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Abstract: The development of new lightweight materials is required for the automotive industry to 

reduce the impact of carbon dioxide emissions on the environment. The lightweight, high-manga-

nese steels are the prospective alloys for this purpose. Hot deformation is one of the stages of the 

production of steel. Hot deformation behavior is mainly determined by chemical composition and 

thermomechanical parameters. In the paper, an artificial neural network (ANN) model with high 

accuracy was constructed to describe the high Mn steel deformation behavior in dependence on the 

concentration of the alloying elements (C, Mn, Si, and Al), the deformation temperature, the strain 

rate, and the strain. The approval compression tests of the Fe–28Mn–8Al–1C were made at temper-

atures of 900–1150 °C and strain rates of 0.1–10 s−1 with an application of the Gleeble 3800 thermo-

mechanical simulator. The ANN-based model showed high accuracy, and the low average relative 

error of calculation for both training (5.4%) and verification (7.5%) datasets supports the high accu-

racy of the built model. The hot deformation effective activation energy values for predicted (401 ± 

5 kJ/mol) and experimental data (385 ± 22 kJ/mol) are in satisfactory accordance, which allows ap-

plying the model for the hot deformation analysis of the high-Mn steels with different concentra-

tions of the main alloying elements. 

Keywords: artificial neural network; hot deformation; thermomechanical simulator Gleeble; high 

Mn steel; constitutive model 

 

1. Introduction 

High-manganese lightweight steels are prospective materials for the automotive in-

dustry due to their elevated specific strength and low cost. Such materials possess high 

strength, plasticity, and toughness at room temperature [1–4]. Moreover, they show high 

energy absorption during impact loads, which may have a significant effect during auto-

mobile traffic accidents [5]. The properties of the steel are determined by the chemical 

composition and producing technology, including high-temperature deformation [6,7]. 

Therefore, the hot deformation behavior of the alloys requires a deeper investigation. 

Hot deformation significantly changed the initial microstructure of the cast ingots by 

eliminating the casting defects and refining grains by dynamic recrystallization [8]. How-

ever, the optimization of the hot deformation conditions is necessary to obtain the re-

quired microstructure and subsequently good mechanical properties. The constitutive 

modeling of the high-temperature behavior may decrease the time for process optimiza-

tion. They allow for the determination of the rheological properties of the materials at any 

thermomechanical parameter, such as temperature, strain, and strain rate. Such models 

may also be useful for the simulation of the deformation by the finite element method [9–

14]. Currently, a lot of constitutive models have been constructed for metallic materials 

[15–18]. Yang et al. have found the dependence of true stress on the Zener–Hollomon 

parameter during the Fe–27Mn–11.5Al–0.95C steel hot deformation [19]. Wan et al. have 
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established a physical constitutive model considering strain coupling for Fe–25Mn–10Al–

1.46C [20]. Shen et al. have investigated high-temperature tensile behavior of as-cast high-

Mn steels through constitutive modeling using the Zener–Hollomon parameter [21]. 

However, most of the models have considered materials with specific chemical composi-

tions. A more common problem in physical metallurgy is finding the influence on the 

behavior at hot deformation, with both effects of thermomechanical parameters and 

chemical composition simultaneously. Unfortunately, there are no mathematical models 

that describe the influence of element concentration on the stress at high temperatures 

due to the complexity of the deformation at high temperatures. The application of ma-

chine learning through artificial neural network (ANN)-based models may help to solve 

this task. 

ANN modeling provides a powerful instrument for finding correlations between 

properties and influencing parameters without preliminary stated functional dependen-

cies. Due to a lot of non-linear connections between neurons, ANN has significantly 

higher accuracy in comparison with usual regression models. ANN-based models have 

found a wide application in metallic materials science for the last time [22–29]. U. Subedi 

et al. have determined the presence of an intermetallic phase in multi-principal element 

alloys by ANN modeling [30]. X. Geng et al. have predicted the hardenability of non-bo-

ron steels by machine learning [31]. W. Choi et al. have used the ANN approach to predict 

the influence of vanadium content on the microstructure and mechanical properties of 

low-alloyed high-strength steel [32]. P. Opela et al. have applied the deep learning of an 

ANN-based model to describe the hot flow stress of 38MnVS6 steel [33]. Jeong et al. have 

constructed a model for the prediction of the hot ductility region in high-Mn steel [34]. 

Cheng et al. have shown significantly higher accuracy of the ANN-based model of the 

GH4169 superalloy’s warm deformation behavior in comparison with the Arrhenius 

equation [35]. An analogous result was found by Liu et al. for 42CrMo steel [36]. However, 

most of the authors have not used the full power of the ANN-based modeling using this 

approach for the steels with a specific composition. 

Therefore, this study aims to construct an ANN-based model for the prediction of 

high Mn lightweight steel high-temperature deformation behavior with different alloying 

elements content. Such a model will be useful for the creation of more effective hot defor-

mation technologies for industry. 

2. Materials and Methods 

The ANN model was constructed using the data from scientific papers devoted to 

the hot deformation behavior of high-Mn light-weight steels [19,20,37–52]. The database 

consists of the values of input variables: alloying element content (C, Si, Mn, Al) and ther-

momechanical parameters (strain rate, temperature, strain), and an output property (true 

stress). The organizational structure of the constructed ANN model is shown in Figure 1. 

The ranges of the input parameters in the database are given in Table 1. The number of 

records in the database was 3648. The obtained data were mixed randomly and separated 

into the following groups: the training data (60% of the dataset), the cross-validation rec-

ords (20%), and the data for testing (20%). The transfer function in the neurons was the 

hyperbolic tangent. The static backpropagation algorithm was used for determining the 

optimal ANN-based model weight values using NeuroSolutions 7 software. 

Table 1. The ranges of the C, Si, Mn, and Al content (wt. %) and hot deformation parameters in the 

database. 

C Si Al Mn Strain Temperature, °C Strain Rate, s−1 

0.03–1.05 0–3.1 0–11.5 7.5–35.1 0.05-1 700–1200 10−4–20 
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Figure 1. The ANN model organization structure. 

Validation of the constructed model was conducted by carrying out the additional 

hot deformation test with the Fe–28Mn–8Al–1C (wt. %) steel. The samples for the defor-

mation with a radius of 3 mm and a height of 9 mm were made from the ingots, which 

were produced using commercial purity raw materials by argon induction melting in an 

Indutherm 20V furnace. The compression was carried out using a Gleeble 3800 thermo-

mechanical simulator at temperatures of 900–1150 °C and strain rates of 0.1, 1, and 10 s−1. 

The final strain was about 1. The thermomechanical treatment process in more detail is 

described in [44]. The obtained primary stress-strain curves were corrected for consider-

ing the friction between dies and the sample’s edges, such as adiabatic heating during the 

compression, accordingly [53,54]. 

A Tescan-VEGA3LMH scanning electron microscope (SEM) and Bruker Advance D8 

X-ray diffractometer were used for the microstructural analysis. The samples for SEM 

were polished and chemically etched in the 5% nitric acid solution in alcohol. The mass 

fraction of phases at high temperatures was determined using the Thermocalc® program 

with the TCFe7 thermodynamic database. 

3. Results 

3.1. Training of the ANN-Based Model 

The primary database was used for the estimation of the precision of the constructed 

model. Figure 2 shows the plots of the calculated and real stress values for training, cross-

validation, and testing datasets. The quantitative precision of the constructed model was 

found using average relative error (ARE) [55]: 
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Figure 2. A matching between calculated using a built ANN-based model and real true stresses for 

(a) training dataset, (b) cross-validation dataset, and (c) testing dataset. 

𝐴𝑅𝐸(%) =
100

𝑁
∑

|𝐸𝑖 − 𝑃𝑖|

𝐸𝑖

𝑁

𝑖=1

 (1) 

Here, E, and P are the real and predicted stress, correspondently. N is the number of 

records in the dataset. 

The ARE has a value of 5.4% for the training dataset and 6.3% for the cross-validation 

and testing datasets. Such a low error shows the good accuracy of the built model. How-

ever, the error values were obtained for the data that was used for the ANN teaching. It 

may be useful to check the constructed ANN-based model using an independent experi-

ment for the steel with a composition that differs from the one presented in the database. 

3.2. Microstructure of the Investigated Steel 

New hot compression tests of the Fe–28Mn–8Al–1C steel were carried out to verify 

the accuracy of the constructed ANN model. The microstructure of the steel before defor-

mation is shown in Figure 3. The microstructure is represented by grains with a size of 41 

± 4 μm (Figure 3a). The only austenite phase was determined by XRD analysis (Figure 3b). 

Thermodynamic modeling of the phase composition shows that the microstructure of the 

considered steel in the temperature range of deformation consists of the austenite (fcc) 

phase (Figure 4). 
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Figure 3. Grain microstructure and phase composition of the Fe–28Mn–8Al–1C steel before defor-

mation: SEM (a) and XRD pattern (b). 

 

Figure 4. The calculated phase composition at high temperatures of the investigated steel. 

3.3. High-Temperature Deformation Behavior 

The Fe–28Mn–8Al–1C steel shows typical metallic materials' hot deformation behav-

ior (Figure 5). True stress tends to increase with a decrease in temperature and an increase 

in the deformation rate. The movement of the dislocation at high temperatures is deter-

mined by diffusion and applied forces. As a result, a decrease in the temperature leads to 

the necessity of applying higher stress for the deformation continuation. At the same time, 

each elemental step of the dislocation movement (sliding or climbing) requires activation 

time. The increases in the strain rate make the time shorter; as a result, activation of the 

dislocation movement may proceed only at a higher strain rate. Moreover, the peak is 

present on all of the true stress–true strain dependences. It means that the process of dy-

namic recrystallization (DRX) begins during the deformation. However, the DRX process 

proceeds in the overall volume of the deformed samples only at high temperatures. In that 

case, we can see steady-state deformation with an almost constant true stress value. 
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Figure 5. Typical true stress–true strain curves for the Fe–28Mn–8Al–1C steel at a temperature of 

1050 °C (a) and a deformation rate of 1 s−1 (b). 

3.4. Approvement of the Constructed ANN-Based Model 

The constructed ANN model was used for the calculation of the true stress for the 

additional compression tests of the Fe–28Mn–8Al–1C steel. A comparison of the experi-

mental and predicted true stress values is shown in Figure 6. The ANN model has shown 

satisfactory accuracy with an ARE of 7.5% (Figure 6d). The highest discordance between 

experimental and calculated values was observed for a large strain value. It may be related 

to the significant influence of friction at high strain that is hard to predict correctly in all 

cases. However, usually, the deformation amount for each elemental stage in the indus-

trial processes does not exceed the value of engineering deformation of about 50% (0.7 of 

true strain). Up to this value, the model shows good accuracy for almost all investigation 

deformation modes. 
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Figure 6. A matching of the experimental (lines) and calculated (dots) stress for the Fe–28Mn–8Al–

1C steel deformation at a deformation rate of 0.1 s−1 (a), 1 s−1 (b), 10 s−1 (c), and for all thermomechan-

ical modes (d). 

4. Discussion 

A constructed ANN-based model may be used for the prediction of the flow stress at 

different compression conditions for new high-Mn steel with a composition that differs 

from that investigated earlier. As shown in Figure 7a, the true stress of the Fe–xMn–8Al–

1C steel increased with increases in Mn content from 20 to 30%. However, similar depend-

ence for the steel with variable Al content has a maximum of about 8% (Figure 7b). It may 

be related to the difference in the phase compound of the considered alloys. In the case of 

the Fe–(20-30)Mn–8Al–1C steel, the only austenite phase is present in all temperature and 

concentration ranges (Figure 7c). The main factors that determine the increase in true 

stress are solid solution hardening and an increase in stacking fault energy (SFE). The 

increase in Mn content leads to increases in the SFE [56] and suppresses the DRX process, 

which is the main softening mechanism at high deformation. The addition of Al to high-

Mn steels also significantly increases the SFE of austenite [57]. However, the phase com-

position of the steel is changing at a concentration of Al of about 8%. The appearance of 

the ferrite phase leads to a decrease in true stress. Similar hot deformation behavior is 

observed with the change in carbon concentration (Figure 8a,c). The decrease in carbon 

content leads to an increase in flow stress due to the high diffusivity of the carbon. How-

ever, the appearance of the ferrite in the microstructure leads to a decrease in flow stress. 

The addition of Si to the investigated alloy drastically decreases flow stress. The Si has 

also large diffusive mobility in the austenite phase, which leads to the acceleration of sof-

tening processes, such as dynamic recovery and dynamic recrystallization. 
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Figure 7. Calculated dependence of the true stress on the temperature and Mn (a) and Al (b) con-

tents at a strain rate of 1 s–1 and a true strain of 0.7. The phase diagrams of the Fe–xMn–8Al–1C (c) 

and Fe–28Mn–xAl–1C (d). 
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Figure 8. Calculated dependence of the true stress on the temperature and C (a) and Si (b) content 

at a strain rate of 1 s–1 and a true strain of 0.7. The phase diagrams of the Fe–28Mn–8Al–xC (c) and 

Fe–28Mn–8Al–1C–xSi (d). 

The built ANN-based model also may help to analyze the deformation behavior of 

the steel through the effective activation energy (EAE) of the deformation process. The 

value of the EAE (Q) is usually determined using the functional dependence between the 

stress (𝜎) and the Zener–Hollomon parameter (Z) [58]: 

𝑍 = 𝜀̇𝑒
Q

𝑅𝑇 (2) 

where 𝜀̇, and T are deformation rate (s−1) and temperature (K), correspondently. Usually, 

the hyperbolic sine law may describe the relation (2) at all stress values: 

𝑍 = 𝐴3[𝑠𝑖𝑛ℎ(𝛼𝜎)]𝑛2 (3) 

where 𝐴3, 𝑛2 and 𝛼 are the material’s constants. However, the description of particular 

cases of the deformation modes is necessary to define the α value. The exponential law 

may be used for high stresses: 

Z = A2eβσ (4) 

The power form well defines the deformation conditions with a low level of stress: 

Z = A1σn1  (5) 

where material’s constants 𝐴1, 𝑛1, 𝐴2, and 𝛽 should be determined using the values of 

the flow stress. 

The value of 𝛼 may be found using the following formula: 

α ≈
β

n𝑃
 (6) 

The value of the EAE was determined by logarithmization of Equations (2)–(5) and 

minimization between predicted and real true stress values by the least squares method. 

The experimental value of EAE for Fe–28Mn–8Al–1C steel is 385 ± 22 kJ·mol–1. The 

dependence of the EAE on the Mn concentration in the Fe–xMn–8Al–1C steel was ob-

tained using calculated ANN-based model data. As shown in Figure 9a, the difference 

between the calculated and experimental values of EAE is within the confidence interval. 

A good accordance between experimental and calculated data was also shown for the Fe–

26Mn–8Al–lC steel [49]. The calculated dependence shows that the deformation process 
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proceeds with more difficulty with the increased Mn concentration. The change in the Mn 

concentration has also had a significant influence on the other parameters of the constitu-

tive model (Appendix A). The increase in Mn content leads to an increase in all parame-

ters. However, the constants related to strain rate sensitivity (n1, n2, α, β) have a maximum 

in the range of the Mn concentration of 24–28%. The same position of the maximum was 

obtained in the dependence of the activation volume (3√3𝑘𝑇(
𝜕(𝑙𝑛𝜀̇)

𝜕𝜎
) [59] on the Mn con-

tent at different temperatures (Figure 9b). The nature of this phenomenon requires de-

tailed study. 

  

Figure 9. Dependence of the EAE (a) and activation volume (b) on the Mn content in the Fe–xMn–

8Al–1C steel at a true strain of 0.7. 

Thus, a constructed ANN model for the prediction of the true stress of lightweight 

high-Mn steel may be useful for the creation of optimal forming technologies and the sci-

entific analysis of the hot deformation behavior. 

5. Conclusions 

1. An ANN model for the prediction of the hot deformation behavior of the lightweight 

high-Mn steel was built. The model possesses high accuracy for the training, cross-

validation, and testing datasets. An error of prediction in the range of 5.4–6.3% shows 

the high accuracy of the built model. 

2. The additional compression tests of the Fe–28Mn–8Al–1C steel were made for verifi-

cation of the constructed ANN model. The matching of the calculated and experi-

mental values shows a high model predictability at a true strain of up to 0.7. 

3. The effective activation energies for calculated and experimental true stress data for 

a strain of 0.7 were determined using the dependence between stress and the Zener–

Hollomon factor. The effective activation energy values for predicted (401 ± 5 kJ·mol–

1) and experimental data (385 ± 22 kJ·mol–1) are in satisfactory accordance, which al-

lows applying the model for the high-temperature compression behavior analysis of 

the high-Mn steels with different concentrations of the main alloying elements. 

4. The usage of the constructed model shows that the increases in Mn in the Fe–xMn–

8Al–1C steel from 20 to 30% lead to increases in the true strain at a deformation rate 

of 0.1 s−1 and true strain of 0.7. Similar dependence for the Fe–28Mn–(5-10)Al–1C has 

a maximum at the Al content of 8% due to a change in the phase composition from 

the austenite to the austenite–ferrite region. 

5. The dependence of the activation volume on the manganese content has a maximum 

near the 26% of Mn that may be related to the SFE dependence change and is required 

following investigation. 
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Appendix A 

  

  

Figure A1. ln(A2), ln(A3) (a), n1, n2 (b), α, β (c), and Q1, Q2, Q3 (d) on the Mn content in the Fe–xMn–

8Al–1C steel at a true strain of 0.7. 
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