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Abstract: In this study, the uniaxial compression of random orientation ZK60 Mg alloy to different
strains was performed at room temperature. The microstructure evolution was characterized mainly
using electron backscattered diffraction (EBSD), and the mechanical property was evaluated by
the Vickers hardness test. During compression, extension twins nucleated, grew, and engulfed the
grain. Twins form a texture with the c-axis parallel to the compression direction. With the massive
nucleation and expansion of extension twins during compression, the twin boundary (TB) brought
the grain refinement, and the twin boundary-dislocation interaction significantly increased the strain
hardening rate of ZK60 Mg alloy, both leading to its significantly increasement of the hardness.
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1. Introduction

Mg alloy is the lightest structural metal, which can play an important role in energy
saving and emission reduction. In industry, over 80% of Mg components are made by
high-pressure die casting [1], but casting brings defects such as porosity and shrinkage
cavity [2,3]; these defects reduce the consistency of mechanical properties and limit the
widespread use of Mg alloys. In contrast, the Mg alloy processed by rolling, extrusion,
and forging can reduce casting defects, refine the structure and improve mechanical prop-
erties [4–7]. Some wrought Mg alloys made by rotary swaging have a strength of over
700 MPa [5,8], which shows the ample potential of Mg alloy for application.

As a result, studying the microstructure evolution during the plastic forming is critical.
In the mechanical deformation process, dislocation slipping and twinning are the main
deformation methods. For dislocation slipping, non-basal slip is difficult to activate at
room temperature. This phenomenon makes the Mg alloy prone to cracking during cold
working [9]. Then, thermal processing of magnesium alloys was developed to promote
the activation of non-basal slip by increasing the processing temperature. Although the
activation of non-basal slip can be promoted by heating, Mg alloy has a high thermal
conductivity, which is significantly higher than aluminum alloy and steel [10–12]. This
physical property causes the temperature of Mg alloy dropping rapidly during processing,
which results in a narrow processing window for Mg alloy, making it difficult to ensure
that the Mg alloy ingots are deformed within the ideal temperature range. When the
temperature is below the processing window, the large strain will lead to cracking and
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strength inhomogeneity of the material [13]. In contrast, the CRSS of twinning is almost
independent of temperature, so the control of Mg alloy microstructure by twinning at room
temperature becomes the preferred choice.

Twinning is the crystallographic shear process in grain which can change the grain
orientation for a certain angle. Twin boundary also can divide the matrix and brings grain
refinement. At the same time, twin boundaries as two-dimensional lattice defects can be
recrystallization nucleation sites, which facilitate recrystallization [14]. It is evident that
twinning can be used to improve the mechanical properties of Mg alloys. As mentioned
above, twinning can effectively regulate the microstructure and improves the mechanical
properties of Mg alloys. We can promote twinning by reducing the temperature since the
CRSS of twinning is less affected by temperature. The CRSS of {10-12} extension twinning
is close to the basal slip in Mg alloy [15], which means the {10-12} twinning can be activated
easily. This means that it is feasible to regulate the microstructure of Mg alloys by twinning.

In previous studies, it has been found that there are many factors affecting the twinning
behavior of Mg alloys, such as temperature [16], alloy composition [17–19], strain [20], etc.
Therefore, we need a lot of systematic research to regulate the twinning behavior in Mg
alloys [21]. Although some studies have been carried out on twinning in Mg alloys, the
twinning behavior is not fully investigated at present, and twinning behavior is complex
and needs to be studied in more depth. For example, rare earth elements can significantly
inhibit twinning and producing the unusual {11-21} twins [22,23]. In addition, the adding
of reinforcing phase in the magnesium alloy can effectively promote the nucleation of twin
variants [24].

Strain also significantly affects the evolution of twinning behavior of Mg alloys during
processing, which will have a significant effect on the final properties of Mg alloys. Many
twinning behavior of single-component Mg alloys has been studied, but it is not detailed
and thorough enough [25,26]. In order to make full use of the regulation of Mg alloy
twinning on the microstructure, more studies are needed on the twinning behavior of Mg
alloys from small strains to failure. In addition, the current studies are based on hot-worked,
strong-textured Mg alloys, and there is a lack of a specific study of a particular Mg alloy,
especially in different strains.

ZK60 Mg alloy is the typical high-strength wrought Mg alloy, and advanced processing
has been widely used on it [27,28]. In this article, the cast ZK60 Mg alloy with random
orientation was selected, and deformed at room temperature. EBSD was mainly used to
analyze its twinning behavior, and related microstructure evolution, texture and mechanical
properties were also investigated.

2. Materials and Methods
2.1. Materials Preparation

The material used in this research is a commercial cast ZK60 (Mg-Zn-Zr) alloy in
homogenized state; Table 1 presents the chemical composition of this alloy. In this study,
the cylinder compression sample was used, with dimensions Φ10 × 15 mm, machined by
wire electrical discharge machining.

Table 1. The chemical composition of ZK60 Mg alloy.

Mg Zn Zr Y

wt% Bal. 5.56 0.58 <0.01

2.2. Microstructure Characterization

The phase composition of the specimen was identified by X-ray diffraction analysis
(XRD) (Rigaku D/Max-2500 PC, Tokyo, Japan) with a scan speed of 2◦/min. The metallog-
raphy was observed by optical microscope (OM) (Zeiss Axio Observer Z1, Jena, Germany).
The microstructure and the element distribution were observed and analyzed by environ-
mental scanning electron microscope (ESEM) (FEI XL30 FEG, Eindhoven, The Netherland)



Materials 2023, 16, 1163 3 of 14

equipped with energy dispersive spectrometer (EDS) (EDAX, Oxfordshire, UK). Transmis-
sion electron microscope (TEM) (JEOL J2100F, Tokyo, Japan) was also used to analyze the
detailed microstructure of the ZK60 Mg alloy.

2.3. Electron Backscatter Diffraction Analyzation

The electron backscatter diffraction (EBSD) specimens were firstly grinded with abra-
sive paper from 200# to 5000#, and electrochemical polishing was used at 15 V with the
electrolyte (90% ethanol and 10% perchloric acid) for the 30 s. The EBSD analysis was con-
ducted by ESEM (Thermo Scientific Quattro S, Waltham, MA, USA) equipped with EBSD
detector (EDAX, DigiView, Mahwah, MA, USA). A 20 KeV electron beam was selected with
a spot size of 6.5, and the step size was 2.5 µm. The EBSD data was analyzed by TSL OIM
software (Version 8.62).

2.4. Room Temperature Compression

The specimens were compressed at room temperature with a strain rate of 0.001 s−1.
The compression experiment works on the universal testing machine (Shimadzu, AG-X
50 kN, Kyoto, Japan). A schematic of the experimental approach and sampling observation
is illustrated in Figure 1, and the reference directions are defined as CD (compression
direction) and TD (transverse detraction).
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Figure 1. The compression scheme and EBSD sample coordinate system.

2.5. Hardness Test

The Vickers hardness test used the MHVD-1000 AP microhardness tester (Shanghai
Optics And Dine Mechanics Institution, Chinese Academy of Sciences, Shanghai, China)
with an applied load of 500 g and a holding time of 15 s. For experimental confidence,
every specimen was tested eight times at the core area.

3. Results
3.1. Microstructure Characterization of Initial ZK60 Alloy

Figure 2 shows the XRD pattern of the initial ZK60 alloy. The cast ZK60 alloy is mainly
composed α-Mg, and a small amount of MgZn2 and Zn2Zr phase. Figure 3 shows the OM
and SEM images of the as-homogenized alloy. The initial microstructure consists polygonal
grains, and most grain size was over 200 µm. The petaloid patches were observed in the
interior of the matrix, and some bulk-shaped phases were distributed randomly at the grain
boundary. Figure 3b is the high magnification image of petaloid patches, and a high-density
rod precipitated phase was observed.
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Figure 3. (a) Metallograph and (b) SEM image of cast ZK60 Mg alloy.

Figure 4a is the TEM image of the initial ZK60 Mg alloy. The rod precipitated phase
has the preferred orientation, which has been confirmed is parallel with the c-axis of the
grain [29,30]. Figure 4b shows the bright filed STEM image and EDS mapping of dense
distribution of rod phase. From the EDS mapping, we can see the Zn element congregate
at the rod phase. Combined with XRD results, the rod-like precipitated phase can be
identified as MgZn2. Figure 5 shows the SEM-EDS results, and bulk-shaped phases at the
grain boundary were Zn2Zr and ZnZr, which was also identified in the XRD pattern.
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Figure 5. (a,b) the SEM image of particle phase at the grain boundary, and corresponding spot
spectrum EDS results of bulk-shaped phases at grain boundary.

3.2. The Compression Curves

Figure 6 shows the true stress-strain curve and strain hardening rate-true strain curve.
The concave down of the true stress-strain curve and the uplift of strain hardening rate-true
strain curve all manifest the main deformation mechanism of ZK60 Mg alloy is {10-12}
extension twinning [20,31,32]. Table 2 shows the strain of each point in Figure 6. For points
P1 and P2, which are points with small strains, they are mainly used to observe the strain
range in which twinning occurs and whether twinning occurs at small strains. For point
P3, this is the point where the strain hardening rate appears to rise significantly near the
middle of the range taken. Point P4 is located in the area where the strain hardening rate
falls rapidly again after the highest point, and point P5 in the area where the decreasing
trend of strain hardening rate slows down. For the region where P6 is located, there is a
significant decrease in strain hardening rate and fracture may have occurred in this region.

Materials 2023, 16, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 6. The true stress-strain curve and strain hardening rate-true strain curve. 

3.3. Microstructure Evolution 

From Figure 7, the EBSD results show that the initial alloy has equiaxed grains with 

curved boundaries, and the pole figure (PF) shows the initial alloy exhibits low texture 

intensity and multi-peaks, which means the grains have a random orientation. Figure 7c 

shows that the grain size is mainly distributed from 140 to 240 μm, and the average grain 

size is 173.6 μm. Because of the noise and some tiny grains. The statistical grain size can 

have a small gap from the actual grain size. Figure 7d exhibits that the grain boundaries 

are mainly high-angle grain boundaries (HAGBs). 

 
Figure 7. (a) The inverse pole figure (IPF) map, (b) pole figure, (c) grain size, and (d) misorientation 

angle distribution of as-homogenized ZK60 Mg alloy. 

From Figure 8, the IPF map shows no twins nucleated at P1, but in metallography, 

small twins can be observed. The tiny morphology and the 2.5 μm step size keep the twins 

from being indexed by EBSD. At P1 the stress and train were 23.8 MPa and 0.25%. In 

Koike’s work the {10-12} extension twin CRSS of polycrystalline Mg alloys is activated at 

2–2.8 MPa [33]. Lu et al. found twin nucleates under the strain of 0.3% [34], and Chen et 

al. found the twins nucleated at the strain of 0.25% [35]. These previous works confirm 

that twins can be nucleated at low strain and stress. 

Figure 6. The true stress-strain curve and strain hardening rate-true strain curve.

Table 2. The six compression strain points for further microstructure characterization.

P1 P2 P3 P4 P5 P6

True Strain 0.0025 0.0275 0.055 0.091 0.136 0.187

Engineering Strain 0.0025 0.0279 0.057 0.094 0.146 0.206
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3.3. Microstructure Evolution

From Figure 7, the EBSD results show that the initial alloy has equiaxed grains with
curved boundaries, and the pole figure (PF) shows the initial alloy exhibits low texture
intensity and multi-peaks, which means the grains have a random orientation. Figure 7c
shows that the grain size is mainly distributed from 140 to 240 µm, and the average grain
size is 173.6 µm. Because of the noise and some tiny grains. The statistical grain size can
have a small gap from the actual grain size. Figure 7d exhibits that the grain boundaries
are mainly high-angle grain boundaries (HAGBs).
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Figure 7. (a) The inverse pole figure (IPF) map, (b) pole figure, (c) grain size, and (d) misorientation
angle distribution of as-homogenized ZK60 Mg alloy.

From Figure 8, the IPF map shows no twins nucleated at P1, but in metallography,
small twins can be observed. The tiny morphology and the 2.5 µm step size keep the twins
from being indexed by EBSD. At P1 the stress and train were 23.8 MPa and 0.25%. In
Koike’s work the {10-12} extension twin CRSS of polycrystalline Mg alloys is activated at
2–2.8 MPa [33]. Lu et al. found twin nucleates under the strain of 0.3% [34], and Chen et al.
found the twins nucleated at the strain of 0.25% [35]. These previous works confirm that
twins can be nucleated at low strain and stress.
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Figure 9 shows the IPF + IQ (image quality) + GB (Grain Boundary) map in the
compression process. At P2, twinning can be detected by EBSD. Due to the low CRSS



Materials 2023, 16, 1163 7 of 14

of {10-12} extension twinning, even if the grain orientation is not beneficial to the {10-12}
extension twinning, they can still nucleate at P2 [36], and Figure 9a confirms that all twins
at P2 are {10-12} extension twins. In P2′s IPF map, we can see that the twins have parallel
and cross structure. The cross structure is one kind of work hardening method of Mg
alloy [37,38]. Moreover, such cross structure divides the matrix and produces a closed
space restricting the dislocation motion [38] and the further expansion of twins [39]. These
factors make the cross structure need more force to continue the deformation. At P3, many
twins were expanding. In some areas, the twin can merge half the area of the matrix. At P4,
some twins expanded to swallow the entire matrix, which means the matrix was covered
by the twins, and most of the twin boundaries detected were still {10-12} extension twin
boundary. Moreover, some thin twins can be found, and the morphology is the same as
{10-11} compression twins. At P5, due to the large strains and stresses, a large number
of dislocations interactions formed deformation band in the ZK60 Mg alloy. At P6, the
deformation in the specimen is severe, and the index of EBSD is much lower than P1-P5
specimen, and more deformation bands can be observed in Figure 10b.
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3.4. Orientation Statistics

From Figure 11, P1 shows a random distribution of misorientation angle, which means
the microstructure was not explicit changed. At P2, the 86.5◦ misorientation angle increases
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rapidly, which means the nucleation and expansion of {10-12} extension twinning. At P3, the
fraction of 86.5◦ decreased slightly, and the low-angle grain boundaries (LAGBs) increased.
Compared with Figure 9, the expansion and merging of {10-12} extension twinning was
the reason for the decrease of 86.5◦ peak. At P4, the peak of 86.5◦ decreased obviously,
which means many grains were merged by the twins. Meanwhile, 56.2◦ misorientation
appeared and it means the {10-11} compression twinning nucleate, which is a coincidence
with Figure 9g. The LAGBs also increased, obviously. As the strain increased to P5, the
misorientation of 86.5◦ almost disappeared, which means the twinned matrix was all
merged by the {10-12} twins. In comparison with that at P5, the fraction of LAGBs at P6
changes less, and the peak of 56.2◦ becomes less obvious due to the increase in background
intensity, and from Figure 10b, we can still see the thin twins.
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Table 3 shows that the LAGBs significantly increased than initial. From P1 to P3, the
LAGBs increase gradually. From P5 to P6, the LAGBs slightly increased. In the compression
process, the density of the dislocation increases with the increase in the strain, which means
the entanglement and interaction of the dislocations also increased and formed the LAGBs.

Table 3. The fraction of LAGBs and 86.5◦ twin boundaries.

P1 P2 P3 P4 P5 P6

LAGBs 0.053 0.032 0.569 0.308 0.332 0.479

86.5◦ ± 5◦ 0.170 0.576 0.676 0.414 0.181 0.154

Figure 12 shows the PFs of the ZK60 Mg alloy in the compression process. From
the PFs, we can see the basal texture intensity of the specimens increased with the strain.
At P4, the basal texture was stable, and P5 had the same texture distribution but higher
intensity. The basal texture is the typical texture of Mg alloy where the c-axis of the grain is
parallel to the compression direction. In Figure 13, we separated the twin and the matrix at
the P3 strain, and it is clear that twinning is the direct reason for the basal texture in the
compressed ZK60 Mg alloy, while the matrix maintains a relatively random orientation.
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3.5. The Evolution of the Schmid Factor

Figure 14 shows the Schmid Factor (SF) at P2 and P5. The basal slip SF has decreased
slightly. Although the texture intensity of the Mg alloy increases significantly, the Schmid
factor of base slip still has a high level, which means the basal slip remained sufficient to
activate. After being compressed to P5, the SF of prismatic slip decreased a lot. Most of
the grains have a low SF (<0.2) of prismatic slip, indicating the suppression to prismatic
slip. Figure 14c shows the SF of pyramidal <c + a> slip becomes higher, which is similar
to Gui et al.’s work [40], and the activation of pyramidal <c + a> was reasonable with the
high stress at P5.
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3.6. The Interaction between Twin and Participate Phase

From Figure 9, we can see that twins did not occur in some grains, the SEM was
used to observe the grains. In Figure 15a, the thin twins nucleate with high density was
shown. In order to investigate the reason of this phenomenon, TEM was used to observe the
relationship between twinning and precipitation phases. From Figure 15b, the TEM image
shows that the rod participates was not sheared by twin; it was kinked by a small angle
which is the same as Robson’s work [41], and much research shows that the participated
phase will inhibit the expansion of twins, which will increase the stress in the matrix. The
increase in stress will provide the additional drive force for twinning nucleation [30,41,42],
which lead to the thin twins nucleate with high density shown in Figure 15a.
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4. Discussion
4.1. The Relationship between Twinning and Strain Hardening at Room Temperature

From Section 3, we can divide the evolution of microstructure into four parts. (a) The
nucleate of the {10-12} extension twins (P1–P2), (b) the growth of {10-12} extension twins
(P2–P4), and (c) the deformation band formed (P4–P5). (d) Fracture (P6).

In the first part (P1–P2), there is an elasto-plastic transition at this stage and the slip is
massively activated makes the decrease in strain hardening rate slow down [43–45]. In the
second part (P2–P4), at P2, the twins grew up in many grains, as shown in Figure 9. The
twins divide the matrix into many small pieces, which brings the grain refinement effect
with obvious strain hardening. Figure 6 shows that, with the increase in the strain, some
grains were merged by the twinning.

In Figure 16, Grain G3 has two different varieties of cross structure, which can lead to
obvious strain hardening. Moreover, the different twin varieties cannot merge with each
other, and their interaction will lead to more strain hardening [46]. In some grains, the
twins grow fast, which have only one variety that will cover the matrix, as shown in Grain
G1 in Figure 16. For Grain G1, we can clearly see the 86.5◦ {10-12} <11–20> TB between the
matrix and the twin. Given the stress loading direction and the orientation of the matrix,
we can see that the green area is the rest of the matrix, and the blue area is the twin, which
means that the twinning is covering almost the whole grain, and the Grain G2 shows the
same status.
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In the third part, the generation of extension twins leads to a significant basal texture
in the ZK60 Mg alloy, which promote the activation of pyramid slip. The massive activation
of pyramid slip provided enough strain hardening and make the strain hardening rate
keep a stable value, and the accumulation of slip leads to the creation of deformation bands
which was shown in Figure 9d.

In the fourth part, at P6, crakes occurred. In Figure 17, we can observe the crakes, and
the contraction TBs usually were considered as the cracker source [46].
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Figure 17. The crack in the P6 specimen.

4.2. The Mechanical Property Related to Twinning

Figure 18 shows a significant correlation between strain hardening rate and hardness.
With the strain hardening rate decreasing rapidly, P1 shows that the hardness increased,
then the hardness dropped a little; after P2, with the increase in the strain, the hardness con-
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tinued to increase. In short, after compression, the hardness of the specimen continuously
increases in comparison with the initial state.
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The hardness evolution shows a strong relationship with the strain hardening rate.
From Figures 6 and 18, we can clearly see that the in the area around P1, the hardness of the
specimen increased rapidly, which means that the dislocation activation and the interaction
between twinning and dislocation bring the obvious strain hardening. In this part, the
stress was quite low (~50 MPa), so the slip activated should be the basal slip.

Then, from P2–P4, the massive nucleation of the twins and the length of TB increased
rapidly, dividing the matrix and the TB-dislocation interaction, and the twin-twin inter-
action caused the hardness to increase rapidly. In P4–P5, the twins expand to the whole
matrix, which means TB as the barrier potential of dislocation activation is lost, but in this
section, the activation of the basal slip and pyramid slip makes the dislocations have a
strong interaction, and also makes the alloy still have the high hardness.

5. Conclusions

Twinning is one of the main deformation mechanisms of cast ZK60 Mg alloy during
uniaxial compression at room temperature. It plays an important role in the evolution of
microstructure, texture, and mechanical property. Some detailed conclusions can be draw
as follows:

(1) At the beginning of deformation, the {10-12} extension twinning is one of the main
deformation mechanisms and is responsible for the basal texture. Accompanied by
the formation of strong basal texture in the middle and late stage of deformation,
compression twinning and deformation band occurred, which is the main source of
crack initiation leading to failure.

(2) Slip is also an indispensable deformation mechanism. Basal slip still kept sufficient to
activate during the whole compression process. With the strain increase and texture
evolution, non-basal slip gradually turned from prismatic slip to pyramidal <c + a> slip.

(3) During compression, the interaction between the twins, and the interaction between
twin boundaries and dislocations can significantly enhance the strain hardening rate
of Mg alloy, and these two interactions together with the segmentation of grains by
twin boundaries improve the mechanical properties of ZK60 alloy.
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(4) The fine and dense precipitates of Mg-Zn phase in ZK60 Mg alloy will not be cut
when sheared by the twin boundary, but is rotated by a small angle. The precipitation
may hinder the growth of twins, but promote the nucleation of twinning.
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