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Abstract: Improving the engineering properties of Al–7Si cast alloys (300 series) provides an attractive
alternative to automotive and aircraft engine industries. The solubility limit of silicon (Si) in Al
contributes to the precipitation of flake-shaped Si particles with sharp edges, which function as
a stress riser and promote crack propagation during the eutectic phase while also weakening the
protective layer’s durability. In this study, the impact of microstructure refinement of Al–7Si alloys
by using cooling slope, thixoforming and the T6 heat treatment process on hardness and corrosion
resistance behavior was investigated. Results showed that the microstructures of the as-cast alloy had
a very coarse dendritic shape, whereas the dendritic transferred to the globular α-Al phase, and the Si
particles were replaced into a lamellar- or acicular-like shape after the cooling slope and thixoforming
process, respectively. The as-cast, cooling slope and thixoformed samples were subjected to the T6
heat treatment process, which enhanced the hardness to 79, 99 and 104 HV, respectively, due to Si
particle refinement. The potentiodynamic test revealed that the corrosion rate dropped to 0.00790
and 0.00736 mmpy−1 in the heat-treated cooling slope and thixoforming samples. This finding can be
attributed to the substantially refined Si particles and reduced eutectic phase area due to the smaller
cathodic to anodic area ratio.

Keywords: Al–Si alloy; cooling slope; thixoformed; heat treatment; corrosion resistance

1. Introduction

Al–7Si alloys can be used to cast complex geometry components in aircraft and auto-
matic industries because of their good corrosion resistance, castability and weldability [1,2].
However, using plate-like Si is not as desirable in achieving better mechanical properties [3].
Reports showed that its strength and ductility cannot cope with the ever-increasing de-
mands of some critical structural components [4]. During deformation, the coarse acicular
Si particles and their sharp edges might cause early fractures. As a result, the room tem-
perature’s workability, which is mostly determined by ductility values, is weakened [5–7].
Therefore, the as-cast Al–Si alloys should be able to alter the morphology of the eutectic
Si from flake-like to a circular or spherical shape. Consequently, different modification
approaches that can be used for the structure modification of Si in unmodified Al–Si alloys
have been proposed to enhance their electrochemical and mechanical properties. In order
to enhance the microstructural morphology of Al–Si alloys with dendritic α-Al phase
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and coarse Si particles, several methods can be used to satisfy industry requirements in
several sectors. The utilisation of semi-solid metal (SSM) enhanced the engineering prop-
erties through the microstructural change from coarse dendritic α-Al grains to a globular
shape as well as the change from flaky Si particles to an acicular shape. Furthermore,
these techniques are expected to serve as alternatives to traditional casting processes be-
cause they offer the possibility of constructing defect-free, heat treatable and near-net
shape components at low cost [8,9]. This approach produces materials that possess ho-
mogeneous globular microstructures that are characterised by decreased segregation and
porosity [10,11].

The SSM technique has the potential to produce materials in the semisolid region at
temperatures exceeding the solidus but lower than the liquidus temperature, where the
solid and liquid phases coexist to create a near-net shape product [12]. Two of the most well-
known developed methods for producing semi-solid components are thixoforming and
cooling slope. These processes have been reported to have the advantages of producing
complex products, reducing porosity and improving alloy properties. In the cooling
slope process, the alloy is continuously agitated and maintained in the semisolid state
before it is poured and injected into the die. The thixocasting process involves partially
remelting the billet in the semisolid region [13]. Several techniques have been introduced
for producing the desired suitable nondendritic microstructure. Amongst all techniques,
the cooling slope (C.S) casting process is considered to be the simplest method of semi-
solid metal casting; it requires minimal equipment and operational costs [14–17]. The
technique promotes homogeneous globular microstructures that reduce segregation and
porosity [10,18]. SSM has the ability to improve the mechanical properties [17,19,20] and
corrosion resistance [10,21] of Al alloys.

Another technique, which can be employed to enhance mechanical and electro-
chemical properties, is heat treatment. As a result of heat treatment, the workability
and mechanical and electrochemical characteristics of the Al–Si alloy are improved as the
lamellar or acicular Si is changed to a globular form, increasing the alloy ductility. The
first benefit is achieved through spheroidisation of eutectic Si in the microstructure. The Si
particles are transformed from an angular to a spherical shape through the break down and
coarsening process. The second precipitation of Mg2Si after the aging process enhances the
mechanical properties. This transformation of the Si morphology of the semisolid alloy after
being subjected to heat treatment (heat-treated semisolid samples) into a spherical shape
results in better ductility and higher fatigue strength of the semisolid casting alloy [22–24]
as well as improved corrosion resistance [25,26]. The large eutectic Si particles in the as-cast
alloy retain their lamellar-like shape in the final microstructure in semisolid casting after
the heat treatment process [27]. Even though the morphology of Si has transformed into an
angular spherical-like shape, the presence of a relatively large area of the eutectic phase
containing Si particles with lamellar- or acicular-like shape promotes crack propagation
through the eutectic phase and reduces corrosion resistance due to the formation of a large
potentially susceptible corroded area. When corrosion occurs, the corrosion product is
stacked on the surface, promoting the formation of the occluded corrosion cell, thereby
exacerbating the corrosion damage [10,28]. This study investigated the effects of microstruc-
tural change via SSM and T6 heat treatment on hardness and corrosion resistance. The
tests were carried out under the following processing conditions to compare the results: (a)
individual refining method—cooling slope, thixoforming and heat treatment; (b) combined
semisolid and T6 heat treatment.

2. Materials and Methods

In this study, the cast commercial Al–7Si alloy in ingot with an initial dimension of
70 × 40 × 130 mm was used. The as-cast material of the cooling slope casting process
was melted in a graphite crucible at 750 ◦C. For this process, the cooling slope used was
stainless steel with tilt angle of 60◦ and slope length of 400 mm. This study selected a
pouring temperature of 620 ◦C to limit the melt overheating. The melt was poured into
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a vertical mould from a stainless-steel slope, and then the mold and the contents were
quenched in water. Samples were sectioned to dimensions of 30 X 120 mm for thixoforming,
and the grains were spheriodized by rapidly reheating to 585 ◦C for 5 min. A hydraulic
cylinder (Vistech Technology Sdn Bhd, Selangor, Malaysia) press with a load of 20 kN
and a maximum compression velocity of 85 mm/s was used to compress the samples.
The thixoforming unit’s die was preheated to 300 ◦C. A calibrated K-type thermocouple
(RS Components Sdn Bhd, KualaLumpur, Malaysia) was placed 8 mm from the top of
the slug to monitor the heating. Argon gas flowed at 2.5 l/min and was capped with a
stainless-steel cover to avoid oxidation during the thixoforming process. According to the
T6 technique, the as-cast, cooling slope-cast and thixoformed samples were subjected to
a heat treatment process that included an eight-hour sequence of solution treatment at
535 ◦C, water quenching at 60 ◦C and a three-hour aging process at 180 ◦C [29].

The samples were subsequently examined under an optical microscope (OM, Olympus
Corporation, Tokyo, Japan) and field emission scanning electron microscope (FESEM, Zeiss,
Oberkochen, Germany). In addition, for elemental analysis, an energy dispersive x-ray
(EDX) (fitted to FESEM) was used. The hardness of these materials was measured using a
Vickers hardness tester (micro-Vickers hardness tester Zwick, Zwickau, Germany; ZHV)
with an applied load of 100 g and a dwell time of 15 s. These samples were also processed
for microstructure investigation using Si carbide (SiC) papers with grits ranging from 180
to 2000, and then polished with 1 and 3 µm diamond paste (Al2O3). Meanwhile, Keller’s
reagent (1% HF, 1.5% HCl, 2.5% HNO3, H2O solution) was used as an etchant for the
etching operation. The grain size was measured using quantitative metallography analysis
in accordance with the ASTM E112 standard. The dimension of Si particles (width and
length) was determined using the Smart Tiffv2 program, with at least 200 particles in each
sample. Then, the electrochemical experiment was carried out at room temperature with
a pH of 6.5 in a naturally aerated 3.5 percent NaCl solution. The corrosion rate of these
samples was measured using the potentiostat GAMRY 3.2 (Aseptec Sdn Bhd, Selangor,
Malaysia). A three-electrode cell with test material (as the working electrode), graphite (as
the counter electrode) and silver or silver chloride ((Ag or AgCl) as the reference electrode)
was used. Each sample was essentially placed in epoxy that had been ventilated for 24 h.
Prior to each corrosion test, these samples were ground to a fineness of up to 1200-grit SiC.

3. Results
3.1. Microstructure of as-cast Al–Si Alloy

Figure 1a shows the optical micrographs of the as-cast sample revealing the typical
microstructure of the unmodified hypoeutectic Al–7Si alloy.
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Figure 1. Microstructural features of as-cast Al–7Si alloy: (a) optical micrograph; (b) SEM morphology
of eutectic Si.

The primary α-Al phase, which is surrounded by coarse flaky Si particles in the
eutectic phase (dark phase), is formed during the initial solidification phase. The dendritic
grain size is approximately 180 µm with a coarse eutectic mixture phase. Figure 1b shows
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the SEM morphology of a flake-like shape Si particle with sharp edges with an average size
of 4.56 ± 1.18 µm.

3.2. Microstructure after Cooling Slope Process

Figure 2a shows the optical micrographs after cooling slope casting over a cooling
slope. The primary α-Al dendrites in the as-cast alloy were completely replaced with an
almost globular shape, which was surrounded with the coarse eutectic phase. The α-Al
grains transformed into a spherical shape with an average size of 54 µm. The temperature
of the molten metal dissipated when poured over the cooling slope, followed by a sudden
temperature drop below the liquidus temperature. Partial coagulation of the α-Al phase
can occur on the cooling slope. The nucleated α-Al was detached due to shear action and
trapped in the flowing melt; the moulds were collected before they grew into a dendritic
shape, as also discussed by Birol [30]. As illustrated in Figure 2b, the cooling slope exhibited
a change in the eutectic Si morphology into a combination of lamellar and relatively round
shapes with a 3.2 ± 0.57 µm average size, with the involvement of the cooling slope. The
α-Al microstructure surrounded by the eutectic phase in the cooling slope sample displayed
a higher level of uniformity than the as-cast alloy. An earlier study revealed that the cooling
slope casting of the alloy obtained refined Si particles [31].
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Figure 2. Microstructural features of the cooling slope Al–7Si alloy by (a) optical micrograph and (b)
SEM morphology of eutectic Si.

3.3. Microstructure after Thixoforming Process

The feed material formed by the cooling slope was subjected to a reheating process,
which occurred in a semisolid condition. At the temperature level for the reheating process,
the solid condition of Si and α-Al particles was constant. Meanwhile, the eutectic mixture
phase melted over time. The molten eutectic mixture was arranged during the holding time.
A uniformly distributed presence of an almost globular shape of the primary α-Al phase is
observed in the thixoformed microstructure. The optical micrographs in Figure 3a show
the microstructure at the centre of the Al–7Si alloy billet. The rosette- and globular-like
primary phase formed during cooling slope casting shows considerable spheroidization
and coarsening due to the reheating process. Different from the mould cast sample, the
microstructure of the thixoformed samples is free from porosity. Moreover, the solid
particles are frequently observed to agglomerate in thixotropic alloys [32]. Figure 3a
shows the agglomeration of some α-Al grains. This agglomeration is brought about by
shearing and sintering effects that cause particle collision and solid bonding [33]. The
eutectic phase of the thixoformed samples is finer than that of the cooling slope casting,
and the rapid cooling of the samples from a semisolid state mainly produced this difference.
The refinement of the microstructure is determined primarily by the solidification rate; it
significantly affects the quality of the materials. A higher cooling rate produces a finer
microstructure [34].
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Figure 3b shows how the morphology of Si particles has been significantly modified
from large individual flakes in the traditional mold cast alloy to a small acicular or skeleton
network at increased magnification of the eutectic zone. The thixoformed samples have
primary α-Al globules with an average size of 71 µm in diameter. The fine particles of
acicular Si morphology have an average size of 2.51 ± 0.76 µm. The cooling rate in the bulk
increases due to the pressure applied by the ram during thixoforming, promoting contact
between the die wall and the melt. This condition may be attributed to the larger coefficient
of heat transfer [35,36]. In addition, the short period of grain growth resulted in a more
refined primary α-Al due to the cooling rate under pressure. The application of pressure
produced a more refined eutectic Si with a rosette-like appearance, which is indicated by
the red circle in Figure 3b, instead of the lamellar-like appearance [37]. The nucleation of
eutectic Si produced very fine lamellar-shaped Si. This refinement can be obtained through
a high local cooling rate.

3.4. Microstructure after the Heat Treatment

Figure 4 shows the SEM and optical micrographs of eutectic Si in the as-cast, cool-
ing slope and thixoformed Al–Si alloy (300 series) after the T6 solution heat treatment.
Compared with Figures 1–3, transformation mostly occurred on a lamellar and relatively
round shape of eutectic Si particles in the cooling slope and thixoformed, or the flak-like
in as-cast into a spheroidized form. This transformation occurred after the application
of the T6 solution heat treatment. A number of eutectic Si particles remained in a fine
lamellar-like shape, as illustrated in Figure 4a–f. The result in this figure supports the
findings presented by other researchers [27]. During the first stage of T6 heat treatment,
the Mg2Si component and Si dissolve at a solutionizing temperature in the α–Al phase.
The Si solid solubility value in the Al matrix is approximately 1.5 wt.%, whereas the solid
solubility value of Mg2Si is approximately 1.4 wt. percent [38]. The T6 solution heat
treatment in the Al–Si–Mg alloy was used to illustrate the occurrence of three phenomena:
(i) precipitation of hardened Mg2Si particles during the second stage of T6 heat treatment,
(ii) eutectic Si particle fragmentation and (iii) chemical homogenization. Furthermore, in
thixoforming procedure, the size of the Si particles, which did not melt upon reheating, was
maintained at a significant extent [39]. In addition, a number of large Si particles exhibited
smooth edges, as illustrated in Figure 4e,f. The Si particle shape was influenced by (i) the
different levels of pressure applied during the thixoforming process, (ii) the heat treatment
used and (iii) the solidification rate. The minimisation and fragmentation of the lamellar Si
plate-like into smaller pieces started during the solution treatment, followed by continuous
spheroidization.
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Figure 4. Optical and SEM micrographs of heat-treated eutectic Si particles in (a,b) as-cast, (c,d)
cooling slope and (e,f) thixoformed Al–7Si alloy samples.

Figure 5a displays the schematic of the coarsening and spheroidization process of
Si particles. In the coarsening process, the development of larger particles occurred at
the expense of the other small particles [40]. Consequently, the number of Si particles is
reduced during the heat treatment process with a corresponding increase in the average
particle size; meanwhile, the minimization and necking of Si particles during the T6 solution
heat treatment are displayed in Figure 4b. Table 1 shows the quantitative metallography
evaluation of microstructural attributes with and without the T6 treatment. It also presents
the quantitative metallography evaluation of microstructural attributes with and without
the T6 treatment. A decrease in diameter equivalent to Si particles occurred compared with
that of the semisolid state and as-cast processes.
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Table 1. Average size of Si particles.

Samples Si Size (µm)

As-cast 4.56 ± 1.18
As-cast—T6 2.76 ± 0.68

Cooling slope 3.2 ± 0.57
Cooling slope—T6 2.32 ± 0.34

Thixoformed 2.51 ± 0.76
Thixoformed—T6 1.92 ± 0.87

3.5. Effect of the Heat Treatment on the Intermetallic Compounds

Heat treatment is carried out to achieve three benefits, homogeneity of the as-cast
structure, dissolving of certain intermetallic particles, such as Mg2Si, and spheroidization
of the eutectic Si morphology. However, a fourth benefit is obtained during heat treatment,
namely, the transformation from the π-AlFeSiMg phase to the fine needle-like β-AlFeSi
or α-AlFeSi phases, resulting in slight improvements in the mechanical properties after
T6 heat treatment [21,41–43]. The transformation occurs in a midrange of Mg content
(0.35–0.55 wt.%). Figure 6 shows the transformation, where π-AlFeSiMg partially trans-
formed into α-AlFeSi, which has a coral-like morphology, due to the dissolution of Mg
into the α-Al phase in the thixoformed sample. The finding is consistent with that of other
researchers [21,41]. The Fe-intermetallic phase is affected by iron concentration and the
cooling rate; low Fe concentration and a high cooling rate decreases the size of the Fe-
phase [42]. A high cooling rate in the thixoformed sample leads to a refined Fe-intermetallic
phase. This microstructural change is expected to considerably enhance the workability
and processability of the alloy given that plate-like particles, such as β-AlFeSi, may lead to
the initiations of local cracks and even generate surface defects [44].
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3.6. Effect of Refinement Microstructure on the Hardness

Figure 7 shows the average Vickers microhardness of the as-cast and semisolid Al-7Si
alloy samples before and after heat treatment. The increase in hardness of the Al–7Si alloy
after cooling slope and thixoformed processing is due to the microstructural transformation
from coarse dendrite to globular α-Al altered Si particle size and morphology, as well
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as structural homogeneity. Alloy hardness increased from 65 HV to 86 and 90 HV, as
shown in Table 2, after cooling slope and thixoformed processing, respectively. Shear
force is able to break the dendrite arms of the α-Al phase, thereby refining the grain of the
alloy. As a consequence, the microstructure in the cooling slope condition grows smaller
and denser than that of the as-cast sample, and the microstructure of the cooling slope
sample has the maximum microhardness [45]. The transformation of Si particles from a
flake shape in as-cast to lamellar or acicular shapes in the cooling slope samples enhanced
the microhardness of the Al–7Si alloy. The highest pressure imposed on the thixoformed
sample increases the cooling rate, resulting in refined α-Al grains. Consequently, the Si
morphology is transformed into a fine acicular shape. Furthermore, thixoforming eliminates
porosity and shrinkage during the casting process, thereby increasing hardness. Evidently,
spheroidization of eutectic Si after T6 heat treatment results in enhanced hardness of the
samples. The potential for spheroidization of Si particles following T6 heat treatment
and the precipitation of Mg2Si particles during the aging process boosts ultimate tensile
strength and hardness [46,47].
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Table 2. Average of microhardness.

Samples Microhardness (HV)

As-cast 65
As-cast—T6 79

Cooling slope 86
Cooling slope—T6 99

Thixoformed 90
Thixoformed—T6 104

3.7. Effect of Refinement Microstructure on the Corrosion
3.7.1. Immersion Test Results Analysis

The optical micrographs in Figure 8 show the top and side views of the surface
morphology of as-cast, cooling slope and thixoformed samples after a 10-day immersion in
3.5% NaCl solution.

Selective corrosion attack is evident in the eutectic phase of the as-cast, cooling slope
and thixoformed samples, whereas the primary α-Al phase remains unattacked. The
presence of a relatively large eutectic phase, as shown in Figure 8b,d,f, promotes wider
corrosion on the surface of the as-cast sample than the thixoformed and cooling slope
samples. The cooling slope and thixoformed samples have a smaller area of localized
corrosion compared to the as-cast sample. The initial corrosion in the as-cast, cooling slope
and thixoformed Al–7Si alloys eventually spreads throughout the eutectic mixture [48].
Stable pits formed on the surface of the three alloys due to localized corrosion are a result
of the galvanic corrosion action between the active phase (eutectic phase) and noble phase
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(Si and intermetallic compound particles) [49]. Larger localized corrosion pits are observed
in the as-cast sample.
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3.7.2. Electrochemical Test Results Analysis

The electrochemical behaviour of the Al–7Si alloy is evaluated by exposing the samples
to a corrosive environment, simulating the seawater environment by using 3.5% NaCl
electrolyte solution at ambient temperature. The Tafel extrapolation method is used in
conjunction with the linear polarization approach to determine the corrosion resistance of
as-cast, cooling slope and thixoforming samples. Figure 9 shows the polarization curves
for as-cast, cooling slope-cast and thixoformed samples before and after heat treatment.
The curves show that the estimated average corrosion potentials are almost identical, with
only minor differences. Table 3 presents the corrosion rates of these samples. The results
indicate that the reduced corrosion rate after semisolid processing can be attributed to
the change in microstructure from a dendritic coarse structure to a fine globular one and
the altered Si particle shape from a flaky to an acicular shape. The significantly refined Si
particles and reduced eutectic phase area may be ascribed to the lower corrosion rate and
improved polarization resistance, following T6 heat treatment processing of as-cast, cooling
slope-cast and thixoformed samples. This condition could be due to the smaller cathodic to
anodic area ratio [10,50]. The 0.0424 mmpy−1 corrosion rate of the as-cast alloy reduced to
0.0195 mmpy−1 after cooling slope and 0.0193 mmpy−1 after thixoformed processing. The
corrosion rates following T6 heat treatment are 0.0160, 0.0079 and 0.00736 mmpy−1, due to
the reduction in the area ratio of cathode to anode.
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Table 3. Average of corrosion rate (CR), current density (icorr.) and polarization resistance (Rp).

Samples Ecorr.
(V)

icorr.
(A/cm2)

Rp
(Ω·cm2)

CR
(mm·y−1)

As-cast −0.698 3.894 × 10−6 5.212 × 103 0.04240

As-cast—T6 −0.710 8.432 × 10−7 2.035 × 104 0.01600

Cooling slope −0.769 1.790 × 10−6 9.690 × 103 0.01950

Cooling slope—T6 −0.702 7.258 × 10−7 2.180 × 104 0.00790

Thixoformed −0.697 1.770 × 10−6 2.522 × 104 0.0193

Thixoformed—T6 −0.742 6.587 × 10−7 3.779 × 104 0.00740

4. Conclusions

1. The primary dendritic α-Al phase morphology in the Al–7Si alloy as-cast sample was
transformed into a fine globular shape in the cooling slope process using a cooling
slope. However, in the thixoformed sample, due to heating, the primary α-Al phase
morphed into a roughly spherical shape that was equally distributed and surrounded
by the eutectic phase.

2. The coarse flake-shaped Si particles in as-cast sample were changed into lamellar-like
shaped particles, measuring 3.2 ± 0.57 µm after cooling slope. The highest pressure
imposed on the thixoformed sample increased the cooling rate, transforming the Si
particles into fine acicular-shaped particles, measuring 2.51 ± 0.75 µm.

3. During the T6 heat treatment process of the Al–7Si alloy, the eutectic flaky-, lamellar-
and acicular-like shaped eutectic Si particles were fragmented and spheroidized via a
coarsening and spheroidization process measuring 2.32 ± 0.34 and 1.92 ± 0.87 µm,
respectively.

4. The increase in hardness of the Al–7%Si alloy after cooling slope and thixoformed
processing is due to the microstructural transformation from coarse dendrite to globu-
lar α-Al, altering Si particle size and morphology as well as structural homogeneity.
The alloy hardness increased from 65 HV to 99 HV and 104 HV after the cooling slope
and thixoformed process, respectively.

5. The presence of a relatively large eutectic phase promotes wider corrosion on the sur-
face of the as-cast sample than the thixoformed and cooling slope samples. Different
from the as-cast sample, the cooling slope and thixoformed samples have a smaller
area of localized corrosion. The substantially refined Si particles and reduced eutectic
phase area may be ascribed to the lower corrosion rate and improved polarisation
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resistance of as-cast, cooling slope and thixoformed samples following T6 heat treat-
ment processing. This finding could be due to the smaller cathodic to anodic area
ratio.
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