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Abstract: The development of new lightweight materials is required for the automotive industry to
reduce the impact of carbon dioxide emissions on the environment. The lightweight, high-manganese
steels are the prospective alloys for this purpose. Hot deformation is one of the stages of the
production of steel. Hot deformation behavior is mainly determined by chemical composition and
thermomechanical parameters. In the paper, an artificial neural network (ANN) model with high
accuracy was constructed to describe the high Mn steel deformation behavior in dependence on
the concentration of the alloying elements (C, Mn, Si, and Al), the deformation temperature, the
strain rate, and the strain. The approval compression tests of the Fe–28Mn–8Al–1C were made
at temperatures of 900–1150 ◦C and strain rates of 0.1–10 s−1 with an application of the Gleeble
3800 thermomechanical simulator. The ANN-based model showed high accuracy, and the low
average relative error of calculation for both training (5.4%) and verification (7.5%) datasets supports
the high accuracy of the built model. The hot deformation effective activation energy values for
predicted (401 ± 5 kJ/mol) and experimental data (385 ± 22 kJ/mol) are in satisfactory accordance,
which allows applying the model for the hot deformation analysis of the high-Mn steels with different
concentrations of the main alloying elements.

Keywords: artificial neural network; hot deformation; thermomechanical simulator Gleeble; high
Mn steel; constitutive model

1. Introduction

High-manganese lightweight steels are prospective materials for the automotive in-
dustry due to their elevated specific strength and low cost. Such materials possess high
strength, plasticity, and toughness at room temperature [1–4]. Moreover, they show high
energy absorption during impact loads, which may have a significant effect during au-
tomobile traffic accidents [5]. The properties of the steel are determined by the chemical
composition and producing technology, including high-temperature deformation [6,7].
Therefore, the hot deformation behavior of the alloys requires a deeper investigation.

Hot deformation significantly changed the initial microstructure of the cast ingots
by eliminating the casting defects and refining grains by dynamic recrystallization [8].
However, the optimization of the hot deformation conditions is necessary to obtain the
required microstructure and subsequently good mechanical properties. The constitutive
modeling of the high-temperature behavior may decrease the time for process optimization.
They allow for the determination of the rheological properties of the materials at any ther-
momechanical parameter, such as temperature, strain, and strain rate. Such models may
also be useful for the simulation of the deformation by the finite element method [9–14].
Currently, a lot of constitutive models have been constructed for metallic materials [15–18].
Yang et al. have found the dependence of true stress on the Zener–Hollomon parameter
during the Fe–27Mn–11.5Al–0.95C steel hot deformation [19]. Wan et al. have established
a physical constitutive model considering strain coupling for Fe–25Mn–10Al–1.46C [20].
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Shen et al. have investigated high-temperature tensile behavior of as-cast high-Mn steels
through constitutive modeling using the Zener–Hollomon parameter [21]. However, most
of the models have considered materials with specific chemical compositions. A more
common problem in physical metallurgy is finding the influence on the behavior at hot
deformation, with both effects of thermomechanical parameters and chemical composi-
tion simultaneously. Unfortunately, there are no mathematical models that describe the
influence of element concentration on the stress at high temperatures due to the complexity
of the deformation at high temperatures. The application of machine learning through
artificial neural network (ANN)-based models may help to solve this task.

ANN modeling provides a powerful instrument for finding correlations between
properties and influencing parameters without preliminary stated functional dependencies.
Due to a lot of non-linear connections between neurons, ANN has significantly higher
accuracy in comparison with usual regression models. ANN-based models have found
a wide application in metallic materials science for the last time [22–29]. U. Subedi et al.
have determined the presence of an intermetallic phase in multi-principal element alloys by
ANN modeling [30]. X. Geng et al. have predicted the hardenability of non-boron steels by
machine learning [31]. W. Choi et al. have used the ANN approach to predict the influence
of vanadium content on the microstructure and mechanical properties of low-alloyed high-
strength steel [32]. P. Opela et al. have applied the deep learning of an ANN-based model
to describe the hot flow stress of 38MnVS6 steel [33]. Jeong et al. have constructed a model
for the prediction of the hot ductility region in high-Mn steel [34]. Cheng et al. have shown
significantly higher accuracy of the ANN-based model of the GH4169 superalloy’s warm
deformation behavior in comparison with the Arrhenius equation [35]. An analogous result
was found by Liu et al. for 42CrMo steel [36]. However, most of the authors have not
used the full power of the ANN-based modeling using this approach for the steels with
a specific composition.

Therefore, this study aims to construct an ANN-based model for the prediction of
high Mn lightweight steel high-temperature deformation behavior with different alloying
elements content. Such a model will be useful for the creation of more effective hot
deformation technologies for industry.

2. Materials and Methods

The ANN model was constructed using the data from scientific papers devoted to
the hot deformation behavior of high-Mn light-weight steels [19,20,37–52]. The database
consists of the values of input variables: alloying element content (C, Si, Mn, Al) and
thermomechanical parameters (strain rate, temperature, strain), and an output property
(true stress). The organizational structure of the constructed ANN model is shown in
Figure 1. The ranges of the input parameters in the database are given in Table 1. The
number of records in the database was 3648. The obtained data were mixed randomly
and separated into the following groups: the training data (60% of the dataset), the cross-
validation records (20%), and the data for testing (20%). The transfer function in the neurons
was the hyperbolic tangent. The static backpropagation algorithm was used for determining
the optimal ANN-based model weight values using NeuroSolutions 7 software.

Table 1. The ranges of the C, Si, Mn, and Al content (wt. %) and hot deformation parameters in
the database.

C Si Al Mn Strain Temperature, ◦C Strain Rate, s−1

0.03–1.05 0–3.1 0–11.5 7.5–35.1 0.05–1 700–1200 10−4–20

Validation of the constructed model was conducted by carrying out the additional hot
deformation test with the Fe–28Mn–8Al–1C (wt. %) steel. The samples for the deformation
with a radius of 3 mm and a height of 9 mm were made from the ingots, which were pro-
duced using commercial purity raw materials by argon induction melting in an Indutherm
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20 V furnace. The compression was carried out using a Gleeble 3800 thermomechanical
simulator at temperatures of 900–1150 ◦C and strain rates of 0.1, 1, and 10 s−1. The final
strain was about 1. The thermomechanical treatment process in more detail is described
in [44]. The obtained primary stress-strain curves were corrected for considering the friction
between dies and the sample’s edges, such as adiabatic heating during the compression,
accordingly [53,54].
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Figure 1. The ANN model organization structure.

A Tescan-VEGA3LMH scanning electron microscope (SEM) and Bruker Advance D8
X-ray diffractometer were used for the microstructural analysis. The samples for SEM were
polished and chemically etched in the 5% nitric acid solution in alcohol. The mass fraction
of phases at high temperatures was determined using the Thermocalc® program with the
TCFe7 thermodynamic database.

3. Results
3.1. Training of the ANN-Based Model

The primary database was used for the estimation of the precision of the constructed
model. Figure 2 shows the plots of the calculated and real stress values for training, cross-
validation, and testing datasets. The quantitative precision of the constructed model was
found using average relative error (ARE) [55]:

ARE(%) =
100
N

N

∑
i=1

|Ei − Pi|
Ei

(1)

Here, E, and P are the real and predicted stress, correspondently. N is the number of
records in the dataset.

The ARE has a value of 5.4% for the training dataset and 6.3% for the cross-validation
and testing datasets. Such a low error shows the good accuracy of the built model. However,
the error values were obtained for the data that was used for the ANN teaching. It may be
useful to check the constructed ANN-based model using an independent experiment for
the steel with a composition that differs from the one presented in the database.
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3.2. Microstructure of the Investigated Steel

New hot compression tests of the Fe–28Mn–8Al–1C steel were carried out to verify the
accuracy of the constructed ANN model. The microstructure of the steel before deformation
is shown in Figure 3. The microstructure is represented by grains with a size of 41 ± 4 µm
(Figure 3a). The only austenite phase was determined by XRD analysis (Figure 3b). Thermo-
dynamic modeling of the phase composition shows that the microstructure of the considered
steel in the temperature range of deformation consists of the austenite (fcc) phase (Figure 4).
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3.3. High-Temperature Deformation Behavior

The Fe–28Mn–8Al–1C steel shows typical metallic materials’ hot deformation behavior
(Figure 5). True stress tends to increase with a decrease in temperature and an increase in
the deformation rate. The movement of the dislocation at high temperatures is determined
by diffusion and applied forces. As a result, a decrease in the temperature leads to the
necessity of applying higher stress for the deformation continuation. At the same time,
each elemental step of the dislocation movement (sliding or climbing) requires activation
time. The increases in the strain rate make the time shorter; as a result, activation of
the dislocation movement may proceed only at a higher strain rate. Moreover, the peak
is present on all of the true stress–true strain dependences. It means that the process of
dynamic recrystallization (DRX) begins during the deformation. However, the DRX process
proceeds in the overall volume of the deformed samples only at high temperatures. In that
case, we can see steady-state deformation with an almost constant true stress value.
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1050 ◦C (a) and a deformation rate of 1 s−1 (b).

3.4. Approvement of the Constructed ANN-Based Model

The constructed ANN model was used for the calculation of the true stress for the
additional compression tests of the Fe–28Mn–8Al–1C steel. A comparison of the experi-
mental and predicted true stress values is shown in Figure 6. The ANN model has shown
satisfactory accuracy with an ARE of 7.5% (Figure 6d). The highest discordance between
experimental and calculated values was observed for a large strain value. It may be related
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to the significant influence of friction at high strain that is hard to predict correctly in all
cases. However, usually, the deformation amount for each elemental stage in the industrial
processes does not exceed the value of engineering deformation of about 50% (0.7 of true
strain). Up to this value, the model shows good accuracy for almost all investigation
deformation modes.
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4. Discussion

A constructed ANN-based model may be used for the prediction of the flow stress
at different compression conditions for new high-Mn steel with a composition that differs
from that investigated earlier. As shown in Figure 7a, the true stress of the Fe–xMn–8Al–1C
steel increased with increases in Mn content from 20 to 30%. However, similar dependence
for the steel with variable Al content has a maximum of about 8% (Figure 7b). It may be
related to the difference in the phase compound of the considered alloys. In the case of
the Fe–(20-30)Mn–8Al–1C steel, the only austenite phase is present in all temperature and
concentration ranges (Figure 7c). The main factors that determine the increase in true stress
are solid solution hardening and an increase in stacking fault energy (SFE). The increase in
Mn content leads to increases in the SFE [56] and suppresses the DRX process, which is the
main softening mechanism at high deformation. The addition of Al to high-Mn steels also
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significantly increases the SFE of austenite [57]. However, the phase composition of the
steel is changing at a concentration of Al of about 8%. The appearance of the ferrite phase
leads to a decrease in true stress. Similar hot deformation behavior is observed with the
change in carbon concentration (Figure 8a,c). The decrease in carbon content leads to an
increase in flow stress due to the high diffusivity of the carbon. However, the appearance
of the ferrite in the microstructure leads to a decrease in flow stress. The addition of Si
to the investigated alloy drastically decreases flow stress. The Si has also large diffusive
mobility in the austenite phase, which leads to the acceleration of softening processes, such
as dynamic recovery and dynamic recrystallization.
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The built ANN-based model also may help to analyze the deformation behavior of the
steel through the effective activation energy (EAE) of the deformation process. The value
of the EAE (Q) is usually determined using the functional dependence between the stress
(σ) and the Zener–Hollomon parameter (Z) [58]:

Z =
.
εe

Q
RT (2)
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where
.
ε, and T are deformation rate (s−1) and temperature (K), correspondently. Usually,

the hyperbolic sine law may describe the relation (2) at all stress values:

Z = A3[sinh(ασ)]n2 (3)

where A3, n2 and α are the material’s constants. However, the description of particular
cases of the deformation modes is necessary to define the α value. The exponential law
may be used for high stresses:

Z = A2eβσ (4)
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The power form well defines the deformation conditions with a low level of stress:

Z = A1σ
n1 (5)

where material’s constants A1, n1, A2, and β should be determined using the values of the
flow stress.

The value of α may be found using the following formula:

α ≈ β

nP
(6)
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The value of the EAE was determined by logarithmization of Equations (2)–(5) and
minimization between predicted and real true stress values by the least squares method.

The experimental value of EAE for Fe–28Mn–8Al–1C steel is 385 ± 22 kJ·mol−1.
The dependence of the EAE on the Mn concentration in the Fe–xMn–8Al–1C steel was
obtained using calculated ANN-based model data. As shown in Figure 9a, the difference
between the calculated and experimental values of EAE is within the confidence interval.
A good accordance between experimental and calculated data was also shown for the
Fe–26Mn–8Al–lC steel [49]. The calculated dependence shows that the deformation process
proceeds with more difficulty with the increased Mn concentration. The change in the Mn
concentration has also had a significant influence on the other parameters of the constitutive
model (Appendix A). The increase in Mn content leads to an increase in all parameters.
However, the constants related to strain rate sensitivity (n1, n2, α, β) have a maximum in the
range of the Mn concentration of 24–28%. The same position of the maximum was obtained

in the dependence of the activation volume (3
√

3kT
(

∂(ln
.
ε)

∂σ

)
[59] on the Mn content at

different temperatures (Figure 9b). The nature of this phenomenon requires detailed study.
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Figure 9. Dependence of the EAE (a) and activation volume (b) on the Mn content in the Fe–xMn–
8Al–1C steel at a true strain of 0.7.

Thus, a constructed ANN model for the prediction of the true stress of lightweight
high-Mn steel may be useful for the creation of optimal forming technologies and the
scientific analysis of the hot deformation behavior.

5. Conclusions

1. An ANN model for the prediction of the hot deformation behavior of the lightweight
high-Mn steel was built. The model possesses high accuracy for the training, cross-
validation, and testing datasets. An error of prediction in the range of 5.4–6.3% shows
the high accuracy of the built model.

2. The additional compression tests of the Fe–28Mn–8Al–1C steel were made for verifica-
tion of the constructed ANN model. The matching of the calculated and experimental
values shows a high model predictability at a true strain of up to 0.7.

3. The effective activation energies for calculated and experimental true stress data for
a strain of 0.7 were determined using the dependence between stress and the Zener–
Hollomon factor. The effective activation energy values for predicted (401± 5 kJ·mol–1)
and experimental data (385 ± 22 kJ·mol−1) are in satisfactory accordance, which allows
applying the model for the high-temperature compression behavior analysis of the
high-Mn steels with different concentrations of the main alloying elements.
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4. The usage of the constructed model shows that the increases in Mn in the Fe–xMn–
8Al–1C steel from 20 to 30% lead to increases in the true strain at a deformation rate
of 0.1 s−1 and true strain of 0.7. Similar dependence for the Fe–28Mn–(5-10)Al–1C has
a maximum at the Al content of 8% due to a change in the phase composition from
the austenite to the austenite–ferrite region.

5. The dependence of the activation volume on the manganese content has a maximum
near the 26% of Mn that may be related to the SFE dependence change and is required
following investigation.
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resources, A.Y.C.; data curation, A.A.K.; writing—original draft preparation, A.Y.C.; supervision,
A.Y.C.; project administration, A.Y.C. All authors have read and agreed to the published version of
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