The averaged potential profile obtained from ab initio calculations of the structures in
Figure 1a. The zero coordinate value is set at the bottom of the cell. Solid blue lines represent averaged
potential profiles, red dashed lines—parabolic approximation in the graded regions; green dashed
lines—linear approximation in the uniform regions.
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The averaged composition of the atomic layers is presented in Figure 2. The graded
region consist of eight unit cells in which the In concentration changed from 0 to 0.5.
Therefore, the average concentration change across the whole graded layer, i.e., at the
approximate distance of 8c = 4.3612 nm was ∆x = 0.5. The resulting concentration slope
is sc = dx

dz = 0.115 nm−1.
The polarization is expected to vary linearly with the In and Ga concentrations. The

polarization change should give a bulk charge density ρ
(→

r
)

, which is related to the

electrical potential ϕ
(→

r
)

in accordance with Poisson equation:

∇ •
(

εb

(→
r
)
∇ϕ

(→
r
))

=
−ρpd

(→
r
)

εo
(1)

where εb is the static dielectric constant of the semiconductor and εo dielectric permittivity. The
dielectric constants of InN and GaN are different therefore, the Vegard law is used for graded
region εb(x) = x εb−InN + (1− x) εb−GaN, where εb−InN = 14.61 and εb−GaN = 10.28 [46].
Using this approximation, the variation of the dielectric constant along z coordinate in the
graded region can be represented as εb(z) = q1 + q2z, where these parameters are:

q1 = εb−GaN , q2 = (εb−GaN − εb−InN) sc (2a)

q1 = (εb−GaN + εb−InN)/2 , q2 = (εb−GaN − εb−InN) sc (2b)

The electric potential profile was obtained by exact analytical solution of
Equations (1) and (2) within the graded region to obtain

ϕ(z) = a0 + a1 log(q1 + q2z)−
ρpd

εoq2
z = a0 + a1 log(q1 + q2z) + a2z (3)

where constants a0 and a1 depend on the boundary conditions, and a2 depends on polariza-
tion charge ρpd, electric constant ε0 and parameter q1. In this case, boundary conditions
are not used, as constants a0, a1 and a2 are fitted to the potential obtained from the profile
that is averaged in the plane perpendicular to c-axis, derived from ab initio calculations.
The plane averaged potential is highly oscillatory due to maxima from atomic core charges.
The basic procedure is smoothing by adjacent averaging over the c lattice parameter period.
Still, the potential oscillations cannot be completely averaged out due to the change of the
lattice constant in the graded region.

On the other hand, in non-graded regions, parameter εb is constant and we obtain
a linear potential, as the averaged bulk charge is zero. The obtained potential profiles
corresponding to the supercell presented in Figure 1a are shown in Figure 3.

The segments of the profile obtained in the uniform GaN, uniform In0.5Ga0.5N and
linearly graded InxGa1−xN have distinctively different space dependence. The sections
with uniform concentration are linear, whereas the potential profile within the linearly
graded alloy are parabolic, typical for the systems having uniform bulk charge density.
In addition, at the In0.5Ga0.5N/GaN interface, a potential jump is observed, due to the
emergence of a dipole layer. The two different averaging procedures provided slightly
different profiles: more or less oscillatory in the uniform and graded regions and the
different potential jump at the In0.5Ga0.5N/GaN interface.

As it was shown, the potential profile in the graded region closely follows the solution
(3) confirming the assumption of uniform charge density in this region. The following
parameters were obtained: a0 = −134 V, a1 = 52.7 V and a2 = −2.173 V

nm . The bulk charge
density derived via Equations (2a) and (3) is: ρpd = 9.55× 106 C

m3 (i.e., 5.96 × 1019 cm−3).
From the geometric data, the thickness of the graded region is dgrad

∼= 4.3612 nm. Thus,
the obtained surface sheet charge density is ρsur f = 4.165× 10−2 C

m2 .
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In the uniform regions, the potential profiles are linear, confirming the absence of the
bulk charge density. From the linear approximation, the electric field can be derived. The

following field values were obtained:
→
EGaN(a) = −∇ϕ = 0.287 V/nm = 2.87× 10−2V/Å

and
→
EGaInN(a) = −∇ϕ = −0.487 V/nm = −4.87× 10−2 V/Å. The sheet charge density

at the interfaces obtained via Gauss law (
→
n —unit normal vector, perpendicular to the

interface):

ρs = εo

[(
εGaN + ε InN

2

)→
EGaInN − εGaN

→
EGaN

]
→
n =

(→
PGaInN −

→
PGaN

)
→
n (4)

is ρs = −7.59× 10−2C/m2. This has to be compared with the estimate obtained above by in-
tegration of bulk charge over the thickness of the graded region which was
ρsur f = 4.165× 10−2C/m2. The difference is due to interfacial charges present on the
interfaces between the graded layer and neighboring layers, which do not contribute to the
spatial polarization charge.

Similar analysis could be made for the case presented in Figure 1b. The obtained
potential profiles, corresponding to the supercell presented in Figure 1b are shown in
Figure 4. From the fit to Formula (3), the following parameters were obtained: a0 = 250 V,
a1 = −103 V/nm and a2 = −4.73 V/nm2. The charge density derived via Equation (3)
is: ρpd = 2.08× 107C/m3 (i.e., 1.3 × 1020 cm−3). From the geometric data, the thickness
of graded region is dgrad

∼= 4.3612 nm. Thus, the obtained surface sheet charge density is
ρsur f = −9.065× 10−2 C

m2 .
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Figure 4. The averaged electric potential profile obtained from ab initio calculations of the structures
in Figure 1b. The zero distance is set at the bottom of the cell. Solid blue lines represent averaged
potential profiles, red dashed lines—parabolic approximation in the graded regions; green dashed
lines—linear approximation in the uniform regions.

In the uniform regions, the potential profiles are linear, which confirms the absence of
the bulk charge density. The following field values were obtained from linear approxima-

tions:
→
EGaN(a) = −∇ϕ = −0.353V/nm = −3.53× 10−2V/Å and

→
EGaInN(a) = −∇ϕ =

0.309V/nm = 3.09× 10−2V/Å. The surface charge density at the interfaces obtained from
Gauss law (Equation (4)) is ρs = 6.62× 10−2C/m2. This has to be compared with the
estimate obtained above by integration of bulk charge over the thickness of the graded
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region which was is ρsur f = −9.07× 10−4C/m2. Again, the difference is due to interfacial
charges present on the interfaces between the graded layer and neighboring layers.

In summary, the surface density is obtained in case (a) from the bulk density
ρsur f = 4.165× 10−2 C

m2 . In the second case, this value is ρsur f = −9.065× 10−2 C
m2 . The dis-

crepancy between case (a) and (b) may be related to the fact that at the Ga0.5In0.5N/GaxIn1−xN
system bandgap is small so the mobile band charge may affect the obtained potential profile
and the resulting polarization doping bulk charge. Therefore, the polarization doping bulk
charge obtained is ρpd = 9.55× 106 C

m3 and ρpd = −2.079× 107 C
m3 in case (a) and (b) respec-

tively. This could be translated into the elementary charge density (a) n = 5.97 × 1019 cm−3

and (b) p = 1.3 × 1020 cm−3. From these, the values of polarization doping parameters
Qpol could be obtained as:

Qpol =
ρpd

e sc
=

∆P
e

(5)

From these calculations, the values of polarization doping parameters are:
(a) Qpol = 0.52 nm−2 and (b) Qpol = −1.13 nm−2. Thus these values can be used to calcu-
late the InN-GaN polarization difference as: (a) ∆PGaN−InN = PGaN − PInN = Qpol e =

0.083 C
m2 and (b) ∆PGaN−InN = PGaN − PInN = −Qpol e = 0.181 C

m2 . The critical evalua-
tion of the polarization difference was given in [46]. The obtained polarization difference
was calculated using the piezoelectric constants from [13,14]. In the calculations, the
elastic constants obtained from Mahata et al. [47] have been used. Invoking the mechan-
ical stability rule ε33 = −2C13ε11/C33, the polarization difference may be obtained as
a function of a lattice parameter. The data collected in [46] indicate that the polariza-
tion difference obtained in [13] changes from ∆PGaN−InN = 0.09C/m2 for a = 3.113 nm to
∆PGaN−InN = 0.10C/m2 for a = 3.195 nm [13,46]. Ref. [14] provides similar dependence on
the lattice parameters but the values are systematically lower ∆PGaN−InN = 0.07C/m2 for
a = 3.113 nm to ∆PGaN−InN = 0.09C/m2 for a = 3.113 nm [14,46]. These values are slightly
smaller than those obtained in the present simulations. Nevertheless, basic agreement
between the earlier results and present simulations was obtained, proving the validity of
the present approach.

Finally, the InxGa1−xN/GaN/In0.5Ga0.5N and InxGa1−xN/In0.5Ga0.5N/GaN struc-
tures described in Figure 1 have band profiles calculated from ab initio data by a projection
of band states on the atom row states. This exact procedure was used previously for both
AlN/GaN MQWs [16] and surface slab [48] simulations. The obtained results, presented in
Figure 5, indicate that the Fermi level is located in the bandgap so the contribution of free
carriers is small. In fact, the low InN bandgap leads to a small energy difference between
the valence band maximum (VBM) and the Fermi energy in the fraction of the simulated
system. It is expected that due to the relatively small InN bandgap (EDFT

g (InN) = 0.75 eV)
compared to a wide GaN energy gap (EDFT

g (GaN) = 3.51 eV), the smallest VBM-Fermi
energy distance should be observed in Ga0.5In0.5N layer. It is not due to the combination
of the energy change and the induced electric fields in case (a) that causes the highest
VBM energy and is located in the graded InxGa1−xN layer interior about 1 nm from the
In0.5Ga0.5N/InxGa1−xN interface. The estimated energy difference is about 0.1 eV; there-
fore, the screening by the mobile charge may contribute to the potential profile in the
graded region. In case (b), the highest VBM energy is located at the In0.5Ga0.5N/GaN
interface, due to the contribution of the polarization induced charge and dipole density.
Again, we expect that this contribution may affect the obtained electric field jump at this
interface. Therefore, the deviation in polarization difference obtained here and reported in
the previous publications may be attributed to these factors [13,14,46].
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represents the averaged potential multiplied by the electron charge.

From the point of view of possible applications, the emergence of the mobile carriers in
addition to the immobile charge of the polarization-doping system is crucial, as discussed
in [23]. It was found that in the case of AlxGa1−xN graded systems, the widening of the
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uniform part of GaN or In0.5Ga0.5N leads to penetration of the Fermi level in the conduction
and the valence bands, so that the mobile carriers can screen the field. In AlxGa1−xN graded
systems, the effect was more symmetric, the Fermi level was located at the midgap. In the case
of the InxGa1−xN graded system, the Fermi level was located in the VBM vicinity. This opens
the possibility of relatively easy emergence of holes which are particularly interesting in long
wavelength devices, such as green and red laser diodes (LDs) and light-emitting diodes (LEDs).
The solution of the p-type doping of In-containing parts of the device may be facilitated by the
use of InxGa1−xN graded layers [22]. The design of such devices is possible through the use
of drift-diffusion-based software [49–54]. This software was used in the simulation of nitride
devices based on AlxGa1−xN graded systems [48]. The effect has immense technological
importance as scattering by ionized defects is absent [55,56]. Thus, alloy scattering remains
the dominant scattering process limiting carrier mobility [19,55,57]. Recently, polarization
doping was successfully used in the design of AlGaN UVB LEDs proving that the concept
could be used in nitride optoelectronic devices [30,58]. The present work opens its application
in InGaN systems for the design of long wavelength LEDs and LDs.

4. Conclusions

Ab initio simulations of the InxGa1−xN/Ino.5Ga0.5N/GaN system proved the existence
of the bulk polarization-doping immobile charge in the graded InxGa1−xN layer. It was
shown that the bulk charge can be obtained using the following relation ρpd = ∆P

(
dx
dz

)
where the InN-GaN polarization difference is ∆P = ∆PGaN−InN = PGaN − PInN . The
resulting polarization difference is ∆PGaN−InN = PGaN − PInN = 0.13 ∓ 0.02 C/m2. The
polarization difference is dependent on the lattice parameter via strong piezoelectric effects.
Both these results, i.e., the magnitude and the piezo-dependence, are in accordance with
the earlier critical evaluation of the polarization in [46] and the earlier obtained results
in [13,14,46].

The obtained results are affected by several factors, characteristic of the investigated
systems. InN is a narrow band material which entails a relatively small difference of the
VBM and Fermi energy. Therefore, the mobile band charge (holes) may affect the electric
potential distribution used to determine the value of the bulk charge density.

The obtained results indicate the existence of the polarization induced charge density
in nitride heterostructures, in accordance with the polarization difference. In addition, the
potential jumps of the order of 1 V at the interfaces prove the existence of the surface dipole
layer at nitride heterointerfaces.

These results could be potentially applied in the p-type polarization doping of the
In-rich structures used in green and red LEDs and LDs technology. Therefore, application
of such a design may be highly beneficial in the extension of the emitted light range to
longer wavelengths.
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