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Abstract: The present study investigates the effects of the simultaneous use of two additives, an
organosilane warm mix asphalt (WMA) agent and a grade-bumping polyolefin compound, on the
conventional and high-temperature performance properties of a paving grade 50/70 bitumen and a
polymer-modified 45/80-55 bitumen. The WMA agent and polyolefin additive were introduced to
the binders at rates of up to 0.3% and 2%, respectively. The base asphalt binders and their blends
with the additives were tested before and after aging in a rolling thin film oven test at a temperature
of 143 ◦C. The effects of the investigated additives were found to be dependent on the type of
base binder and its aging state. It was generally observed that the WMA additive decreased the
performance of the asphalt binders and limited the effects of the other additive, which increased the
high-temperature stiffness and non-recoverable compliance of the blends. This interaction amounted
to as much as an approx. 20% decrease in high-temperature stiffness and non-recoverable compliance
of the binders. The additives caused a small increase in the elasticity of the binders and improved
their creep performance when measured in multiple stress creep recovery tests.

Keywords: paving grade bitumen; polymer-modified bitumen; compaction aid; warm mix additive;
high-temperature stiffness; non-recoverable creep compliance; MSCR; DSR

1. Introduction

One of the means to decrease the energy intensity of the road construction industry
is to utilize warm mix asphalt (WMA) techniques, which are typically characterized by
processing temperatures between 20 ◦C and 30 ◦C lower than conventional asphalt paving
processes [1].

To date, a number of field scale investigations confirmed that test sections produced
with warm mix asphalt techniques were characterized by the decreased high-temperature
performance of asphalt binders and asphalt mixtures [2–4]. These experiences show that, in
many cases, the application of WMA techniques may hinder the early service performance
of the asphalt mixtures in terms of their high-temperature performance. It was also shown
that the high-temperature performance of the WMA mixtures improved significantly during
the first two years of pavement service, to levels similar to those seen in conventionally
produced pavements.

The lowered mixing temperatures of WMAs typically result in decreased aging of the
asphalt binders. The aging of the asphalt binders during the production, transport and
paving of asphalt mixtures is mainly caused by two processes: one being the oxidation
reaction between the oxygen and the asphalt binder, while the second is identified as the
volatilization of organic compounds [5,6]. Both of these processes are highly dependent on
temperature [7]. Therefore, a number of studies have been conducted to evaluate the effects
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of aging temperature on the properties of WMA asphalt binders. The observations made in
the field sections were confirmed in laboratory studies [8–14], showing a great dependence
of the high-temperature properties of the asphalt binders on the laboratory aging protocols
and the aging temperatures in particular. In studies comparing asphalt binders recovered
from asphalt mixtures and the RTFOT-aged binders [15–17], it was shown that the standard
temperature during short-term aging (163 ◦C) was too high to reflect the aging processes
during the production of WMA mixtures, while 123 ◦C can be considered too low.

The methods for producing warm mix asphalt include binder foaming, the use of liquid
and solid WMA additives [9,18–23], binder fluxing [24–26], direct water foaming [27–30], the
introduction of asphalt mix additives [18,31,32] and combinations of some of the mentioned
methods [33–36].

The application of certain processes and additives may, however, result in unexpected
changes in the properties of the produced mixtures. Some popularly used anti-stripping
agents and liquid warm mix additives may impact the dynamics of the aging processes in
asphalt binders, decreasing the final asphalt binder stiffness resulting from technological
and even long-term aging [7,33,37,38]. Such additives may also affect other processes
during mix production, such as foaming [39]. The effects of these additives are, how-
ever, difficult to predict and specific to certain asphalt binders. Although the underlying
mechanisms behind these effects are still not well understood, the postulated ones include
the antioxidative and dispersive action of these additives. A different group of warm
mix processes relies on the use of waxes of different origins, which not only decrease the
processing temperatures of asphalt mixtures but often may enhance their high-temperature
and moisture performance [40–45]. It was also found that some synthetic waxes have
the capacity to slow down the formation of carbonyl compounds in asphalt binders and
therefore decrease the aging-induced changes in their properties, as quantified, e.g., using
aging indices [11,46,47].

Based on the state-of-the-art, it was concluded that an investigation into the means for
improving the high-temperature performance of asphalt binders used in WMA mixtures
would contribute to the subject area. To date, the most often studied group of liquid warm
mix additives belongs to those based on fatty amine chemistry [48], whereas other types
of formulations (e.g., organosilane compounds) are also available [49]. Therefore a silane-
based liquid WMA additive was selected for this study, permitting significant reductions
in processing temperatures and improvements in performance [50–54]. For improving the
high-temperature performance of the binder, a polyethylene wax additive [55] was selected,
due to its simple chemistry and the scarcity of studies into its application. The effects
of the simultaneous use of these two additives were investigated with two bituminous
binders—a paving grade bitumen and a polymer-modified bitumen. The paper focuses
on the high-temperature performance properties of asphalt binders and on evaluating the
interactions between the two incorporated additives.

2. Materials and Methods
2.1. Materials
2.1.1. Asphalt Binders

To investigate the effects of the simultaneous use of the proposed additives, two dis-
tinctly different road paving bitumen were chosen as a baseline for the present study: a
50/70 paving grade bitumen and a 45/80-55 polymer-modified bitumen. Both asphalt
binders are locally used, among other cases, typically for producing road wearing courses,
and were obtained commercially from a local refinery (Orlen Asfalt, Płock, Poland). The
basic characterization of these base asphalt binders is provided in Table 1.
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Table 1. Properties of the asphalt binders used in the study.

Property Unit
of Measurement

Base Bitumen Testing Method
50/70 45/80-55

Penetration at 25 ◦C 0.1 mm 64.6 61.5 EN 1426 [56]
Softening point ◦C 49.9 59.4 EN 1427 [57]
Fraass breaking point ◦C −12.9 −16.5 EN 12593 [58]
Penetration index - −0.61 1.56 EN 12591 [59]
Dynamic viscosity at 135 ◦C Pa·s 0.42 1.06 EN 13302 [60]
Performance grade - 64−22 70−22 AASHTO M320 [61]

2.1.2. Asphalt Binder Additives

Two asphalt binder additives were used in the present study:

• A liquid WMA additive based on organosilane compounds used for decreasing produc-
tion and paving temperatures of asphalt mixtures was designated as additive A [49];

• A solid pelletized additive (a polyethylene wax) used for the grade bumping of paving
grade and polymer-modified asphalt binders and characterized particularly by a high
compatibility with SBS-modified binders was designated as additive B [55].

Properties of the additives are presented in Table 2 and their photographs can be found
in Figure 1.

Table 2. Properties of the additives used in the study.

Property Additive A Additive B

Form Viscous liquid Solid pellets, 2–3 mm
Color Yellow White

Density (g/cm3) 1.01 0.93
Viscosity at 20 ◦C (mPa·s) 120 -

Typical dosing range
(by wt. of asphalt binder) 0.05–0.15% [49] 0.5–3.0% [55]

Role WMA additive Grade bumping additive
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Figure 1. Photographs of the additives used in the study: additive A (a), additive B (b).

The dosing range of the WMA additive (A) was established to exceed the manufac-
turer’s recommended dosing range (to evaluate its possible negative effects) while the
dosing of the solid additive (B) was set to be in the manufacturer’s recommended range.

The asphalt binders and the additives were blended for 15 min at 135 ◦C using a
low-shear mixer.

2.2. Methods
2.2.1. Testing Methods

The asphalt binders were tested for their basic classification properties (penetration,
softening point and Fraass breaking point) using automated apparatuses. The assessment
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of performance properties was conducted using a direct shear rheometer (TA Instruments
DHR-2, New Castle, DE, USA). The testing methodologies included:

• Conventional properties of non-aged binders:
• Penetration at 25 ◦C (EN 1426 [56]);
• Softening point (EN 1427 [57]);
• Fraass breaking point (EN 12593 [58]).
• Performance properties of non-aged and aged binders:
• High-temperature stiffness G*/sin(δ) based on the values of complex shear moduli (G*)

and phase angle (δ) measured in oscillatory tests (AASHTO T315 [62], EN 14770 [63]);
• Multiple stress creep recovery (MSCR) tests for assessing non-recoverable creep compliance

(Jnr 3.2 kPa) and recovery (R3.2 kPa) at 3.2 kPa shear stress (AASHTO T350 [64], EN 16659 [65]).

The evaluated high-temperature stiffness was obtained at temperatures equal to the
high-temperature grades of the base asphalt binders, that is 64 ◦C and 70 ◦C for the
50/70 and the 45/80-55 bitumen, respectively. The MSCR tests were performed for these
binders at temperatures closer to real pavement temperatures, which were 58 ◦C and 64 ◦C,
respectively. The different temperatures were utilized to obtain comparable responses in
both groups of asphalt binders.

2.2.2. Short-Term Aging of Asphalt Binders

The investigated asphalt binders were subjected to short-term laboratory aging con-
ducted using the rolling thin film oven test (RTFOT) apparatus. The evaluated asphalt
binder blends were tested as intended for use in WMA asphalt mixtures, therefore, a
lower-than-typical RTFOT aging temperature was used of 143 ◦C, as it is regarded to be
more representative to the processing of WMA mixtures [16,17]. The short-term aging
procedure was based on the EN 12607–1 standard [66].

2.2.3. Design of Experiment

A three-level, full factorial experimental design was employed to measure the com-
bined effects of the organosilane and polyolefin additives on the properties of asphalt
binders. The investigated dosing ranges of these additives included:

• Additive A: 0.00%, 0.15%, 0.30%;
• Additive B: 0.0%, 1.0%, 2.0%.

The implemented design for both asphalt binders, presented in Figure 2, enabled
estimation of the linear, quadratic and interaction terms related to the effects of the inves-
tigated additives. In this design, the results of introducing the additives separately and
in combination could be easily assessed. The experimental plan was repeated for both
binders before and after the RTFOT aging for evaluation of the performance parameters.
The number of replications in the experiments were as follows: penetration—6; softening
point—6; Fraass breaking point—6; oscillatory DSR tests—3; and creep DSR tests—3. The
reported results of the tests are reported in figures with the mean value and 95% confidence
intervals (provided next to the data bars and in the form of error bars).
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The effects associated with the additives introduced to the asphalt binders were
quantified using linear statistical models with linear (L), quadratic (Q) and interaction
terms as in Equation (1):

Y = β0 + β1X1 + β2X2 + β3X2
1 + β4X2

2 + β5X1X2 (1)

The effects and their significance were assessed using analysis of variance (ANOVA).
As a result, the p-values based on the F statistic and the estimates of the model parameters
were computed.

3. Results
3.1. Conventional Properties of Asphalt Binders

The results of the conventional tests for assessing penetration at 25 ◦C, softening point
(ring and ball method) and Fraass breaking point are shown in Figure 3. The investigated
binders, which were based on 50/70 and 45/80-55 bitumen, were tested directly after
mixing with the additives, assuring adequate homogenization. The top and bottom rows
of Figure 3 represent the blends based on the 50/70 and 45/80-55 binders, respectively.
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Figure 3. Effects of the investigated additives on the conventional properties of the investigated
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The introduction of the additives had visible effects on both base asphalt binders.
The major effects could be attributed to additive B, which caused significant changes in
all evaluated parameters. The addition of the polyolefine compound in the amount of
1% caused a significant drop in the penetration of both binders. A further increase in its
concentration did not result in visible changes in this scope. The most prominent changes
were observed when additive A was not added which, at contents of 0.15% and 0.30%,
decreased the effects of additive B.
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In terms of the softening point, additive B caused an increase in the softening point
of both binders, nearly proportional to its content. The greatest effects in this scope were
observed, again, when additive A was not used. The 50/70 binder, modified solely with
additive B, experienced the highest rate of increase in the softening point amounting to
13.9 ◦C at 1% of additive B. The use of additive B with the 45/80-55 binder resulted in the
highest overall increase in this parameter that was seen at 2% of its concentration, which
amounted to a 20.2 ◦C rise in the softening point. Additive A had minimal effects on the
unmodified asphalt binders in this scope.

The additives had distinctly different effects on the Fraass breaking point values,
depending on the type of the binder. In the case of the 45/80-55 base binder, the addition
of modifiers had only minor effects in this scope, resulting in changes in the breaking point
temperature amounting to typically less than 1 ◦C. On the other hand, the effects of the
additives on the 50/70 asphalt binder were clearly pronounced, and their interaction has
been observed. When additive A was not used, the addition of the polyolefin compound
resulted in a small but consistent increase in the breaking point temperature. However, the
addition of the organosilane agent inverted the effects of the polyolefin additive, causing
it to decrease the breaking point. Finally, the lowest breaking point temperatures for the
50/70 asphalt binder were registered at 2% additive B when additive A was dosed at 0.15%
and 0.30%.

Table 3 presents the results of the statistical evaluation of the effects of the additives
on the conventional properties of both asphalt binders.

Table 3. Summary of analysis of variance (p-values) in terms of the effects of additives A and B on
the conventional properties of 50/70 and 45/80-55 asphalt binders.

p-Values
Effect: Model Term

50/70 45/80-55

df Penetration
at 25 ◦C

Softening
Point

Fraass Breaking
Point

Penetration
at 25 ◦C

Softening
Point

Fraass Breaking
Point

Intercept β0 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Additive A (L) β1 1 <0.001 <0.001 0.063 0.012 <0.001 0.009
Additive B (L) β2 1 <0.001 <0.001 0.081 <0.001 <0.001 0.001
Additive A (Q) β3 1 0.007 <0.001 0.040 0.016 <0.001 <0.001
Additive B (Q) β4 1 <0.001 <0.001 0.033 <0.001 0.013 <0.001
A:B (L) interaction β5 1 <0.001 <0.001 <0.001 <0.001 <0.001 0.017
Residuals 48
Adj. R2 0.820 0.956 0.629 0.848 0.973 0.494
Model p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

The analysis of variance of the presented results of penetration and softening point
for both asphalt binders has shown that all of the evaluated effects (linear, quadratic and
interactions) related to the introduced additives had a statistically significant impact on
these parameters (df = 48, p < 0.05). In the evaluation of the Fraass breaking point, the same
was true only for the 45/80-55 binders, whereas in the case of the 50/70 asphalt binders,
only the quadratic and interaction terms were statistically significant (df = 48, p < 0.05).
To summarize, both additives had a statistically significant impact on the values of all
considered conventional properties of both asphalt binders.

3.2. Functional Properties of Asphalt Binders

The subsequent sections investigate the effects of the additives on the measured
performance properties of the asphalt binders. Detailed summaries of the statistical analyses
for assessing the effects of the additives on the measured responses are also provided in
this section in the form of tables.

3.2.1. High-Temperature Stiffness (G*/sin(δ))

Figure 4 presents the high-temperature stiffness (G*/sin(δ)) results of the 50/70 asphalt
binder blends before and after short-term aging, tested at the high-PG temperature of the base
asphalt binder (64 ◦C). Table 4 summarizes the statistical analysis of the evaluated effects.
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Table 4. Summary of analysis of variance for the results of G*/sin(δ) in terms of the effects of additives
A and B on the 50/70 asphalt binders.

G*/sin(δ)
Effect:

Model
Term

50/70 50/70 RTFOT
df Estimate Std. Error p-Value Estimate Std. Error p-Value

Intercept β0 1 2.03 0.098 <0.001 4.42 0.107 <0.001
Additive A (L) β1 1 −5.15 1.134 <0.001 −5.06 1.239 0.001
Additive B (L) β2 1 0.72 0.170 <0.001 1.75 0.185 <0.001
Additive A (Q) β3 1 13.35 3.440 0.001 16.60 3.758 <0.001
Additive B (Q) β4 1 0.31 0.077 0.001 −0.04 0.084 0.618
A:B (L) interaction β5 1 −2.06 0.364 <0.001 −2.95 0.398 <0.001
Residuals 21 0.189 0.207
Adj. R2 0.964 0.968
Model p-value <0.001 <0.001

The results obtained in the oscillatory testing of the 50/70 asphalt binders indicate
clear effects of both additives on their high-temperature stiffness, as well as an additional
effect of the short-term aging to which they were subjected. Similarly to the softening
point results, the most significant effects could be attributed to additive B, which caused
significant increases in the stiffness of the non-aged and short-term aged binder blends.
The addition of the organosilane agent alone has only resulted in the decrease in the high-
temperature stiffness of the material, but only before the RTFOT aging. However, when
the additives were used in combination, additive A significantly decreased the G*/sin(δ)
values of the blends, regardless of aging. This observation was confirmed using statistical
analysis, yielding relatively high interaction parameter estimates (−2.06 and −2.95) and
small p-values (p < 0.001).

Figure 5 presents the high-temperature stiffness (G*/sinδ) measurement results of the
45/80-55 asphalt binder blends before and after short-term aging, tested at the high-PG
temperature of the base asphalt binder (70 ◦C). Table 5 summarizes the statistical analysis
of the evaluated effects.
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Table 5. Summary of analysis of variance for the results of G*/sin(δ) in terms of the effects of additives
A and B on the 45/80-55 asphalt binders.

G*/sin(δ)
Effect:

Model
Term

45/80-55 45/80-55 RTFOT
df Estimate Std. Error p-Value Estimate Std. Error p-Value

Intercept β0 1 1.05 0.031 <0.001 3.14 0.086 <0.001
Additive A (L) β1 1 −2.94 0.368 <0.001 −2.43 1.001 0.024
Additive B (L) β2 1 0.38 0.055 <0.001 0.83 0.150 <0.001
Additive A (Q) β3 1 6.86 1.116 <0.001 11.51 3.035 0.001
Additive B (Q) β4 1 0.05 0.025 0.042 0.08 0.068 0.265
A:B (L) interaction β5 1 −0.57 0.118 <0.001 −1.95 0.321 <0.001
Residuals 21 0.062 0.167
Adj. R2 0.975 0.935
Model p-value <0.001 <0.001

The effects of the investigated additives on the 45/80-55 polymer-modified bitumen
base were similar to those seen with the 50/70 paving grade binder, however, the measured
effects were smaller in magnitude. In the non-aged asphalt binders, the organosilane
additive consistently decreased the high-temperature stiffness of the binders, although
the effect was observed to be strongest when the lesser (0.15%) dose of the modifier was
introduced. On the other hand, the addition of this WMA agent without introducing the
other additive, caused small increases in the G*/sin(δ) after the RTFOT aging. The addition
of the polyolefin compound (additive B) again resulted in nearly proportional increasing in
the high-temperature stiffness of the blends, regardless of the aging. This linear relationship
can be inferred through the very small estimates of the quadratic terms in the models
(0.05 and 0.08). These changes in high-temperature stiffness were, however, smaller than in
the case of the 50/70 base binder.

Additional effects of the investigated additives could be observed in terms of the
relative changes in the binders’ high-temperature stiffness after the RTFOT short-term
aging, quantified using the aging index in Figure 6. The plots of the aging index (AI)
represent ratios between the high-temperature stiffness of respective RTFOT aged and
non-aged asphalt binder blends as in Equation (2):

AI =
G∗

RTFOT/ sin(δRTFOT)

G∗/ sin(δ)
(2)
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Figure 6. Effects of the investigated additives on the aging index of the respective asphalt
binder blends.

The direct comparison of the high-temperature stiffness of the investigated asphalt
binders before and after short-term aging using the aging index has shown that the evalu-
ated changes in the G*/sin(δ) parameter were strongly influenced by both additives. The
magnitude of these effects was larger in the polymer-modified bitumen, and in the case of
both asphalt binders, additive A increased the aging indices, while the introduction of addi-
tive B contributed to their decrease. By inspection of Figures 4 and 5, it can be stated that the
high values of the aging indices in the 50/70 binders modified solely by the organosilane
agent were mostly caused by the significant decrease in their high-temperature stiffnesses
before aging. In other cases, these changes were more complex, where the effects seen both
before and after the RTFOT contributed significantly. Additionally, when the investigated
additives were simultaneously introduced at rates A: <0.15% and B: >1%, the aging indices
of the resulting binder blends were usually smaller than those of the base asphalt binders.

3.2.2. Multiple Stress Creep Recovery Performance

Figure 7 presents the measurement results of the non-recoverable creep compliance
(Jnr 3.2kPa) of the 50/70 asphalt binder blends before and after short-term aging, tested at
58 ◦C. Table 6 summarizes the statistical analysis of the evaluated effects.
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Table 6. Summary of analysis of variance for the results of Jnr 3.2kPa in terms of the effects of additives
A and B on the 50/70 asphalt binders.

Jnr 3.2kPa
Effect:

Model
Term

50/70 50/70 RTFOT
df Estimate Std. Error p-Value Estimate Std. Error p-Value

Intercept β0 1 1.21 0.189 <0.001 0.81 0.006 <0.001
Additive A (L) β1 1 4.96 2.181 0.033 0.18 0.080 0.038
Additive B (L) β2 1 −0.19 0.327 0.563 0.08 0.012 <0.001
Additive A (Q) β3 1 −0.41 6.613 0.952 3.76 0.243 <0.001
Additive B (Q) β4 1 0.29 0.149 0.062 −0.11 0.005 <0.001
A:B (L) interaction β5 1 0.22 0.701 0.760 −0.50 0.025 <0.001
Residuals 21 0.364 0.013
Adj. R2 0.796 0.996
Model p-value <0.001 <0.001

The investigated additives affected the non-recoverable creep compliance of the
50/70 asphalt binder blends significantly and these effects were different depending on
the aging state of the binders. The introduction of both additives to the non-aged binder
resulted in major increases in the Jnr 3.2kPa parameter. Most prominently, the addition of the
polyolefin compound increased the non-recoverable compliance of the non-aged binder,
which was not in line with the findings from the oscillatory measurements. The effects
of additive B in this scope were also highly inconsistent, which can be seen in the figure
and in high recorded p-values (p > 0.05). The addition of the organosilane agent magnified
this effect further (estimate of linear effect: 4.963, p-value = 0.033), doubling the Jnr 3.2kPa
values when 0.3% of additive A and 2% of additive B were used. These effects might
contribute to decreasing the compaction effort in asphalt mixtures with these additives.
The short-term aging has significantly changed the effects of the polyolefin compound,
causing it to significantly decrease the non-recoverable compliance of all asphalt binder
blends. The organosilane additive still increased the Jnr 3.2kPa values, however, this effect
was significantly smaller compared to the non-aged binders.

Figure 8 presents the measurement results of the non-recoverable creep compliance
(Jnr 3.2kPa) of the 45/80-55 asphalt binder blends before and after short-term aging, tested at
64 ◦C. Table 7 summarizes the statistical analysis of the evaluated effects.

Materials 2023, 16, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. Results of Jnr 3.2kPa in terms of the effects of additives A and B on the 45/80-55 asphalt binders 
(means and 95% confidence intervals). 

Table 7. Summary of analysis of variance for the results of Jnr 3.2kPa in terms of the effects of additives 
A and B on the 45/80-55 asphalt binders. 

Jnr 3.2kPa  

Effect: 
Model 
Term 

 45/80-55 45/80-55 RTFOT 
df Estimate Std. Error p-Value Estimate Std. Error p-Value 

Intercept 𝛽  1 1.22 0.034 <0.001 0.77 0.014 <0.001 
Additive A (L) 𝛽  1 0.80 0.394 0.056 −2.12 0.162 <0.001 
Additive B (L) 𝛽  1 −0.56 0.059 <0.001 −0.09 0.024 0.002 
Additive A (Q) 𝛽  1 −0.36 1.196 0.765 8.98 0.492 <0.001 
Additive B (Q) 𝛽  1 0.12 0.026 <0.001 −0.05 0.011 <0.001 
A:B (L) interaction 𝛽  1 −0.78 0.126 <0.001 −0.13 0.052 <0.001 
Residuals  21  0.065   0.027  
Adj. R2     0.970   0.982 
Model p-value     < 0.001   < 0.001 

Changes in the non-recoverable creep compliance due to the introduction of the ad-
ditives and aging were more predictable in the case of the polymer-modified asphalt 
binder. The obtained results were mostly in line with the characteristics obtained in the 
oscillatory measurements and softening point tests. In the non-aged binder blends, addi-
tive A on its own only slightly increased the Jnr 3.2kPa values (significance of the linear effect: 
p = 0.056), significance of quadratic effect: p = 0.765), whereas the introduction of the poly-
olefin compound has revealed a significant interaction between the additives (effect esti-
mate −0.78, p < 0.001), dependent on their concentration. Most prominently, when the 2% 
concentration of additive B was used, the organosilane agent magnified its effects in de-
creasing the non-recoverable compliance. Before aging, the contribution of additive A was 
observed in interaction with the other additive (p < 0.001). However, after the RTFOT ag-
ing, additive A had a minor role in shaping this creep characteristic. The introduction of 
additive B, the polyolefin compound, had the potential to halve the values of the non-
recoverable creep compliance of the 45/80-55 asphalt binder, particularly when additive 
A was not used or added at a dose of 0.15%. 

Figure 9 presents the measurement results of recovery (R3.2kPa) in the MSCR tests of 
the 50/70 asphalt binder blends before and after short-term aging, tested at 58 °C. Table 8 
summarizes the statistical analysis of the evaluated effects. 

Figure 8. Results of Jnr 3.2kPa in terms of the effects of additives A and B on the 45/80-55 asphalt
binders (means and 95% confidence intervals).



Materials 2023, 16, 7648 11 of 18

Table 7. Summary of analysis of variance for the results of Jnr 3.2kPa in terms of the effects of additives
A and B on the 45/80-55 asphalt binders.

Jnr 3.2kPa
Effect:

Model
Term

45/80-55 45/80-55 RTFOT
df Estimate Std. Error p-Value Estimate Std. Error p-Value

Intercept β0 1 1.22 0.034 <0.001 0.77 0.014 <0.001
Additive A (L) β1 1 0.80 0.394 0.056 −2.12 0.162 <0.001
Additive B (L) β2 1 −0.56 0.059 <0.001 −0.09 0.024 0.002
Additive A (Q) β3 1 −0.36 1.196 0.765 8.98 0.492 <0.001
Additive B (Q) β4 1 0.12 0.026 <0.001 −0.05 0.011 <0.001
A:B (L) interaction β5 1 −0.78 0.126 <0.001 −0.13 0.052 <0.001
Residuals 21 0.065 0.027
Adj. R2 0.970 0.982
Model p-value < 0.001 < 0.001

Changes in the non-recoverable creep compliance due to the introduction of the
additives and aging were more predictable in the case of the polymer-modified asphalt
binder. The obtained results were mostly in line with the characteristics obtained in the
oscillatory measurements and softening point tests. In the non-aged binder blends, additive
A on its own only slightly increased the Jnr 3.2kPa values (significance of the linear effect:
p = 0.056), significance of quadratic effect: p = 0.765), whereas the introduction of the
polyolefin compound has revealed a significant interaction between the additives (effect
estimate −0.78, p < 0.001), dependent on their concentration. Most prominently, when the
2% concentration of additive B was used, the organosilane agent magnified its effects in
decreasing the non-recoverable compliance. Before aging, the contribution of additive A
was observed in interaction with the other additive (p < 0.001). However, after the RTFOT
aging, additive A had a minor role in shaping this creep characteristic. The introduction
of additive B, the polyolefin compound, had the potential to halve the values of the non-
recoverable creep compliance of the 45/80-55 asphalt binder, particularly when additive A
was not used or added at a dose of 0.15%.

Figure 9 presents the measurement results of recovery (R3.2kPa) in the MSCR tests of
the 50/70 asphalt binder blends before and after short-term aging, tested at 58 ◦C. Table 8
summarizes the statistical analysis of the evaluated effects.
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Table 8. Summary of analysis of variance for the results of R3.2kPa in terms of the effects of additives
A and B on the 50/70 asphalt binders.

R3.2kPa
Effect:

Model
Term

50/70 50/70 RTFOT
df Estimate Std. Error p-Value Estimate Std. Error p-Value

Intercept β0 1 2.65 0.049 <0.001 1.83 0.041 <0.001
Additive A (L) β1 1 −17.69 0.576 <0.001 −3.72 0.483 <0.001
Additive B (L) β2 1 0.69 0.086 <0.001 1.60 0.072 <0.001
Additive A (Q) β3 1 35.37 1.748 <0.001 −3.69 1.467 0.020
Additive B (Q) β4 1 −0.28 0.039 <0.001 1.12 0.033 <0.001
A:B (L) interaction β5 1 4.01 0.185 <0.001 1.21 0.155 <0.001
Residuals 21 0.096 0.080
Adj. R2 0.989 0.999
Model p-value <0.001 <0.001

The asphalt binder blends based on the 50/70 bitumen exhibited low values of recovery
in the MSCR tests, typical for paving grade asphalt binders lacking elastomeric modification.
In the non-aged condition, the measured values of R3.2kPa peaked at approx. 3%. The
introduction of additive A resulted in a decrease in the recovery values from 2.72% of
the base binder to 0.76% and 0.50% at 0.15% and 0.30% concentrations. The introduction
of additive B restored the recovery values to the proximity of base levels. After the
RTFOT aging, the observed effects were similar, but their magnitude was greatly increased,
particularly in the case of the polyolefin compound. The introduction of additive B caused
a significant increase in the measured recovery, up to the range of 8.8–9.5% when 2% of this
additive was used. Given that additive B is not an elastomer, these recovery values were
not expected to exceed 30%, as the base asphalt binder did not exhibit a significant delayed
elastomeric response. Both evaluated additives contributed significantly (p < 0.05) to the
measured responses, however, the magnitude of the recovery characteristics deem them
not significant in engineering considerations. The effects of the additives on the recovery of
the 50/70 asphalt binder can be regarded as nonconsequential due to the overall low level
of this response.

Figure 10 presents the measurement results of recovery (R3.2kPa) in the MSCR tests
of the 45/80-55 asphalt binder blends before and after short-term aging, tested at 64 ◦C.
Table 9 summarizes the statistical analysis of the evaluated effects.
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Table 9. Summary of analysis of variance for the results of R3.2kPa in terms of the effects of additives
A and B on the 45/80-55 asphalt binders.

R3.2kPa
Effect:

Model
Term

45/80-55 45/80-55 RTFOT
df Estimate Std. Error p-Value Estimate Std. Error p-Value

Intercept β0 1 48.22 0.634 <0.001 41.28 0.297 <0.001
Additive A (L) β1 1 −29.61 7.325 0.001 38.74 3.430 <0.001
Additive B (L) β2 1 18.33 1.098 <0.001 8.09 0.514 <0.001
Additive A (Q) β3 1 78.08 22.213 0.002 −177.95 10.401 <0.001
Additive B (Q) β4 1 −4.99 0.499 <0.001 0.74 0.234 0.005
A:B (L) interaction β5 1 −22.57 2.356 <0.001 4.17 1.103 0.001
Residuals 21 1.224 0.573
Adj. R2 0.965 0.996
Model p-value <0.001 <0.001

The 45/80-55 polymer-modified bitumen exhibited high values of recovery, both
before and after the RTFOT short-term aging. The introduced additives significantly, and in
different ways, affected the elastomeric response of the investigated asphalt binder blends.
When the polyolefin compound was introduced to the non-aged binder solitarily, the
measured recovery increased from 47.8% to 60.8% and 66.1% at 1% and 2% additive content,
respectively. The addition of the WMA agent decreased the effects of additive B significantly,
and this action coincided with the concentration of additive A. This observation is validated
by the high value of the A:B interaction term in the evaluated statistical model (effect
estimate: −22.57, p < 0.001). In the RTFOT-aged asphalt binders, the WMA additive had
only a minor influence on the recorded values of recovery, which were found to increase
slightly at 0.15% concentration of the additive and decrease by no more than approx.
four percentage points at 0.30% concentration. After short-term aging, the base binder
experienced an approx. six percentage point drop in the recovery, but the addition of the
polyolefin compound increased its values despite the use of additive A. The statistical
analysis (Table 9) has shown that both additives significantly affected the measured variable.
Similarly, as it was before the RTFOT, additive B had a greater impact on recovery than the
WMA agent. In this instance, however, the effects of the interaction between the additives
were smaller, although still statistically significant (effect estimate: 4.17, p = 0.001).

Figure 11 presents the MSCR test results of the 50/70 and 45/80-55 asphalt binder
blends after short-term aging, tested at 58 ◦C and 64 ◦C, respectively. The relationships
between the recovery (R3.2kPa) and non-recoverable creep compliance (Jnr 3.2kPa) obtained
in the tests are presented for all investigated asphalt binder blends. The amounts of
the additives are presented by the shape (additive A) and color (additive B) of the data
points. The curve presented in the figure follows Equation (3) introduced to the AASHTO
M322 standard as a means for assessing the elasticity of the asphalt binders containing
elastomeric polymers:

y = 29.37x−0.2633 (3)

Figure 11 shows that the 50/70 paving grade bitumen blends do not meet the specification
for an adequate elastomeric response. Despite this, additive B increased slightly the recovery
values of the 50/70 asphalt binder, as shown earlier. Additive A had negligible effects in this
scope. On the other hand, the effects of the investigated additives on the polymer-modified
binder were significant. The introduction of the WMA agent increased the elastic response
and decreased the non-recoverable creep compliance of the 45/80-55 asphalt binder, with
the most favorable effects being recorded at the 0.15% concentration of the additive. The
polyolefin compound had even greater effects, specifically on the recovery of the tested
binders, despite the lack of mentioned elastomeric properties of this additive. It can be stated
that the introduction of these additives improved both the creep performance and the elasticity
of the polymer-modified bitumen.
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4. Discussion

In the evaluation of the conventional properties of the asphalt binders, it was found
that the WMA agent had only small effects on their penetration and softening points. On
the other hand, the polyolefin compound had major effects on these characteristics of both
asphalt binders, decreasing the penetration by approx. 10 units (0.1 mm) and increasing
the softening point by up to 20 ◦C. The effects of these additives on the Fraass breaking
point were quite significant in the 50/70 paving grade bitumen and pointed to the presence
of a strong interaction between additives A and B. The simultaneous use of these additives
decreased the measured breaking point from approx. −13 ◦C to approx. −18 ◦C. Although
typically the low-temperature performance can be, to some degree, inferred based on the
Fraass breaking point [67], the low-temperature performance characteristics of such blends
should be investigated in the scope of binder aging, as further testing showed the strong
dependence of other investigated binder parameters on the aging state.

The detailed analysis of the high-temperature functional properties of the asphalt
binder blends revealed, in most cases, strong interactions between the investigated ad-
ditives. In general, the WMA additive impaired, to some degree, the high-temperature
characteristics of the tested binder blends, while the polyolefin compound considerably in-
creased the high-temperature stiffness and decreased the non-recoverable creep compliance.
The interaction effects were, in most cases, responsible for reducing the favorable effects
of the polyolefin additive, which amounted to 18–22% changes in the high-temperature
stiffness and non-recoverable compliance of the full A and B additive bitumen blends com-
pared to the blend only containing additive B. In most cases, the effects of the investigated
additives were dependent on the aging state of the tested binders. The RTFOT aging, in
some cases, had profound effects on the measured responses, e.g., strongly magnifying
their effects (e.g., G*/sin(δ) in both binders) or even inverting the relationships found in
the non-aged binders (e.g., Jnr 3.2kPa in 50/70 binder, recovery in 45/80-55 binder).

As shown in Figure 6, the addition of the polyolefin additive significantly reduced the
magnitude of the changes in stiffness caused by short-term aging. This may potentially
result in the favorable long-term performance of the binders with this compound added.
Additionally, as deduced from the data presented in Figure 11, none of the additives had a
negative impact on the elasticity of the asphalt binders, which was a significant observation,
specifically regarding the polymer-modified bitumen. In a number of studies, it was shown
that the preservation of this characteristic is key for the adequate performance of highly
stressed pavements [68–70].

Further work in this area could be devoted to evaluating the effects of ultraviolet ag-
ing [71–73] on the properties of asphalt binders with different additives used in WMA tech-
niques, given it is a different and substantial mode of aging and a significant gap in this
area persists [5].
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5. Conclusions

Based on the premise that warm mix asphalt processes may result in the decreased
high-temperature performance of asphalt mixtures, an investigation of asphalt binders
intended for WMA mixtures was carried out. The present study investigated the effects
of simultaneously incorporating two additives into paving grade and polymer-modified
asphalt binders. The study included a liquid organosilane WMA additive utilized for
decreasing the processing temperatures and a polyolefin compaction aid/grade-bumping
additive for enhancing the high-temperature performance of the asphalt binder.

The major findings of the study can be summarized as follows:

• The effects of the additives introduced separately to the asphalt binders were in line
with those found with other, similar products. The WMA additive alone had only
small effects on the high-temperature properties of the asphalt binders, while the
grade-bumping additive significantly improved their high-temperature performance;

• Significant interactions of the two additives, when used simultaneously, were dis-
covered, resulting in a decreased efficacy of the grade-bumping additive, specifically
when the dosing of additive A exceeded the recommended values;

• Short-term RTFOT aging had a major impact on the effects of the investigated additives.

Based on the findings shown in the study, it is recommended to thoroughly investigate
the above-mentioned effects when different asphalt binder additives are used simultaneously.

Further studies in this area should be conducted, given that the simultaneous utiliza-
tion of these types of additives may result in favorable changes in the characteristics of
WMA asphalt binders. Despite the favorable changes in the high-temperature performance
of the binders, the effects of these additives used together on other performance characteris-
tics remain unknown. Particularly, the effects on fatigue and low-temperature performance
should be investigated. Additional work should be directed to evaluating the effects of
ultraviolet aging mechanisms in WMA surface course materials.
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