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Abstract: AlSi10Mg has a good forming ability and has been widely accepted as an optimal material
for selective laser melting (SLM). However, the strength and elongation of unmodified AlSi10Mg
are insufficient, which limits its application in the space industry. In this paper, yttrium oxide
(Y2O3) nanoparticles modified AlSi10Mg composites that were manufactured using SLM. The
effects of Y2O3 nanoparticles (0~2 wt.% addition) on the microstructure and mechanical prop-
erties of AlSi10Mg alloys were investigated. An ultimate tensile strength of 500.3 MPa, a yield
strength of 322.3 MPa, an elongation of 9.7%, a good friction coefficient of 0.43, and a wear rate of
(3.40 ± 0.09) ×10−4 mm3·N−1·m−1 were obtained with the addition of 0.5 wt.% Y2O3 nanoparticles,
and all these parameters were higher than those of the SLMed AlSi10Mg alloy. The microhardness
of the composite with 1.0 wt.% Y2O3 reached 145.6 HV0.1, which is an increase of approximately
22% compared to the unreinforced AlSi10Mg. The improvement of tensile properties can mainly be
attributed to Orowan strengthening, fine grain strengthening, and load-bearing strengthening. The
results show that adding an appropriate amount of Y2O3 nanoparticles can significantly improve the
properties of the SLMed AlSi10Mg alloy.

Keywords: selective laser melting; Y2O3 nanoparticles; AlSi10Mg alloy; microstructure; mechanical properties

1. Introduction

Additive manufacturing is a potentially disruptive technology across multiple in-
dustries, including automotive, biomedical, and aerospace [1]. The principle of additive
manufacturing is to accumulate materials point by point on the surfaces and solidify them
into bodies layer by layer [2], enabling the formation of complex parts [3] and increasing
product customization [4]. As a dominant AM technology, SLM is highly appreciated
for its relatively low surface roughness, high geometric accuracy, and good mechanical
properties [5,6]. Based on previously established CAD data, SLM selectively melts a fixed-
thickness powder layer on the solidified powder bed, and quickly, layer by layer, produces
three-dimensional parts with complex shapes [7,8].

AlSi10Mg belongs to the Al-Si series of aluminum alloys. It has many advantages, such
as high specific strength, good thermal conductivity, small thermal expansion coefficient,
and excellent casting and welding performance, and it is widely applied in the military,
automotive, aerospace, and medical industries [9–11]. Although Al-Si alloys have a good
forming ability, their strength and elongation are insufficient, which limits their application
in the space industry. Therefore, researchers often introduce nanoparticles to obtain a better
performance from Al-Si alloys.
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Currently, there is much research on preparing AlSi10Mg alloys by adding nanoparticles,
such as LaB6 [12], CNTs [13,14], GNPs [15], TiC [16], TiB2 [17], SiC [18], Al2O3 [19], AlN [20],
BN [21], and TiN [22], to improve mechanical properties. Tan et al. [12] used an edge-to-edge
model (E2EM) to study the crystallographic match between Al and other nanoparticles. It
was discovered that LaB6 is a good candidate as a grain-refining agent, and the LaB6-doped
AlSi10Mg alloy showed excellent isotropic mechanical properties due to grain refinement
and homogeneous organization. Jiang et al. [13] fabricated AlSi10Mg composites containing
1 wt.% CNTs by the ultrasonic stirring of a solution, and the tensile strength reached 499
MPa, which was about 20% higher than without CNTs addition. Tiwari et al. [15] added
GNPs to AlSi10Mg powder, and the tensile strength and microhardness of the composites
increased by ~20% and ~30%, respectively, by SLM. Gu et al. [16] produced a new ring-
mounted TiC at the grain boundaries of the matrix by SLM, and the tensile strength was
enhanced without reducing the elongation. However, very little research was reported on
the overall improvement of the mechanical properties of aluminum-based nanocomposites,
which implies that it is essential to search for a novel nanoparticulate material that can provide
an overall enhancement of the mechanical properties.

Rare earth oxides such as Y2O3 are considered perfect chemical modifiers for Al-Si
alloys, since the ratio of atomic radius of Y relative to that of Si is very close to 1.646.
The mechanism of silicon modification in aluminum–silicon alloys is impurity-induced
twinning [23]. In Moussa’s study, it was discovered that the addition of small amounts
of Y2O3 nanoparticles to Al-Si alloys can reduce the grain size of α-Al and enhance the
strength and plasticity of cast samples [24]. Utilizing the refinement and modification
mechanism related to the twinning of {111}, the fracture mode gradually transfers from
cleavage transgranular fracture to the ductile-brittle fracture mode. Moreover, Y2O3 was
applied to improve the properties of 316L [25], pure tungsten [26], Inconel 625 [27], and
other materials processed by SLM, further proving its effectiveness as an oxide dispersion
strengthening addition. However, the effect of Y2O3 nanoparticles on the organization and
mechanical properties of AlSi10Mg alloys has not been explored yet. Whether the same
grain refinement effect can be achieved for AlSi10Mg is still unknown. Therefore, it is
important to investigate the enhancement capability and the strengthening mechanism of
Y2O3 nanoparticles for the AlSi10Mg alloys.

In this study, AlSi10Mg alloys specimens were printed by SLM, adding 0 to 2 wt.%
of Y2O3 nanoparticles. To investigate the effect of the addition of Y2O3 nanoparticles
on the microstructure and mechanical properties, the phase composition, microstructure,
grain size, and crystallographic texture of the SLMed specimens were analyzed by XRD,
SEM, and EBSD, respectively. Ultimate tensile strength, elongation, yield strength, Vickers
hardness, coefficient of friction, and wear rate were also measured.

2. Materials and Methods
2.1. Materials

A gas-atomized AlSi10Mg powder (Jiangsu Vilory Advanced Materials Technology
Co., Ltd., Xuzhou, China, the composition is shown in Table 1) with a particle size rang-
ing from 15 to 53 µm (Figure 1a) and commercial nano-Y2O3 (Beijing Zhongke Yannuo
Advanced Materials Technology Co., Ltd., Beijing, China) was used as raw materials. It
should be noticed that the nano Y2O3 we purchased were in the form of clustered pow-
ders as shown in Figure 1b, but the true particle size of Y2O3 is around 50 nm, as shown
in Figure 1c. The A QM-QX2 planetary ball mill (Nanjing Laibu Laboratory Equipment
Technology Co., Ltd., Nanjing, China) was used to uniformly disperse Y2O3 nanoparticles
on the surface of the AlSi10Mg powder. The powder mixture was sealed in stainless steel
bowls with a ball-to-powder ratio of 3:1. The rotation rate was set at 250 rpm with a total
milling time of 4 h. An interval of 10 min was set after each 20 min of milling in order to
avoid overheating of powder. The mixed powder was put in a vacuum drying oven, dried
at 120 ◦C for 3 h, and sealed in a vacuum bag for further use. The micro-morphology of the
composite powder after ball milling is shown in Figure 2, indicating that the sphericity of
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the AlSi10Mg powder is still relatively preserved after ball milling. Y2O3 is easily observed
on the powder surfaces. The elemental distribution mapping of Y shows that the Y2O3
nanoparticles are uniformly distributed on the surface of AlSi10Mg powder after ball
milling (Figure 2c–f).

Table 1. Chemical composition of the AlSi10Mg powder (wt.%).

Al Si Mg Fe Zn Mn Cu Ni Ti Pb Sn

Bal. 10.23 0.33 0.073 0.011 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005
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2.2. SLM Process

The AlSi10Mg and x wt.%Y2O3-AlSi10Mg samples were manufactured using an inde-
pendently developed SLM system (as shown in Figure 3a) using a fiber laser with a power
of 500 W, 1064 nm continuous wavelength, and a laser spot diameter of 75 µm (YLR-500
fiber laser, IPG/Germany). To prevent powder oxidation, we performed the SLM process
at argon pressure p < 0.1 MPa. After the atmosphere was stabilized, the gas flow was con-
trolled at 15 l/min. The optimized SLM parameter combinations were set as follows: laser
power (P) = 200 W, hatching distance (H) = 0.12 mm, laser scanning speed (V) = 1200 mm/s,
and layer thickness (L) = 0.02 mm. The optimized SLM parameter combinations are shown
in Table 2. The scan direction angle between neighboring layers was 67◦. Cubic specimens
with a side length of 10 mm were fabricated for the microstructural analysis. The relative
density analysis of the sample was performed using Archimedes’ principle. For simplicity,
the SLMed AlSi10Mg samples were named S0, and the composite samples with 0.5, 1.0, 1.5,
and 2.0 wt.% nano-Y2O3 were named S1, S2, S3, and S4, respectively (Table 3).
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Table 2. The optimized SLM parameter combinations.

Laser Power (W) Hatching Distance (mm) Scanning Speed (mm/s) Layer Thickness (mm)

200 0.12 1200 0.02

Table 3. Composition of the mixture powder (wt.%) and relative density (%) of different samples.

Samples AlSi10Mg Content Y2O3 Content Relative Density

S0 100 0 98.89
S1 99.5 0.5 99.45
S2 99.0 1.0 99.20
S3 98.5 1.5 98.62
S4 98.0 2.0 98.13

2.3. Microstructure Characterization

The microtopography of the AlSi10Mg/nano-Y2O3 powders and the microstructure of
the SLMed specimens were characterized by an Olympus optical microscopy (OM, BX53M,
Olympus, Tokyo, Japan) and a JEOL JSM-IT800SHL scanning electron microscope. The SLMed
specimens were pre-treated using mechanical grinding, polished using standard metallographic
methods, and then etched by Keller’s reagent (1 mL HF, 1.5 mL HCl, 2.5 mL HNO3, and
95 mL H2O). The phase composition of the specimens was analyzed using PANalytical X-ray
diffraction with a step size of 0.02◦ and the 2θ range from 20 to 90◦. The grain size and texture
of the composites were analyzed by electron backscatter diffraction (EBSD).

2.4. Mechanical Tests

The printing direction of all specimens are shown in Figure 3b. All specimens are
removed from the substrate by Wire Electrical Discharge Machining. Before mechanical
tests, all specimens were pre-treated using mechanically grinding and polished using
standard metallographic methods. According to the ASTM E8 standard, specimens for
the mechanical tensile test were machined into flat tensile coupons with a pitch length of
25 mm, a width of 6 mm, and a thickness of 2 mm (Figure 4). Room-temperature tensile tests
were operated on a tensile testing machine (C45, MTS, Minnesota, USA) with a constant
extension rate of 1 mm/min at room temperature. To ensure accurate measurement of
strain in tensile tests, an extensometer was used. At least three samples for each parameter
were printed and all tests were conducted three times, and the average value was taken
as the final result. The Vickers hardness (HV) of the samples was measured with an HVS-
1000A microhardness tester (Laizhou Huayin Test Instrument Co., Ltd., Yantai, China) at
room temperature with a load of 0.98 N and a duration time of 15 s. The wear/tribological
properties of the specimens were evaluated by a CF-I reciprocating tribometer (Lanzhou
ZhongKe KaiHua Sci. and Technol. Co., Ltd., Lanzhou, China). The tribometer was



Materials 2023, 16, 1222 5 of 17

equipped with a silicon nitride ball with a diameter of 6 mm. The friction unit was slid at a
speed of 0.05 m/s for 30 min under 5 N load. The track of the friction pair was 5 mm. Each
specimen was first polished and then conducted for three different runs. The coefficient
of friction (COF) was recorded during the tests. The wear volume (V) of different parts
was calculated by a MT-500 probe type abrasion mark measuring instrument (Lanzhou
ZhongKe KaiHua Sci. and Technol. Co., Ltd., Lanzhou, China). The wear rate (ω) was
identified byω = V/WL, where W was the contact load applied in the test and L was the
sliding distance.
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3. Results and Discussion
3.1. Phase Composition and Microstructural Characterization

Figure 5 shows the X-ray diffraction patterns (XRD) of the SLMed AlSi10Mg and Y2O3-
AlSi10Mg specimens. All of the samples have similar diffraction peaks, containing the main
peaks of the face-centered cubic (FCC) α-Al and eutectic Si phases. Si is supersaturated
and precipitates in the Al matrix because of the rapid cooling during the SLM process. In
addition, the Al3Y phase can be found in SLMed Y2O3-AlSi10Mg samples. The diffraction
peaks of (111) and (200) of Si are similar in intensity, which can be observed in Figure 4a.
The other samples have a preferred orientation, and the strongest diffraction peak for all
of them (200). The diffraction peaks are locally amplified to analyze the variation in the
α-Al matrix phase (Figure 4b). The careful comparison indicates that the diffraction peak
corresponding to the α-Al in the SLMed Y2O3-AlSi10Mg specimens has a slight shift to
the left compared with the SLMed AlSi10Mg, and the shift increases with the nano-Y2O3
content. According to the following Bragg formula in Equation (1) and the crystallographic
relationship in Equation (2), the following is the case:

2 dh k l sin θ = λ (1)

dh k l =
a√

h2 + k2 + l2
(2)

where θ denotes the diffraction angle, dhkl represents the crystal plane spacing, λ is the X-ray
wavelength, h, k, and l are the Miller indices of the crystal, and a is the lattice constant. It can
be inferred that when the diffraction peak shifts to the left, the lattice constant becomes larger.
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Figure 6 shows the typical microstructure of SLM samples. As shown in Figure 6a–e,
the SLMed samples have overlapping fish-scale molten pools. The molten pool of the
SLM samples is randomly distributed and their size is uneven. Under the same process
parameters, the relative density first increases and then decreases with the yttrium oxide
content, as shown in Table 3. The maximum relative density is 99.45% when 0.5 wt.% Y2O3
nanoparticles are added. The SEM image of the longitudinal section further visualizes the
details of the microstructure of the SLM samples, as shown in Figure 7. The boundaries
of the molten pool trajectory are visible. The alloy’s microstructure consists of a cell-like
Al matrix (dark phase) and a fibrous eutectic silicon grid (light phase). Thus, the main
reason for the occurrence of fibrous Si is the rapid solidification during SLM [14]. Inside
the molten pool, cell-like dendrites grow toward the center of the molten pool. Two zones
can be distinguished according to their morphology and size: a fine cellular zone at the
center of the melt pool and a coarse cellular zone at the molten pool boundary [3]. The cells
in samples modified by nano-Y2O3 are relatively refined (especially cells at the center of
the molten pool) compared to the SLMed samples.
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The cooling and solidification mode of the molten pool mainly depends on the time when
the powder is in contact with the laser, and the temperature gradient G and the crystal growth
rate R are the two factors affecting the grain growth morphology in the molten pool [8,28]. The
G is the temperature difference over a certain distance dT/dx and varies over the time and
place inside the melt pool. The R depends on the laser scanning speed and the angle between
the laser moving direction and the growth direction of the solidifying material [29]. The G/R
ratio determines the microstructural morphology. G × R represents the cooling rate, which
determines the fineness of the grains, and the larger the product, the finer the microstructure.
According to the Gaussian distribution of laser energy, the degree of undercooling gradually
decreases along the cross-section, with a maximum at the center of the molten pool and a
minimum at the boundary of the molten pool [30]. Therefore, two distinct areas can be seen
in the microstructure of the SLMed specimens.

3.2. Grain Size and Crystallographic Texture

To further investigate the microstructure characteristics, S0, S1, and S4 samples are
treated with EBSD as shown in Figure 8, which reveals a significant difference between
the SLMed Y2O3-AlSi10Mg specimens with different Y2O3 contents. Using IPF (inverse
pole figure) as a reference, it can be found that most of the grains in Figure 9a–c have the
crystal orientations of (001), (101), and (111). As shown in Figure 8a, the grain morphology
of specimen S0 exhibits obvious heterogeneity. In addition, the coarse columnar grains are
almost parallel to the building direction. The maximal intensity of the pole figures of the S0
reaches 4.19, as revealed in Figure 9a, which indicates that the SLMed AlSi10Mg alloy has a
strong texture. After adding 0.5 wt.% Y2O3 nanoparticles, many small grains nucleated.
The IPF color, as shown in Figure 9c, indicates that the equiaxed grains of S1 are randomly
oriented. The maximal intensity of the S1 pole figures is only 1.55, which indicates that
S1 has almost no texture, as shown in Figure 9b. The molten pool boundary inside S1 is
difficult to distinguish due to the high homogeneity of grain morphology. Figure 9b shows
that S4 has fine equiaxed crystals, small columnar crystals, and coarse equiaxed crystals.
Meanwhile, the highest intensity of the S4 pole figures is 3.25.
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The effect of the Y2O3 content on the grain size of the Y2O3-AlSi10Mg composite
specimens is investigated further. The detailed exploration is based on the EBSD orientation
mappings, and the resulting statistics are shown in Figure 10a,c,e. The average grain size
of the SLMed Y2O3-AlSi10Mg specimens with different Y2O3 contents (0 wt.%, 0.5 wt.%,
and 2.0 wt.%) is 1.742, 0.873, and 1.118 µm. Grain boundary angle misorientation is also
an important indicator of the microstructural characteristics of materials [22]. The grain
boundary angles can be segmented into high-angle grain boundaries (HAGBs > 15◦) and
low-angle grain boundaries (LAGBs < 15◦). Figure 10b,d,f, shows the grain boundary
misorientation distribution of S0, S1, and S4, respectively. The volume fractions of the
HAGBs in S0, S1, and S4 are 34.4, 64.9, and 54.8%, respectively. In the framework of
classical dislocation models, LAGBs can be described in terms of dislocation density [31].
The volume fraction of the LAGBs is proportional to the dislocation density.
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The grain refinement ability of yttrium oxide is also verified by the edge-to-edge
model (E2EM). The E2EM established by Zhang and Kelly was originally used to test
the actual atomic matching at the interface between two phases, and in recent years, it
has been used to find a grain refining agent that promotes the heterogeneous nucleation
of grains in alloys [32–34]. The model is based on the assumption that the orientation
relationship of any two phases is determined by the minimum interfacial strain energy,
and the two phases are atomically matched to minimize the strain energy. It calculates the
orientation relationships between two phases based on the lattice constant, crystal structure,
and atomic position data. To obtain the best matching relationship, the atom matching
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direction must be carried out along the dense and sub-dense crystal directions, and the
interatomic spacing misfit (fr) must be less than 10%. These crystal directions are called
matching directions, and two pairs of matching crystal directions can uniquely determine a
pair of crystal faces, and if the interplanar spacing mismatch (fd) is also less than 10%, the
particle can serve as a heterogeneous nucleation core of the matrix [12].

Al has a lattice constant of 0.405 nm and is a face-centered cubic (fcc) structure [28]. It
contains three possible close-packed or nearly close-packed directions: <110>Al, <100>Al,
and <112>Al, and three close and nearly close-packed planes: {111} Al, {200} Al, and {220} Al.
Y2O3 has a cubic structure with a lattice parameter of 1.06 nm. There are three potential
close-packed directions: <110>Y2O3, <100> Y2O3, and<112> Y2O3. {222} Y2O3, {400} Y2O3, and
{440} Y2O3 are the close and nearly close-packed planes for Y2O3. There are two direction
pairs, <100>Al//<110> Y2O3 and <112>Al//<100> Y2O3, with the fr value of 7.46% and
6.85%, respectively, which are both less than 10%. Further, the valid close-packed plane
pairs include {200}Al//{044}Y2O3, with an fd value of 7.47%. According to the E2EM crystal-
lographic geometric model, the final predictive orientation relationship between Y2O3 and
Al matrix is as follows:

[100]Al//[110]Y2O3, (200)Al//(044)Y2O3

According to the E2EM model, the interplanar spacing mismatch and the interatomic
spacing misfit of the orientation relationships between Y2O3 and Al matrix are presented in
Figure 11. The calculated values are less than 10%. Therefore, the Y2O3 nanoparticles can be
used as effective grain refiners. A large number of Y2O3 nanoparticles can supply substantial
heterogeneous nucleation sites for α-Al, which can effectively facilitate the nucleation of α-Al
grains. As shown in Figure 8, the EBSD images illustrate the significant refinement of alloy
grains doped with Y2O3 nanoparticles compared to undoped AlSi10Mg alloys.
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3.3. Mechanical Properties

Figure 12 depicts the tensile properties of the SLM-processed AlSi10Mg and Y2O3-
AlSi10Mg alloys at room temperature. The data of the ultimate tensile strength (UTS),
elongation to failure (El), yield strength (YS), and Vickers hardness (HV0.1) are listed in
Table 4. The SLM-processed AlSi10Mg alloy has an ultimate tensile strength of 431.2 MPa,
yield strength of 264.4 MPa, and an elongation of 7%. After adding 0.5 wt.% of nano-Y2O3
particles, the S1 sample exhibits an ultimate tensile strength of 500.3 MPa, an elongation of
9.7%, and a yield strength of 322.3 Mpa. In general, using optimal processing parameters,
the SLM-fabricated Y2O3-AlSi10Mg specimen exhibits considerably higher strength than
the unreinforced AlSi10Mg alloy specimen. The UTS of S1 is increased by 16% compared
to S0, and the yield strength and elongation are also improved. With the increase in the
nanoparticles content, the microhardness first increases and then decreases, as shown in
Table 4. When 1.0 wt.% Y2O3 nanoparticles is added, the microhardness is up to 145.6 HV0.1,
which is 21.8% higher than the 119.5 HV0.1 of S0.



Materials 2023, 16, 1222 11 of 17
Materials 2023, 16, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 12. Ultimate tensile strength, yield strength, and elongation data of the SLMed AlSi10Mg 

and Y2O3-AlSi10Mg alloy. 

Table 4. Mechanical properties of SLM-processed specimens. 

Specimens 
Ultimate Tensile 

Strength (MPa) 

Yield Strength 

(MPa) 
Elongation (%) 

Vickers Hardness 

(HV0.1) 

S0 431.2 ± 5.4 264.4 ± 5.8 7 ± 0.5 119.5 ± 3.5 

S1 500.3 ± 7.1 322.3 ± 4.7 9.7 ± 0.3 128.8 ± 5.1 

S2 470.8 ± 7.4 298.9 ± 5.0 6.1 ± 0.6 145.6 ± 5.9 

S3 464.3 ± 8.4 289.2 ± 6.8 6.4 ± 0.6 128.4 ± 3.9 

S4 456.6 ± 17.6 273.8 ± 5.4 4.8 ± 0.2 129.2 ± 5.3 

The S1 sample exhibits great ultimate tensile strength (500.3 MPa), which is 69.1 MPa 

higher than that of the S0 sample, as shown in Table 4. The high strength of SLMed Y2O3-

AlSi10Mg samples can mainly owe to Orowan strengthening, fine grain strengthening, 

and load-bearing strengthening. 

The Orowan strengthening, caused by the resistance of tightly packed hard particles 

to the dislocation passing, is a very important item in the aluminum alloy strengthening 

mechanism [35]. For reinforced particles with an average diameter of 5 μm or larger, that 

mechanism is not a major factor. In contrast, the Orowan strengthening is more pro-

nounced when highly dispersed nanoparticles are present in the aluminum matrix [36]. It 

has been established that insoluble nanoparticles in the matrix can significantly improve 

the ability to hinder dislocations, even for only a small volume fraction. For composites 

containing nanoparticles, this is usually explained by the Orowan strengthening mecha-

nism: 

1/3
62 pm

Orowan

p

VG b

d



 =

 
  
 

 (3) 

where dp and Vp are the size of the Y2O3 nanoparticles (~50 nm) and the volume fraction 

(~0.938 vol%) of S1, respectively. The term b is the Burgers vector (~0.286 nm), and Gm is 

the shear modulus of the matrix (~26.5 GPa for Al). The result of the calculated ΔσOrowan is 

79.3 MPa. 

Figure 12. Ultimate tensile strength, yield strength, and elongation data of the SLMed AlSi10Mg and
Y2O3-AlSi10Mg alloy.

Table 4. Mechanical properties of SLM-processed specimens.

Specimens Ultimate Tensile
Strength (MPa)

Yield Strength
(MPa) Elongation (%) Vickers Hardness

(HV0.1)

S0 431.2 ± 5.4 264.4 ± 5.8 7 ± 0.5 119.5 ± 3.5
S1 500.3 ± 7.1 322.3 ± 4.7 9.7 ± 0.3 128.8 ± 5.1
S2 470.8 ± 7.4 298.9 ± 5.0 6.1 ± 0.6 145.6 ± 5.9
S3 464.3 ± 8.4 289.2 ± 6.8 6.4 ± 0.6 128.4 ± 3.9
S4 456.6 ± 17.6 273.8 ± 5.4 4.8 ± 0.2 129.2 ± 5.3

The S1 sample exhibits great ultimate tensile strength (500.3 MPa), which is 69.1 MPa
higher than that of the S0 sample, as shown in Table 4. The high strength of SLMed Y2O3-
AlSi10Mg samples can mainly owe to Orowan strengthening, fine grain strengthening, and
load-bearing strengthening.

The Orowan strengthening, caused by the resistance of tightly packed hard particles
to the dislocation passing, is a very important item in the aluminum alloy strengthening
mechanism [35]. For reinforced particles with an average diameter of 5 µm or larger, that
mechanism is not a major factor. In contrast, the Orowan strengthening is more pronounced
when highly dispersed nanoparticles are present in the aluminum matrix [36]. It has been
established that insoluble nanoparticles in the matrix can significantly improve the ability
to hinder dislocations, even for only a small volume fraction. For composites containing
nanoparticles, this is usually explained by the Orowan strengthening mechanism:

∆σOrowan =
2Gmb

dp

(
6Vp

π

)1/3
(3)

where dp and Vp are the size of the Y2O3 nanoparticles (~50 nm) and the volume fraction
(~0.938 vol%) of S1, respectively. The term b is the Burgers vector (~0.286 nm), and Gm is the
shear modulus of the matrix (~26.5 GPa for Al). The result of the calculated ∆σOrowan is 79.3 MPa.
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We all know that the grain boundary strength is stronger than that of grains [37]. The
finer the Al matrix grain, the more the grain boundaries, impeding dislocation motion.
According to the Hall–Petch formula [38], when the grain size decreases and the grain
boundary increases, the strength of the material increases.

σHall−Petch = σ0 + kd−
1
2 (4)

where d denotes the average grain size of metal, and k means the material constant. Ac-
cording to previous studies, the k for the Al alloy is set to 50 MPa µm1/2 [39]. As shown
in Figure 9, the average grain sizes of S0 and S1 are 1.742 and 0.873 µm. The calculated
∆σHall-Petch is 15.6 MPa.

The contribution of the load-bearing strengthening to the strength of the nanocompos-
ites (∆σLoad) can be expressed as follows [40]:

∆σLoad = 1.5Vpσm (5)

where σm is the YS of the AlSi10Mg alloy matrix (264.4 MPa). Vp is the volume fraction of
the nano-Y2O3. The result of the calculated ∆σLoad is 3.72 MPa. Therefore, the enhancement
in tensile strength in this study can be illustrated as follows:

∆σ = ∆σHall−Patch + ∆σOrowan + ∆σLoad (6)

The calculated total theoretical increment of the YS (∆σ = 98.62 MPa) is higher than
the actual yield strength enhancement (67.9 MPa) due to the presence of holes, and the
calculated theoretical increment does not reflect the actual enhancement of nano-Y2O3.
It is worth noting that the tensile strength does not increase with the addition of Y2O3
nanoparticles. The effect of relative density of SLMed samples on the mechanical and
microstructural properties of the final produced component (e.g., tensile strength, defects
formation, fracture toughness, friction and wear) is undeniable [41–43]. The elimination of
pores is necessary for obtaining simultaneously enhanced strength and ductility. Therefore,
the reason for the decrease in the strength increment of S2, S3, and S4 is that the porosity
increases with respect to the nano-Y2O3 content.

To better comprehend the fracture mechanism of the SLMed Y2O3-AlSi10Mg speci-
mens, the fracture morphology of S0, S1, S2, S3, and S4 are analyzed by SEM. As shown
in Figure 13a–e, all samples can observe the cleavage planes and dimples from the frac-
tography, revealing a mixed fracture pattern of ductile and brittle fracture. The high-
magnification SEM of the fracture morphology is shown in Figure 13f–j, and it can be
observed that there are some ligament fossae with a size less than 0.5 µm on the fracture
surface, and that the shape of the dimples is regular, but the depth is different. Deep and
dense dimples indicate the high elongation of S1, as shown in Figure 13g. As the Y2O3
content increases, some holes appear, which leads to an elongation decrease.

Figure 14 shows the coefficient of friction (COF) and the corresponding wear rate
of the AlSi10Mg and Y2O3-AlSi10Mg alloys. The COFs of Y2O3-AlSi10Mg composites
are higher than those of AlSi10Mg specimens in the initial stage, but the COFs are lower
than that of AlSi10Mg specimens in the steady state. The COF and wear rate of the
AlSi10Mg are 0.68 and (5.59 ± 0.15) × 10−4 mm3·N−1·m−1, concurrently, and the COF
curve exhibits a certain fluctuation. With the addition of Y2O3 nanoparticles, the wear
first decreases and then increases. When adding 0.5 wt.% Y2O3 nanoparticles, the COF of
the composites decreases from 0.68 to 0.43, and the wear rate is also significantly reduced,
from (5.59 ± 0.15) × 10−4 mm3·N−1·m−1 to (3.40 ± 0.09) × 10−4 mm3·N−1·m−1. The COF
curve of Y2O3-AlSi10Mg alloys is relatively stable.
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To further investigate the friction and wear mechanism, the wear surface topography
was inspected and is shown in Figure 15a–e. For the S0, the worn surface showed deep
grooves and debris (Figure 15a). Therefore, a combined mechanism of abrasive and
adhesive wear dominated, showing a relatively high average COF of ~0.709 and a high wear
rate of (5.59 ± 0.15) × 10−4 mm3·N−1·m−1 for S0. For the S1 and S2, small delamination
and pits are observed on the smooth worn surface, revealing a weak wear behavior in
this case, and implying that the dominant wear mechanism has changed to the adhesion
of a strain-hardened tribolayer. Owing to their high hardness, a high-density of hard
reinforcements dispersed in the soft matrix can effectively limit further material removal
in the course of the wear process [44]. However, the COF of the S4 increased to 0.65, and
the resultant wear rate also increased slightly to (4.67 ± 0.18) × 10−4 mm3·N−1·m−1. The
decrease in tribological performance in this instance was ascribed to the decrease in density
and the grain coarsening (Figure 8b), which will easily cause material delamination during
sliding, resulting in the spalling of the worn surface and attendant-limited wear resistance.
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4. Conclusions

The AlSi10Mg composites modified with Y2O3 nanoparticles were prepared by SLM.
The effect of nano-Y2O3 particles (0−2 wt.% addition) on the microstructure and mechanical
properties of AlSi10Mg alloy was studied under the same process parameters. The main
conclusions are as follows:

1. Adding 0.5 wt.% Y2O3 nanoparticles can significantly refine the grains from 1.742 to
0.873 µm, but further addition of Y2O3 nanoparticles will result in a grain size increase
and the decrease in the relative density;

2. The optimal nano-Y2O3 particle addition level is 0.5 wt.%, with a higher ultimate
tensile strength of 500.3 MPa, a yield strength of 322.3 MPa, and an elongation of 9.7%.
Both the Orowan strengthening effect and the load-bearing strengthening effect show
that the addition of nano-Y2O3 is beneficial to the grain refinement. However, since
the grain size gradually increases and the relative density decreases as the addition
level of Y2O3 passes 1 wt%, the strength of the material also experiences a decrease;

3. The wear resistance of the Y2O3-AlSi10Mg nanocomposites is improved compared to
that of the AlSi10Mg alloy. When adding 0.5 wt.% Y2O3 nanoparticles, the wear rate
is about 39% lower than that of the AlSi10Mg alloys, but when the addition of Y2O3
increases, the wear performance gradually decreases.
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