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Abstract: The Arrhenius crossover temperature, TA, corresponds to a thermodynamic state wherein
the atomistic dynamics of a liquid becomes heterogeneous and cooperative; and the activation barrier
of diffusion dynamics becomes temperature-dependent at temperatures below TA. The theoretical
estimation of this temperature is difficult for some types of materials, especially silicates and borates.
In these materials, self-diffusion as a function of the temperature T is reproduced by the Arrhenius
law, where the activation barrier practically independent on the temperature T. The purpose of
the present work was to establish the relationship between the Arrhenius crossover temperature
TA and the physical properties of liquids directly related to their glass-forming ability. Using a
machine learning model, the crossover temperature TA was calculated for silicates, borates, organic
compounds and metal melts of various compositions. The empirical values of the glass transition
temperature Tg, the melting temperature Tm, the ratio of these temperatures Tg/Tm and the fragility
index m were applied as input parameters. It has been established that the temperatures Tg and Tm are
significant parameters, whereas their ratio Tg/Tm and the fragility index m do not correlate much with
the temperature TA. An important result of the present work is the analytical equation relating the
temperatures Tg, Tm and TA, and that, from the algebraic point of view, is the equation for a second-
order curved surface. It was shown that this equation allows one to correctly estimate the temperature
TA for a large class of materials, regardless of their compositions and glass-forming abilities.

Keywords: machine learning; physical properties; organic compounds; metallic alloys; silicates; borates

1. Introduction

In the last decade, interest in the study of phase transformations in glass-forming
liquids has increased significantly [1–3]. There is increasing evidence that such transforma-
tions can be related to the ability of a liquid to form a glassy state [4–6]. The results of recent
studies show that the glass-forming ability of a liquid depends on the specifics of changes
in its atomistic structure and collective dynamics near the melting temperature Tm [7–9].
The beginning of such the changes in the dynamics of a liquid corresponds to the Arrhenius
crossover temperature TA [10–13]. It is generally accepted that the atoms of a liquid do
not form any bound structures above TA. In this case, the dependence of the logarithm
of viscosity on the reverse temperature obeys a linear law (so-called high-temperature
Arrhenius behavior). Below TA, individual groups of atoms become less mobile, which
manifests in the deviation of viscosity from the Arrhenius behavior, which is typical for
equilibrium liquids [14–16].

The existing empirical and theoretical methods for estimating TA are mainly based on
analysis of the temperature-dependence of liquid viscosity (or the structural relaxation time)
and on determining the high-temperature linear regime in this relationship [17–20]. As a
rule, linear approximation methods most accurately characterize this linear regime. Such
approximations are applicable only if the viscosity of the liquid is determined for a wide
temperature range covering temperatures above and below the melting temperature (Tm).
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For organic (molecular) compounds and polymers belonging to the class of the so-called
fragile glass formers, viscosity increases rapidly with decreasing temperature, which makes
it possible to determine the deviation from the high-temperature Arrhenius behavior. For
the so-called strong glass formers, including most metal melts, silicates and borates, the
Arrhenius behavior practically does not change even when passing through the melting
temperature and entering the region of supercooled melt. This is displayed in blurring the
region of transition from the high-temperature Arrhenius behavior to the low-temperature
nonlinear regime. Therefore, the accuracy of the temperature estimation can be low, and the
estimated values of TA practically do not correlate with the other physical characteristics of
liquids. For example, an expression was proposed by A. Jaiswal et al. which relates the
fragility index m with the TA values of various glass-forming liquids. This expression takes
into account the temperature dependence of the transport properties (mainly self-diffusion)
and the dynamics of atoms near the glass transition [8]. This expression gives a correct
correspondence between m and TA in the case of molecular glasses, though the results of
calculations can differ greatly from empirical data in the case of metallic and optical glasses.
Further, the analytical expression was proposed by T. Wen at al., according to which the
glass-forming ability of liquid is related to the reverse temperature 1/TA: i.e., the higher the
TA, the worse the liquid forms a stable glassy state [21]. However, this rule is valid only for
a narrow class of glass formers that are similar in composition (mainly for metallic glasses).
Therefore, obtaining an analytical expression that allows one to determine TA based on the
known key physical characteristics of glass-forming liquids remains an unsolved task. It is
obvious that the correct solution of this task is possible using machine learning methods,
which will allow us to reveal hidden relationships between physical characteristics and
determine the most significant factors in estimating TA [22–26].

The purpose of the present study was to determine how physical characteristics
associated with the overall kinetics of supercooled liquids correlate with each other. These
characteristics are primarily

(i) the glass transition temperature (Tg), at which liquid becomes amorphous upon
rapid cooling,

(ii) the melting temperature (Tm),
(iii) the Arrhenius crossover temperature (TA),
(iv) the Kauzmann temperature,
(v) the high-temperature limit (T∞), at which the viscosity tends to zero,
(vi) the temperature (T0) associated with the transition to a non-ergodic phase (for example,

in the mode-coupling theory),
(vii) the temperature ratio of Tg/Tm, which is considered as one of the criteria for the

glass-forming ability of liquids and
(viii) the fragility index m, which determines the rate of change in viscosity with temperature.

Some of these characteristics come to the fore for several reasons. First of all, these char-
acteristics are available for experimental measurements. In addition, they are presented
in various models that reproduce the kinetics and transport properties of supercooled
melts. Model equations for the shear viscosity—such as the equations of the Vogel–Fulcher–
Tammann–Hesse [12], Mauro et al. [27], Avramov–Milchev [28] and the equation obtained
in the framework of the mode-coupling theory [29]—contain three or even more param-
eters to reproduce the viscosity over a range of the temperatures. This indicates that it
is necessary to consider some temperature pairs associated with the supercooled melt
phase. It is important to note that these temperature pairs occur in arbitrary combinations,
which indirectly indicates the presence of correlations between “critical” temperatures
in some way related to the glass transition. Moreover, this fact is directly supported by
previous results relating to the description of the temperature dependence of the viscosity
and crystallization rate characteristics of supercooled melts by the scale relations [3,9,30],
where only the melting and glass transition temperatures, Tm and Tg, appear as input pa-
rameters. Thus, the determination of specific correlation relationships between the “critical”
temperatures of the kinetics of viscous melts is an important task, the solution of which
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will contribute to a deeper understanding of the solidification processes (glass transition
and crystallization).

In the present work, the Arrhenius crossover temperature TA is predicted for vari-
ous types of glass-forming liquids, including silicates, borates, metal melts and organic
compounds using the machine learning method. The most significant factors among the
physical characteristics of these glass-forming liquids are determined. Taking into account
these factors, an analytical equation is obtained that allows one to accurately relate the
temperature TA to the physical properties of glass-forming liquids.

2. Data Set and Machine Learning Model

Using an appropriate set of physical properties as the neural network input parameters
is a crucial for correct predicting the Arrhenius crossover temperature. These physical
properties must uniquely characterize the nature of the material and must be determined
with high accuracy by experimental or simulation methods. Here, it is quite reasonable to
choose the fragility index (m), the melting temperature (Tm), the glass transition temperature
(Tg) and the so-called reduced glass transition temperature (Tg/Tm), whose values are
known for almost all types of glass-forming liquids and can be found in the scientific
literature. Moreover, for some organic and metallic glass formers, the phenomenological
relation between Tg and TA is known [5,15]. For most silicates and borates, there is no
known correlation between these two temperatures. At the same time, there can be hidden
relationships, which are usually revealed using machine learning methods.

The initial data set for machine learning included experimental and calculated data as
well as information from databases (e.g., ITPhyMS-Information technologies in physical
materials science, Materials Project) [8,12,31]. For our purpose, different glass-forming
materials were selected, among which were silicates, borates, organic compounds and
metallic alloys (Cu, Zr, Ti, Ni, Pd-based) (see Table S1 in Supplementary Materials). We
chose systems for which the melting temperature, the glass transition temperature and the
fragility index are known. This data set was divided into the sets corresponding to training,
validation and test regimes. The training and validation sets included all organic compounds
and metallic alloys, along with several silicates and borates, for which TA is known. The
machine learning model was created on the basis of the training data set. The accuracy of
the neural network was checked using the validation data set. The test set included only
silicates and borates, for which TA was predicted. Note that to create an artificial neural
network, we used instances for which all parameters are known. Predictions were made
only for those systems for which the temperature TA is unknown. The reliability of the
obtained results is quite expected, since the formation of the neural network was performed
using the data for systems of all categories, including those for which further predictions
were made.

In the present work, the machine learning model was a feedforward artificial neural
network (see Figure 1). This model has one input layer with four neurons, for which the
values of the melting temperature, the glass transition temperature, the ratio Tg/Tm and
the fragility index were taken from the data set. The values of this physical characteristics
were renormalized and presented in the range [0, 1]. Next two layers of the neural network
were hidden and consisted of 20 neurons. In the output layer we had only one neuron,
which determined TA. For the initiation of the neural network, the values of all neurons
and their weight coefficients were assigned randomly from the range [0, 1]. Subsequently,
calculation of the values of all neurons was carried out as follows [32]:

n(k)
i = f

(
Nk−1

∑
j=1

w(k−1)
ij n(k−1)

j + b(k)i

)
. (1)

Here, n(k)
i is the value of the ith neuron in the kth layer (k = 2, 3, 4); w(k−1)

ij is the value
of the (k− 1)th layer weight going from a neuron with index j to a neuron with index i
from the kth layer; b(k)i is the bias weight acting on a neuron with index i from the kth layer;
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Nk−1 is the number of neurons in the (k− 1)th layer; function f (...) is the sigmoid-type
logistic function:

f (x) =
1

1− exp(−x)
. (2)

The neural network was trained using the backpropagation algorithm, according to
which the value of the weight coefficient was adjusted as follows [33]:

w(k), new
ij = w(k)

ij − γ
∂χ(s)

∂w(k)
ij

. (3)

γ is the training rate, the value of which is usually chosen in the range [0, 1]. In the
present work, we took the rate of γ = 0.3 as optimal for the considered machine learning
model. The value of the loss function χ(s) is determined as

χ(s) =
1
2

[
n(4)

1 (s, l)− n(l)
]2

, (4)

where s is the training iteration number (i.e., epoch number); n(4)
1 (s, l) is the value of the

output neuron at the sth epoch for the lth element from the training data set; n(l) is the
required value of the output neuron for the lth element. To train the machine learning
model, 2400 epochs were used. The gradient of the loss function with respect to each weight
was computed by the chain rule, according to which Equation (3) can be represented in the
following form:

w(k), new
ij = w(k)

ij − γδin
(k)
i

e−W(k)
i[

1 + e−W(k)
i

]2 , (5)

where

δi =

{
n(4)

1 (l)− n(l) if i is the output layer neuron

∑j wijδj if i is a neuron of the hidden layers
,

W(k)
i =

Nk−1

∑
j=1

w(k−1)
ij n(k−1)

j . (6)

This backpropagation algorithm allows one to control the training procedure. The
criterion for finishing this procedure is the minimal error between the results of the output
neuron and the required values from the validation data set.

Figure 1. Scheme of the machine learning model based on the feedforward artificial neural network.
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3. Identification of Significant Physical Properties

To identify the physical characteristics that are most significant for estimating the
temperature TA, calculations were carried out for various combinations of the neural
network’s input parameters. As shown in Figure 2a, retraining of the machine learning
model was performed for various combinations of Tm, Tg, Tg/Tm and m using the training
and validation data sets. For each considered combination, the root mean square error
was calculated:

ξ =

√√√√ 1
N

N

∑
i=1

(
T(pred)

A − T(emp)
A

)
. (7)

Obviously, the smaller the value of ξ, the more accurately TA is determined. In
Equation (7), T(pred)

A is the Arrhenius crossover temperature predicted by machine learn-

ing model; T(emp)
A is the empirical Arrhenius crossover temperature; N is the number of

elements in the data set. The obtained results reveal that the most significant physical
quantities correlating with TA are the glass transition temperature Tg and the melting
temperature Tm. This is confirmed by the relatively small value of the mean absolute error,
which does not exceed ξ = 11.4 K. The quantities Tg/Tm and m are less significant in the
estimation of the temperature TA, which is clearly manifested in the relatively large ξ with
values of up to 25.8 K. The smallest error ξ ≈ 10.5 K is obtained by taking into account all
four physical quantities at which the best agreement between the empirical values of TA
and the result of the machine learning model is observed.

Figure 2b shows that the empirical and predicted temperatures TA correlate well with
each other. Regarding organic compounds, an insignificant variation between the empirical
and predicted TA can be observed for saccharides (for example, fructose, trehalose). This
was mainly due to insufficient of data in the training set for this class of materials. For
metal melts, the variation in the values of TA can be observed for alloys based on rare earth
elements (for example, Pr60Ni10Cu20Al10). The empirical and predicted values of TA have
a minimum variation for silicates and borates. This result indicates that artificial neural
networks have good trainability with respect to these materials. The reason for this could
be that the change in viscosity of a silicate and borate melt occurs in a similar way in a wide
temperature range, including near the melting temperature [12]. Such universality in the
temperature dependencies of viscosity is kept when the composition of the melts changes,
for example, by adding alkali oxides (Li2O, Na2O, K2O, etc.) or metal oxides (Al2O3, MgO,
PbO, etc.).

Figure 2. (a) Diagram of the root mean square error ξ of estimation of the Arrhenius crossover
temperature TA calculated for various combinations of the quantities Tm, Tg, Tg/Tm and m, which

were the inputs of the machine learning model. Inset: T(pred)
A and T(emp)

A are the predicted and
empirical Arrhenius crossover temperatures, respectively. (b) Correspondence between the empirical
TA and the TA predicted by the machine learning model using the validation data set.
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4. Regression Model for Arrhenius Crossover Temperature

Figure 3a shows the correspondence between the glass transition temperature Tg and
the predicted temperature TA for various glass-forming liquids. For organic compounds,
the correspondence between TA and Tg is reproduced according to the linear law TA ' k · Tg
with k = 1.4. It is noteworthy that this correspondence between TA and Tg was predicted
earlier (for example, see Refs. [8,34]). For metallic glass formers, there is a relationship
between TA and Tg of the form TA = k · Tg, where k = 2.0 ± 0.2. As a rule, such a
relationship between temperatures TA and Tg is universal for metal alloys containing two
to five different components [8]. For silicates and borates, there is no clear correlation
between TA and Tg: the known laws do not reproduce the correspondence between TA and
Tg. The results given in Figure 3b reveal the obvious correlation between TA and Tm for
silicates and borates, whereas variation in values of these temperatures is more pronounced
for organic and metallic glass formers. Despite this, the correspondence between TA and
Tm is reproduced by the linear law regardless of the type of glass-forming liquid.

TA = k · Tm (where k = 1.1± 0.15) (8)

It is noteworthy that this result agrees with the results of Refs. [35,36].
Relationship (8) is an empirical result that has no theoretical explanation and is only

an approximation. The error of this relationship depends both on the specific type of material
and on the category to which this material belongs (i.e., organic, metallic, silicate). As
shown in Figure 3b, relationship (8) only qualitatively reproduces the empirical data for
a large data set. At the same time, one can be convinced that for certain categories of
materials, this relationship yields very accurate results. Thus, for example, the available
data for organic materials and metallic systems are more correctly reproduced by the
quadratic polynomials than by the linear relationship (see Figure 3b). On the other hand,
the results for silicates and borates reveal a general trend of increasing TA with Tm, which
can be described by the linear relationship TA = aTm + b, where the parameters a and b
take different values for materials from different categories. In this regard, it is quite natural
to expect that the overall correlation between TA and Tm is not as so simple as prescribed by
relationship (8), and it requires taking into account other physical characteristics.

For implicit ("hidden") correlations between different parameters, it is quite natural and
often feasible that the parameters do not appear in the resulting correlation relation as single
additive terms, but in the form of combinations (products or ratios). For example, in contrast
to the methodology of artificial neural networks, this is most clearly manifested in the
method of joint accounting for arguments using the Kolmogorov–Gabor polynomial [37–39]:

y(x1, ..., xn) = a0 +
n

∑
i=1

aixi +
n

∑
i=1

n

∑
j=i

aijxixj +
n

∑
i=1

n

∑
j=i

n

∑
k=j=1

aijkxixjxk + . . . , (9)

which determines the relationship of a parameter y with the parameters x1, x2, ... xi,... In
the obtained model of the artificial neural network, the appearance of the parameter Tg/Tm,
together with the individual parameters Tg and Tm, directly indicates that the Arrhenius
crossover temperature TA correlates not only with the absolute values of the melting and
glass transition temperatures for different systems, but also with their ratio. This result
is fully consistent with the theoretical description of crystallization rate characteristics
of supercooled melts within the reduced temperature scale T̃MG and universal scaled
relations [9,30]. This point is discussed in detail in Ref. [30] (see text on page 104502-2).

To obtain a general expression relating the temperatures Tg, Tm and TA, the reproducibility
of these temperatures was tested in the framework of the nonlinear regression model:

TA(Tg, Tm) =
k

∑
i=1

(
aiTi

g + biTi
m + ciTi

gTi
m

)
. (10)
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The temperatures Tg and Tm are input parameters determined by experimental values;
the temperature TA is the resulting factor; k is an integer value chosen during the regression
analysis; ai, bi and ci are the fitting coefficients, whose values are determined by enumer-
ation to obtain the best agreement between the empirical temperature TA and the result
of Equation (10).

Figure 3. (a) Correspondence between the glass transition temperature Tg and the predicted value of
the Arrhenius crossover temperature TA for different types of glass formers. (b) Correlation between
the melting temperature Tm and the predicted temperature TA. The dashed and dotted lines show
the interpolation by the quadratic polynomials: TA = 409− 1.23Tm + 0.003T2

m in the case of organic
materials and TA = −2161 + 4.6Tm − 0.0014T2

m for metallic systems. The dot-dash lines show the
linear fit by equations TA = 318 + 0.9Tm (for silicates) and TA = 465 + 0.71Tm (for borates).

The values of the fitting coefficients were determined by regression analysis:
a1 = b1 = 0.7016, a2 = −7.52× 10−4 K−1, c1 = 4.43× 10−4 K−1. As was found, all other
fitting coefficients equal zero. Thus, with these values of the fitting coefficients, we ob-
tained the minimum error between the empirical TA and the result of Equation (10) for the
considered glass-forming liquids. Thus, the temperatures Tg, Tm and TA can be related by
the nonlinear regression model:

TA(Tg, Tm) = a1Tg + a2T2
g + b1Tm + c1TgTm. (11)

In algebra, an equation of this type is known as the equation of a second-order curved
surface. Figure 4 shows that Equation (11) correctly determines the correspondence between
the temperatures Tg, Tm and TA for all considered glass formers. The average error between
the empirical data and the result of Equation (11) is ∼10%. The plane surface corresponds
to the data for organic compounds and metal melts. The deviation from this surface and its
transformation into a curved surface occurs due to taking into account the data for silicates
and borates (see Figure 4b). Therefore, Equation (11) can be applied to determine TA for
various types of materials, regardless of composition.

Note that Equation (11) is an empirical result, the rigorous physical meaning of which
has not yet been established. This is also true for relationship (8), which also has no a clear
physical meaning. On the other hand, Equation (11) shows that the three key temperatures
associated with a change in kinetic regime (as in the case of TA) and with a change in
thermodynamic phase (as for Tm and Tg) correlate in some universal way with each other
for melts that are different in physical nature. The necessity of the quadratic contribution in
Equation (11) to reproduce the empirical data becomes obvious if these data are represented
in the space of three parameters—temperatures TA, Tm and Tg—as shown in Figure 4b. As
can be clearly seen in this representation, the empirical data form the second-order curved
surface, for the analytical reproduction of which the presence of the quadratic contributions
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T2
g and TgTm, are necessary. Moreover, since the curvature of this surface is expressed

significantly, its projection onto the coordinate plane (TA, Tm) will give a certain curve
that can be reproduced by a straight line only approximately (for example, as prescribed by
relationship (8)). It should be noted that such representation of the empirical data in (TA,
Tm, Tg)-space was not expected and originally carried out; and Equation (11) is a direct
result of the regression analysis.

Figure 4. (a) Correspondence between the Arrhenius crossover temperature (TA), the melting tem-
perature (Tm) and the glass transition temperature (Tg). Circle and square markers denote predicted
and empirical data, respectively. These data are compared with the results of Equation (11), which
are presented as a curved surface. (b) This figure is from an another foreshortening, which allows
one to consider the curved surface.

To determine the error in estimating TA for materials of various categories, the root
mean square relative error (RMSRE) was calculated:

RMSRE =

√√√√√ 1
n

n

∑
i=1

(
T(emp)

A − T(calc)
A

T(emp)
A

)2

, (12)

where T(emp)
A is the empirical value of TA; T(calc)

A is the TA computed by various methods—a
machine learning model, by relationship (8) and by Equation (11). Figure 5 shows that the
accuracy at estimation of TA depends on the applied method and the category of material.
Thus, for silicates and borates, the error of machine learning prediction is lower than that
of other methods. In this case, Equation (11) is more accurate than relationship (8). For
metallic systems, the errors of all methods are comparable, although Equation (11) produces
the smallest error. For organic materials, the machine learning prediction is more accurate
than other methods. In this case, the error of Equation (11) is higher than the error of
relationship (8). This is due to the fact that for materials with complex structures, such as
organic materials, the glass transition temperature is determined ambiguously. Namely, for
this category of materials, the temperature Tg in relation to the melting temperature Tm can
vary widely compared to silicate, borate and metallic systems. For example, for organic
materials, the variation in Tg/Tm exceeds 0.5, whereas for borate, silicate and metallic
systems this variation is usually less than 0.4.
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Figure 5. Root mean square relative error between the empirical values of TA and actual TA, which is
computed by different methods for silicates, borates, metallic systems and organic materials.

5. Conclusions

The physical characteristics of various type glass-forming liquids were determined
using a machine learning model—that is, those which are most significant to correct
prediction/estimation of the Arrhenius crossover temperature. Such significant factors
are the glass transition temperature and the melting temperature. It has been established
that the fragility index and the reduced glass transition temperature (Tg/Tg), which is
directly related to the glass-forming ability of a liquid, are insignificant factors. These
factors do not affect the accuracy of TA estimation. The correctness of the obtained results
was confirmed by the presence of a good correlation between the empirical values of TA
and the TA predicted by a machine learning model. Moreover, the result of the machine
learning model gives the correct relationships between the temperatures TA, Tg and Tm,
which agree with the previously established empirical rules TA ' 1.1Tm (for all types of
liquids), TA ' 1.4Tg (for organic compounds) and TA ' 2.0Tg (for metallic systems). Based
on the results of nonlinear regression analysis, an equation was obtained that allows one to
determine the temperature TA by using known temperatures Tg and Tm. It was shown that
this equation gives the correct values of TA for various types of liquids, including silicates
and borates, for which direct estimation of TA can be difficult.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16031127/s1. Table S1: Physical properties of glass-forming liquids.
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