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Abstract: With urban space becoming much more crowded, the construction of underground spaces
continues to expand to deeper, and the requirements for the large depth and minor deformation in
urban engineering construction are getting more urgent. A new kind of in-situ assembling caisson
technology (called VSM) is a vertical shaft method (VSM), which excavates the stratum under water
with a mechanical arm and assembles the prefabricated caisson segments at the same time. This paper
takes the Shanghai Zhuyuan Bailonggang Sewage Connecting Pipe Project as an example, which is the
first construction project in the soft soil area, such as Shanghai, and makes a technical analysis of the
VSM by comparing the field measurement and numerical simulation. Ground settlements and layered
deep displacements were monitored in the field measurement during the VSM construction. It shows
that the maximum ground settlement caused by the VSM is 15.2 mm and the maximum horizontal
displacement is 3.74 mm. The influence range of the shaft excavation on the ground settlement is
about 30 m away from the shaft center. The results demonstrate that the VSM construction has great
applicability in the soft soil area. A finite element simulation model of the VSM shaft is established
and verified by field measurement. There is a certain error between the traditional theoretical
calculation by analogy to the common retaining walls of the deep foundation pit and the measured
results, while the simulation results are relatively consistent with field measurements. The reasons
for the difference are well-analyzed. Finally, the effects of the VSM construction method on the
engineering environment are analyzed, and the suggestions for deformation control in the future are
put forward.

Keywords: in-situ assembling caisson; VSM construction method; ground settlement; deep layered
deformation; field measurement; stability

1. Introduction

A shaft is an important structural form of underground space construction. In re-
cent years, with the continuous development of urban construction, underground space
excavation has had a complex and diversified development. Underground engineering
construction puts forward higher and higher requirements for shaft excavation.

The VSM applies to the excavation of small diameter shafts in urban areas and does
not require dewatering. It has the advantages of deep excavation depth, small construction
disturbance, fast construction speed, small site use, high economic efficiency, and strong
stratum applicability. This kind of method has been used in shaft engineering in Europe, the
United States [1], Singapore [2], and other places. The VSM construction method is mainly
used in subway ventilation shaft construction and presently has a maximum excavation
depth of 115.2 m [3,4].

There are relatively few engineering applications of the VSM in China [5]; Zhang
et al. [6], Huang et al. [7], Jiang et al. [8] took the ultra-deep prefabricated shaft project
in Jianye District, Nanjing as an example and mainly introduced the key technology of
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ultra-deep prefabricated shaft undrained construction in water-rich sand stratum; but the
requirements for the surrounding engineering environment is not very high since it is away
from the downtown. In general, there are relatively few studies of the VSM construction
method in soft clay area, such as Shanghai, as well as the impact of this new technology on
the engineering environment.

Even though few specific numerical simulations of in-situ assembling caisson technol-
ogy are conducted at present, previous research on the excavation of deep foundation and
traditional caisson can provide good significance. Ma [9] studied ground settlement and
the stability of the retaining wall deformation in the process of excavation by COMSOL
and also made a comparative analysis with the monitoring data during the excavation of a
deep foundation pit in Shanghai. Lin et al. [10] established a numerical simulation model
by FLAC3D to study the pile displacement and ground settlement with the exaction time
under different computation boundaries for considering creep and seepage. Shi et al. [11]
focused on the mechanical characteristics and cracking control of a large diameter caisson
in the initial sinking stage in the FEM numerical simulation by ANSYS. Zhao et al. [12]
studied the stress and deformation performance of an anchor caisson foundation in sands
by model tests and the numerical simulation in PLAXIS 3D; and the mechanism on the
interaction of the soil-structure (anchor caisson wall) was also analyzed. Different from
deep foundation construction with underground diaphragm wall, or traditional caisson, the
construction speed is much faster and the construction condition is underwater; generally,
the construction depth can also be much deeper. Most importantly, nowadays deep shafts
are rarely constructed by traditional caisson in urban cities due to the severe engineering
environmental impact, instead deep foundation pits by underground diaphragm wall con-
struction are always used. However, the leakage problem greatly impedes the construction
depth induced by the diaphragm wall quality; simultaneously, dewatering is really not
environmentally-friendly in the soft soil area. Therefore, the deformation mechanism and
control of this new in-situ assembling caisson technology should be specifically analyzed
for potential broad utilization, especially in Shanghai, where thick, soft mucky clays are
widely distributed.

Taking the first engineering project in Shanghai as an example, the 17# shaft in the
Shanghai Zhuyuan Bailonggang Sewage Connecting Pipe Project, where a specifically
designed field measurement of the ground settlement and the deep layered deformation of
surrounding soils are analyzed in this paper. Simultaneously, the traditional theoretical
calculations for design and numerical simulation are both conducted to compare with field
measurements. In addition, the effects of the VSM construction method on the engineering
environment are analyzed, and the suggestions for the deformation control in the future
are put forward.

2. VSM Construction Technology

The VSM construction method is a submerged in-situ assembling shaft excavation con-
struction method in which the mechanical arm is used to excavate the stratum underwater
and assemble the prefabricated caisson segments at the same time. The VSM construction
equipment (as shown in Figure 1) is mainly composed of the excavating main engine, slurry
inlet pipe, slurry outlet pipe, prefabricated caisson segment, and sinking unit.

While the mechanical arm attached to the excavating main engine is excavating the
soil in the shaft, prefabricated caisson segments are being assembled at the ground surface,
and the sinking unit is being operated to sink the caisson segments. Bentonite is grouted
between the prefabricated segments and the soil during the sinking to mostly reduce
friction resistance. During the process of excavation and sinking, water should be injected
into the shaft in time to ensure that the water level in the shaft is always higher than
the groundwater level to keep excavation stability. Each prefabricated caisson segment
is connected with each other by radial longitudinal bolts. During the sinking of the
prefabricated caisson segments, the sinking unit is always connected to the bottom edge
of the first prefabricated caisson segment through steel strands to precisely control the
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sinking speed. Bentonite grouting holes are designed at the lower part of the shaft, which
is connected to the bentonite grouting pipe. The process of excavation, assembling, and
sinking is cycled until the shaft excavation reaches the design depth.
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Figure 1. Schematic diagram of VSM construction method.

Once the excavation reaches the design depth, the bottom sealing shall be operated
by pouring concrete underwater to form concrete slab. Then, the cement slurry is used
to replace the bentonite filled outside the prefabricated caisson segments. After that, the
water in the shaft is pumped, and the inner wall of shaft is flushed by a high-pressure water
gun. Finally, shaft floor slab construction works, such as binding steel bars and pouring
concrete, are completed.

Compared with other shaft construction methods, the VSM has the following advantages:

(1) The diameter range of the shaft is 4.5~18 m.
(2) The construction depth can reach over 120 m below the groundwater level.
(3) Prefabricated caisson segments greatly increase the stability of the shaft.
(4) VSM can be operated remotely.
(5) Surrounding environmentally-friendly by underwater sinking without lowering the

groundwater level.
(6) Fast construction speed and controllable structure sinking process.
(7) The construction site is small.

3. Project Overviews

Zhuyuan Bailonggang Sewage Connecting Pipe Project is located in the Pudong
New Area, Shanghai. The total length of connecting pipeline is about 19.8 km, which is
constructed by the shield method and pipe jacking method.

In this project, the 17# shaft on connecting pipeline line is constructed by the VSM.
Each ring of prefabricated caisson segments is made up of 6 identical segments, which
are 1500 mm wide. It is connected by 12 radial and 18 longitudinal bolts. The segment
concrete strength grade is C60 (the uniaxial compressive strength reaches 60 MPa of a
national standard specimen after a curing duration of 28 d), and the impermeability grade
is P12 (which can resist hydrostatic pressure of 1.2 MPa (equivalent to 120 m underwater)
in a national standard specimen after a curing duration of 28 d). The design depth of the
17# shaft is 39 m, and the final sinking elevation of the blade foot is about −35.400 m. The
shaft top is cemented with a 2.4 m height cast-in-place connection wall, which would be
connected to the inside of the foundation ring beam after the shaft completely sinks in
place. The foundation ring beam is used as the load-bearing structure of the VSM ground
equipment during the shaft sinking process, as well as an anti-floating structure during the
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service stage. The section size of the foundation ring beam is about 2600 mm × 2500 mm
with the inner and outer diameters of 13 m and 18.2 m, respectively. In total, 12 Φ800 mm
diameter bored piles (cast-in-situ) are set under the foundation ring beam to bear the
pressure load of the VSM equipment and the buoyancy of the shaft during the service stage.
The section of the shaft structure is shown in Figure 2, technical parameters are shown in
Table 1, and the formation parameters are shown in Table 2.
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Table 1. Technical parameters in VSM construction.

Shaft Structural Parameters Mechanical Arm Parameters Excavation and
Assembly Speed Bentonite Parameters

Excavation depth: 43.22 m
Excavation radius: 6.5 m

Inside diameter of shaft: 6 m
Over excavation depth: 15~20 cm

Prefabricated segments: C60
concrete

Maximum depth: 120 m

Elongation: 0~1000 mm
Swing scope: −10◦~+47◦

Rotation scope: ±190◦
Up to 4.5 m/d

Marsh funnel viscosity: 90 Ms/L
Static yield point: 40 N/mm2

API filtration: up to 20 mL
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Table 2. Soil layer characteristics.

Number Soil Layer Unit
Weight/kg/m3 Void Ratio

Compression
Modulus

/MPa

Cohesion
/kPa

Internal
Friction
Angle/◦

Thickness/m

1© plain fill/flush fill 1800 1 * 2 * 10 * 10 * 1.8
2© sandy silt 1840 0.85 5.5 5 30.5 0.7
3© clay 1780 1.11 2.2 12 17.5 6.0
4© silty clay 1690 1.38 2.1 12 12 6.0

5©1 clay 1800 0.97 4.5 18 17 2.2
6©2 clay mixed with silt 1820 0.9 6 19 19 6.8
7©2 sandy silt 1890 0.76 13.5 3 34 35.5

Note: * is empirical value.

4. Construction Process

The construction started at the end of 2021. After the preliminary work, such as
equipment debugging and site leveling, the VSM officially initiated excavation on 13
January 2022. Due to the traditional Chinese Spring Festival holiday, the entire excavation
process was divided into two stages. In total, 32.2 m was excavated for 17 days in the first
stage from 13 January to 29 January, and 5.1 m was excavated for 3 days in the second
stage from 8 February to 10 February. The excavation rate was 1.9 m per day on average,
which was roughly the same throughout the excavation process. The bottom of the shaft
was sealed on 21 February, the bentonite replacement was completed on 2 March, and the
construction of the shaft bottom was completed on 22 March. The construction process is
shown in Figure 3, and the construction excavation rate is shown in Figure 4.
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5. Earth Pressure Design Theory in Shaft Lining
5.1. Theoretical Calculation of Earth Pressure

Lots of researchers discussed the earth pressure theories in shaft engineering in cohe-
sionless soils and the saturated undrained soft clay [13,14]. They all agree that the active
Rankine values at the greater depth are advisable in the design purpose, which is also
consistent with the technical code for excavation engineering (DG/TJ 08-61-2018) [15] in
Shanghai. In Prater’s [13] discussion, the earth pressure according to Berezantzev, reaches
a limiting value asymptotically, which is much smaller than the Rankine value at greater
depths, with a reduction in pressure at the greater depth, due to the arching action. Similar
is known to exist for retaining walls not fulfilling the plasticity deformation conditions.
While in the soft soil area, especially in Shanghai, as mentioned above, the large thickness
(in this case, subsurface 20~40 m) soft mucky clay has poor permeability and high plasticity.
Both with the plain assumptions of the Rankine earth pressure theory (the same as the
Coulomb method for cohesionless soils), the active Rankine values are most conservative,
and it would be advisable for design purposes. The Rankine earth pressure theory could
be used to calculate the earth pressure in shaft design.

pak = σakKai − 2c
√

Kai

Kai = tan2(45◦ − ϕ/2)

σo = K0γh

Here, pak is the active earth pressure on the outside soil of support structure (kPa); σak
is the vertical stress in the soil layer at the calculated position outside the support structure
(kPa); ϕ is the internal friction angle (◦); σo is the static earth pressure (kPa); γ is the weight
of soil (kN/m3); h is the thickness of the soil (m).

5.2. Theoretical Calculation of Surface Deformation

Bowles [16] proposed a method to predict the ground surface settlement of the co-
hesive soil layer without considering the consolidation settlement. The calculation is as
follows [17]:

(1) Calculate the lateral deformation of the support structure;
(2) Calculate the horizontal volume Vs of soil outside foundation pit;
(3) Estimate the influence area D of soil settlement outside foundation pit;

Vs = (He + Hd)tan(45◦ − ϕ/2)

where He is the excavation depth (m); Hd is the excavation width or diameter (m).
(4) Calculate the maximum surface subsidence δ

δ = (
VS
D

)(
x
D
)

2

where x is the distance from the calculation point to the support structure.

6. Shaft Monitoring
6.1. Monitoring Purpose

In this project, on the one hand, monitoring work was implemented in order to ensure
the construction quality and safety of shaft; the monitoring data were used to timely adjust
the shaft excavation and the sinking speed to prevent shaft instability. On the other hand,
the surrounding environment impact was also monitored by ground settlement and deep
layered deformations at different locations.
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6.2. Monitoring Content

In this project, the deformation and stress conditions of the soil surrounding shaft
were monitored. Total stations were used to monitor the ground settlement around the
shaft; fixed inclinometers were used to monitor the horizontal displacement of stratums
around the shaft along depth; and the buried earth pressure gauges were used to monitor
the soil stress state.

In the construction site, 5 ground surface settlement monitoring points and 5 deep
soil inclination observation points are arranged at 15 m, 30 m, 55 m, 80 m, and 110 m from
the center of shaft, with depths of 5 m, 15 m, 25 m, 35 m, and 45 m; the positions of the
observation points are shown in Figure 5. In total, 5 earth pressure gauges were buried at
the depths of 5 m, 15 m, 25 m, 35 m, and 45 m, at the distance of 15 m from the shaft center.
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6.3. Analysis of Measured Deformation during Shaft Construction
6.3.1. Ground Settlement Analysis

The ground settlement results of 15 m, 30 m, 55 m, 80 m, and 110 m from the shaft
center are shown in Figure 6. The ground settlement was greater near the shaft. It was
not obvious in the first 7 days of the excavation and increased rapidly after that. When
the shaft excavation was suspended, the ground surface continued to settle for a period
of time (7 days). This reveals that, in the soft clay layer with high plasticity and poor
permeability, the ground settlement continued even without the disturbance of excavation.
It will increase for a period of time after the excavation ends. This phenomenon is well-
known to exist in the traditional slow excavation in the deep foundation pit of retaining
walls (diaphragm walls), in which large deformation always happened if the support could
be adjusted in time. Monitoring, as well as engineering control, during this period are still
vital. After the bottom sealing was completed, the ground surface settlement increased
slightly during the bentonite replacement stage; there was no significant change in the
ground settlement during the shaft floor construction stage.

It can be discovered from Figure 6 that the excavation of the VSM has a significant
impact on the ground settlement within 30 m from the shaft center, which forms a settlement
tank. By the end of the shaft construction, the maximum ground settlement was about
14.56 mm at 15 m away from the shaft center and the minimum ground settlement was about
6.62 mm at 110 m away from the shaft center. In total, the effect of the shaft construction on
the ground settlement was relatively small under the VSM construction speed, especially
in the shallow part, even including the additional settlement due to temporally stopping
during the holidays.
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Figure 6. Monitoring results of ground settlement.

6.3.2. Deep Layered Displacements Analysis

It can be noticed from Figure 7 that the maximum deep layered displacement of the
stratum was about 3.74 mm at 15 m away from the shaft center. During the construction
of the shaft, the deep layered displacements increased continuously, and the growth rate
was getting faster and faster. Except for the stratum 5 m deep underground, the deeper
the depth, the smaller the horizontal displacement. (The small horizontal displacement
of the stratum 5 m depth underground may be due to the surface hardening around the
shaft and the construction equipment placed on the ground surface, which constrained the
horizontal deformation near the ground surface to a certain extent.)
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Figure 7. Monitoring results of the deep layered displacement at 15 m away from the shaft center.

When the excavation ends, the deep layered displacement of the monitoring point at
15 m away from the shaft center immediately stopped increasing. It can be inferred that
the horizontal displacement has a strong time correlation with the excavation operation.
From Figures 8 and 9, the maximum horizontal displacements of the stratum, measured
by the inclinometer pipes 30 m and 85 m away from the shaft center, were about 2.20 mm
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and 0.63 mm. The horizontal displacement started to increase after 3–5 days after the
construction began and did not stop rising when the excavation was completed. The
horizontal displacement growth rate was roughly the same, and there was almost no
accelerated growth trend. The reason for this phenomenon is that the deep viscoplastic
soft soil layer in the construction site prolonged the deformation loading transfer time and
weakened the deformation strength. Comparing the measurement results of the horizontal
displacement at the same depth and different distances from the shaft, it could be figured
out that the closer the distance to the shaft, the greater the horizontal displacement caused
by the excavation. The maximum horizontal displacement is about 4.71 mm at 15 m from
the shaft center and around 15 m in depth. In general, the displacement and deformation
during the whole construction process were small, which meets the requirements of the
technical code for excavation engineering (DG/TJ 08-61-2018) [15] for Shanghai.
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Figure 9. Monitoring results of the deep layered displacement at 85 m away from the shaft center.

6.3.3. Lateral Earth Pressure Monitoring and Analysis

The lateral earth pressure monitoring results are shown in Figure 10. It can be figured
out from Figure 10 that the lateral earth pressure decreased slightly during the excavation
stage, about 5%. The overall lateral earth pressure changes little during the whole construc-
tion process, indicating that the shaft construction had a small disturbance on the stress
state of the surrounding soil.



Materials 2023, 16, 1125 10 of 18Materials 2023, 16, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 10. Monitoring results of lateral earth pressure at 15 m away from the shaft. 

7. Numerical Simulation and Analysis  
An axisymmetric steady state numerical simulation model is established to analyze 

the construction process of the VSM. Due to the fast construction speed and mostly poor 
permeability of Shanghai soft soils, the undrained condition is considered, and the con-
solidation of soil is neglected during the VSM excavation. However, before the excavation, 
a Biot consolidation model was used for the initial stress state computation under self-
weight. This process is called self-weight balance, in which it calculates and equilibrates 
the initial ground stress and makes the soil model fully consolidated, and the deformation 
gets stable under the self-weight, to form the initial stress field for the subsequent VSM 
construction model. In VSM excavation, fluid-solid coupling is considered, in which an 
elastic-plastic Mohr-Coulomb model governs stress-strain field; and Darcy’s law governs 
the seepage field. It is carried out by effective stress. The change of water head by the 
seepage in the shaft causes the change of the pore water pressure in the soil layers and 
then changes the effective stress and causes deformation. The soil layers in the construc-
tion site are: ① plain fill/flush fill, ② sandy silt, ③ clay, ④ silty clay, ⑤1 clay, ⑥2 clay 
mixed with silt, and ⑦2 sandy silt. Considering that the engineering properties of the ② 
sandy silt, ④ silty clay and ⑤1 clay layer are roughly the same, and the effects of the 
thinner ① plain fill/flush fill and ② sandy silt are ignored; this model generalizes the 
stratum as a combination of ④ silty clay and ⑦2 sandy silt. The simulation model is 
shown as Figure 11, soil parameters are shown in Table 3, and structure parameters are 
shown in Table 4. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

la
te

ra
l e

ar
th

 p
re

ss
ur

e（
M

Pa
）

date

5 m buried depth 15 m buried depth
25 m buried depth 35 m buried depth
45 m buried depth

Figure 10. Monitoring results of lateral earth pressure at 15 m away from the shaft.

7. Numerical Simulation and Analysis

An axisymmetric steady state numerical simulation model is established to analyze
the construction process of the VSM. Due to the fast construction speed and mostly poor
permeability of Shanghai soft soils, the undrained condition is considered, and the consoli-
dation of soil is neglected during the VSM excavation. However, before the excavation, a
Biot consolidation model was used for the initial stress state computation under self-weight.
This process is called self-weight balance, in which it calculates and equilibrates the initial
ground stress and makes the soil model fully consolidated, and the deformation gets stable
under the self-weight, to form the initial stress field for the subsequent VSM construction
model. In VSM excavation, fluid-solid coupling is considered, in which an elastic-plastic
Mohr-Coulomb model governs stress-strain field; and Darcy’s law governs the seepage
field. It is carried out by effective stress. The change of water head by the seepage in the
shaft causes the change of the pore water pressure in the soil layers and then changes the
effective stress and causes deformation. The soil layers in the construction site are: 1© plain
fill/flush fill, 2© sandy silt, 3© clay, 4© silty clay, 5©1 clay, 6©2 clay mixed with silt, and 7©2
sandy silt. Considering that the engineering properties of the 2© sandy silt, 4© silty clay and
5©1 clay layer are roughly the same, and the effects of the thinner 1© plain fill/flush fill and
2© sandy silt are ignored; this model generalizes the stratum as a combination of 4© silty

clay and 7©2 sandy silt. The simulation model is shown as Figure 11, soil parameters are
shown in Table 3, and structure parameters are shown in Table 4.
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Table 3. Soil parameters in numerical simulation model.

Soil Layer Unit Weight
/kg/m3 Void Ratio Young’s

Modulus/Mpa Cohesion/kPa Internal Friction
Angle/◦

Permeability
/cm/s

silty clay 1690 1.38 6.57 12 12 1.43 × 10−7

sandy silt 1890 0.76 19.2 3 34 4.69 × 10−5

Table 4. Structure parameters in numerical simulation model.

Material Unit Weight/kg/m3 Young’s Modulus/Mpa Poisson’s Ratio

precast segments 2300 2.5 × 104 0.2
high-pressure rotating pile 1800 20 0.2

bored cast-in-place pile 2300 3.15 × 104 0.2

The consolidation of soil was completed before excavation in the numerical simulation
model. Resultantly, the whole VSM model has an initial stress and strain field under
self-weight. Furthermore, the shaft excavation and segment sinking are calculated at the
same time every 5 m. As explained above, consolidation is not considered during the
excavation process because of the rapid construction speed, short construction time, and
low permeability of soils. The normal displacement of the side boundary and the lower
boundary of the model are constrained. The hydraulic pressure is applied to the permeable
excavation face and the inner wall of the prefabricated concrete segment. On the ground
surface, the gravity of the prefabricated segment in the shaft is loaded on the concrete
ring beam, and the pavement load of 5 kPa is loaded within 50 m from the outer wall of
the shaft.

7.1. Simulation Results of Ground Settlement

Ground settlements of simulation results during 15 m, 25 m, and 35 m excavation,
along different distances from the shaft center, are presented in Figure 12, combined
together with field measurements and theoretical calculations. They all show that the
ground settlement is mainly concentrated in the range of 30 m from the shaft center. The
ground settlements all behave as a shape of a spoon type. As the excavation increases, the
maximum ground settlement gets slightly larger, but the location is almost the same, all-
around 15–20 m distance from the shaft center. The numerical simulation results in the range
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of 30 m from the shaft center are roughly the same as the field measurements. When the
excavation of the shaft was basically completed (35 m excavation depth), the ground surface
settlement 15 m from the shaft center obtained by numerical simulation is about 13.6 mm,
and the measured value is about 13.4 mm. The simulation value is relatively consistent
with the measured value; on another aspect, the simulation results also demonstrate
the validity and effectiveness of the field measurement points design. The theoretical
calculation result is about 19.7 mm, which is larger than the simulation and measured
values. These results may be due to the small diameter of the VSM shaft, and the annular
lining structure has great bending resistance in the radial direction. However, the stress
and deformation theory (explained above) simplified segments into a two-dimensional
structure (radial and axial directions), which reduces the radial bending resistance, thus
making the theoretical calculation settlement larger. The field measurement shows that
there is still a lot of ground settlement beyond 30 m away from shaft center, which is
obviously larger than the numerical simulation and theoretical calculation results. The
reason for this phenomenon may be that the construction site has a lot of construction
facilities and building materials stacking in this range. These temporary overloadings
greatly increase the ground settlement at this construction site. The numerical simulation
and theoretical calculation are insufficient to estimate the construction overload, resulting
in the phenomenon that the measured value is obviously larger than the simulated and
calculated values. Both the simulation and measurement results show that the ground
settlement caused by the VSM excavation is not greater than 15 mm, which is relatively
small compared with other underground structure construction, inferring that the VSM
construction has little impact on the ground settlement.
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Figure 12. Simulation results of surface settlement ((a), 15 m excavation; (b), 25 m excavation;
(c), 35 m excavation).

7.2. Analysis of Uplift Deformation on Shaft Excavation Face

The vertical uplift results of the soil near the excavation surface by simulation are
shown as Figure 13, compared with field measurements. Both the numerical simulation
and field measurement show that, during the excavation, a certain uplift would occur
near the excavation surface; the deeper the excavation depth, the more obvious the uplift.
The numerical simulation results of the vertical deformation near the excavation face are
generally slightly larger than the field measurement results. The numerical simulation
results of the excavation face uplift after shaft excavation are about 10.7 cm, while the
measured result is about 8.6 cm. The reason for this phenomenon is that the caisson bottom
soil has a certain elastoplasticity, causing a slow rebound rate. Under the rapid construction
rate of the VSM, the foundation soil is not fully rebounded until the construction of
the bottom sealing is completed. In general, the numerical simulation model is able to
simulate the real excavation face uplift, and the results tend to be a good reference before
the construction.
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7.3. Analysis of Horizontal Displacement along Depth

In the construction site, the horizontal displacement simulation and the measured
results along the depth of 15 m away from the shaft center are shown in Figure 14. Com-
paring the numerical simulation with the field measurements, the simulation values of
the horizontal displacement under different excavation depths are slightly smaller than
the measurement values. When the construction is finished (35 m excavation), at 15 m
away from shaft center, the simulation result for the maximum horizontal displacement
is about 3.26 mm, while the field measurement value is about 3.45 mm, and the error is
only 6%. However, the main difference here is that the numerical simulation shows that
the maximum horizontal displacement is located at the depth of 30 m to 40 m, while the
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measured results show that the maximum deformation occurs at the depth of 15 m to
20 m. This is mainly because this depth of 15–20 m is at the interface of the soft clay and
silt. When excavating in the upper soft clay layer, due to the thixotropy of the soft clay,
it is necessary to grout the bentonite between the prefabricated segments and the soil to
ensure the stability of the shaft. The parameters of bentonite need to be strictly controlled
in this process. The soil parameter changes abruptly at the interface of the stratum, and the
bentonite parameter fails to adjust in time, leading to a large deformation. This process is
not simulated by the model, leading to differences in results.
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7.4. Analysis of Lateral Earth Pressure

The lateral earth pressure results along the excavation depth at 15 m away from the
shaft center by simulation are shown in Figure 15, compared with the field measurements.
The numerical simulation results show that the lateral earth pressure decreases slightly
during the excavation process; the lateral earth pressure at the construction ending is about
7% lower than that at the construction beginning. In general, there is little difference be-
tween the simulated and measured values of the lateral earth pressure along the excavation
depth, and the numerical simulation could roughly simulate the earth pressure during the
excavation process.
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Figure 15. Simulation and measured results of lateral earth pressure at 15 m away from shaft center.

When the excavation finished, the numerical simulation, field measurement, and
theoretical calculation of the lateral earth pressure at different depths of 15 m away from
shaft center are shown in Figure 16. Both the numerical simulation results and the measured
results show that the lateral earth pressure is slightly smaller than the static earth pressure
and much larger than the active earth pressure. This shows that the horizontal deformation
of shaft segments is relatively small during the excavation process, and the caisson soil
is far away from the stress state that actively and completely squeezes the segments. The
shaft excavation has little effect on the lateral earth pressure of the soil.
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7.5. Stability Analysis during Shaft Excavation

During the traditional excavation of the shaft, the soil is probably at risk of instabil-
ity [18]. The monolithic stability safety factor is an important evaluation index for the
stability of the shaft excavation and the inrush risk on the excavation surface.

Fs =
∑ Rn

∑ Tn

where Fs is the stability safety factor; Rn is the normal shear stress at a point on the sliding
surface (kN); Tn is the normal shear strength at a certain point on the sliding surface (kN).

The numerical simulation model can automatically search for the most likely failure
surface and calculate the stability safety factor of the shaft during the excavation process.
The simulation results of the stability safety factor are shown in Figure 17. It can be seen
from Figure 17 that during the excavation of the VSM shaft, the stability safety factors are
all greater than 1.8, the overall risk of soil instability and water inrush is very small, and the
construction of the VSM shaft is relatively safe due to the injection of water always during
the construction. In the range of the excavation depth less than 15 m, the stability safety
factor decreases continuously with the excavation of the shaft. The stability of the shaft
is the worst when the excavation depth is in the range of 15–20 m. When the excavation
depth exceeds 20 m, the stability increases slightly. The reason for this phenomenon is that,
with the increase in the excavation depth, the sliding force provided by the overlying soil is
far greater than the anti-sliding force provided by it. The stability of the structure is in the
most dangerous state when the excavation reaches the interface between the soft clay and
silt. However, the scope of the most dangerous failure surface expands when the depth
exceeds a certain depth, which inhibits the tendency of the soil to become unstable. Then,
the deeper the excavation depth, the smaller the hydraulic gradient of the pore water in the
soil infiltrating into the shaft, and lower the seepage force, which also increases the stability
in the deeper stage of the excavation. In general, the risk of soil instability and water inrush
during the excavation process of the shaft is very small. The VSM is a relatively reliable
construction method for the shaft when full of water inside the caisson. The only attention
that should be paid is when the water discharged; but at that moment the caisson bottom
has already been sealed.
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8. Discussion

The soft clay is widely distributed in the Shanghai area. Because soft clay has a strong
viscoplasticity and also poor permeability, the construction speed of the underground
space structure would greatly affect the soil deformation. The longer the construction
time, the greater the soil deformation. The construction speed of in-situ assembling caisson
technology is significantly faster than that of the cast-in-place concrete structure, which
reduces the disturbance of the construction on the surrounding soil.
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The process of the underground space excavation inevitably encounters temporary
stopping. Engineering practice shows that, in the Shanghai area where soft clay is widely
distributed, the construction stopping of underground buildings would still bring certain
deformation and settlement to the environment because of creep [19,20]. The VSM is no
exception. However, because the VSM construction is an undrained operation, the stress
disturbance to the surrounding soil is very small, and the safety and stability of the shaft
during the stopping period are relatively high. The construction of the entire VSM is
preferred to the continuous operation to minimize the creep deformation. During the
temporary stopping, the water level in the shaft should be raised to reduce settlement. The
relevant parameters of bentonite grouting should be adjusted in time to reduce the lateral
deformation of the soil layer when excavating to the interface of stratum, which ensures
the construction safety and controls the deformation.

9. Conclusions

This paper takes the Shanghai Zhuyuan Bailonggang Sewage Connecting Pipe Project
as the engineering background and briefly describes the technical aspects of in-situ assem-
bling caisson technology and construction procedures of VSM. Ground settlements and
deep layered displacements were monitored during the VSM construction, and correspond-
ing theoretical calculations and numerical simulations were compared. Several important
conclusions are drawn as follows:

(1) The VSM has the advantages of deep excavation depth, fast construction speed,
small site usage, high economic efficiency, and strong stratum adaptability. It is an excellent
construction method for urban vertical excavation using prefabricated in-situ assembly
to build caisson, also with surrounding environmentally-friendly merit. The ground
settlement and deep layered deformation during construction, both from measured results
and numerical simulation, show that the VSM could be constructed underwater with
little effect on the surrounding environment and high construction safety. It has obvious
advantages in soft soil areas, which generally require engineering dewatering.

(2) Ground settlement is mainly concentrated within 30 m away from the shaft center.
The maximum ground settlement caused by VSM excavation is about 15.2 mm and the
maximum horizontal displacement is about 3.74 mm during the excavation depth of 40 m.
When the shaft is excavated to the soil interface, the horizontal displacement of the stratum
is the largest. The effect of shaft excavation on the lateral earth pressure is very small.
The lateral earth pressure is slightly reduced by about 7% during the construction process.
Compared with other construction techniques, its disturbance to the surrounding soil is
really small.

(3) During the VSM construction excavation of shaft, the stability safety factors are all
greater than 1.8. The risk of soil instability and water inrush during the shaft construction
excavation is very small. The VSM is a relatively safe and reliable shaft construction method
underwater, without the requirement of dewater in the soft soil area. The seepage stability
of the VSM should be paid attention when water discharging.

(4) The numerical simulation results of the ground settlement, deep layered displace-
ments, the uplift of the excavation bottom, and the lateral earth pressure are relatively
accurate, verified by field measurement. It can effectively simulate the construction site con-
ditions. The traditional foundation pit stress and deformation theory is relatively accurate
for the calculation of the earth pressure, but the calculation results of the ground deforma-
tion have larger errors to field measurements, so the estimation accuracy is not high.

(5) The shaft should be constructed continuously to avoid the creep deformation of
the soft clay during temporary stopping. If one has to, the water level in the shaft should
be raised. The relevant parameters of bentonite grouting should be elaborately controlled
in time to reduce the lateral deformation of the soil layer when excavating to the interface
of stratum for stability control.
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