
Citation: Ahmad, M.M.; Elahi, A.;

Barbhuiya, S. Comparative Analysis

of Reinforced Concrete Beam

Behaviour: Conventional Model vs.

Artificial Neural Network

Predictions. Materials 2023, 16, 7642.

https://doi.org/10.3390/

ma16247642

Academic Editors: Dario De

Domenico and Luís Filipe

Almeida Bernardo

Received: 25 October 2023

Revised: 23 November 2023

Accepted: 24 November 2023

Published: 14 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Comparative Analysis of Reinforced Concrete Beam Behaviour:
Conventional Model vs. Artificial Neural Network Predictions
Muhammad Mahtab Ahmad 1, Ayub Elahi 1 and Salim Barbhuiya 2,*

1 Civil Engineering Department, University of Engineering and Technology Taxila, Taxila 47050, Pakistan;
mahtabahmad010@gmail.com (M.M.A.); ayub.elahi@uettaxila.edu.pk (A.E.)

2 Department of Engineering and Construction, University of East London, London E16 2RD, UK
* Correspondence: s.barbhuiya@uel.ac.uk

Abstract: This research aims to conduct a comparative analysis of the first crack load, flexural
strength, and shear strength in reinforced concrete beams without stirrups. The comparison is made
between the conventional model developed according to the current design code (ACI building
code) and an unconventional approach using Artificial Neural Networks (ANNs). To accomplish
this, a dataset comprising 110 samples of reinforced concrete beams without stirrup reinforcement
was collected and utilised to train a Multilayer Backpropagation Neural Network in MATLAB. The
primary objective of this work is to establish a knowledge-based structural analysis model capable of
accurately predicting the responses of reinforced concrete structures. The coefficient of determination
obtained from this comparison yields values of 0.9404 for the first cracking load, 0.9756 for flexural
strength, and 0.9787 for shear strength. Through an assessment of the coefficient of determination and
linear regression coefficients, it becomes evident that the ANN model produces results that closely
align with those obtained from the conventional model. This demonstrates the ANN’s potential for
precise prediction of the structural behaviour of reinforced concrete beams.

Keywords: reinforced concrete; soft computing; Artificial Neural Network; ultimate limit state; finite
element; multilayer backpropagation; nonlinear finite element analysis; the central nervous system

1. Introduction

Researchers and engineers have put forward various essential theories [1–3] and
techniques [4] to precisely forecast the behaviour of reinforced concrete (RC) structure
elements at the ultimate limit state (ULS) to make both a safe and economic structure.
New analysis techniques have been introduced in structural analysis to provide more
precise solutions to rising complicated problems with cost effectiveness without the need
for a physical model. Soft Computing (SC) methods [5–7] have emerged as a powerful
tool for computational algorithms based on the empirical approach that deviates from the
principle of theoretical mechanics compared to the traditional analysis procedure. These
methods were introduced three decades before and could improve the accuracy of analysis
results. Despite initial scepticism, Soft Computing (SC) methods have become powerful
computation tools increasingly utilised in various engineering fields. These new techniques,
like Artificial Neural Networks (ANNs) and Genetic Algorithms [8], are widely employed
as SC methods. ANNs, in particular, have developed as powerful tools capable of providing
precise and economical solutions to a wide range of problems with minimum analysis time
without necessitating high computational resources compared to the traditional numerical
procedures, such as the finite element (FE) method used in structural analysis. Therefore,
ANNs have proven more efficient and effective in achieving accurate solutions.

To develop an effective strategy for analysing a reinforced concrete (RC) structure,
it is crucial that the Artificial Neural Networks (ANNs) utilised can accurately predict
the nonlinear behaviour of individual components, such as beams, columns, slabs, and
walls, that make up the structure [9]. To accomplish this, a thorough comprehension of the
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underlying mechanics of the RC structure’s response is necessary. At the same time, ANNs
rely on heuristic approaches instead of strict mechanics. The calibration process of ANNs
must realistically consider the most critical factors that affect the structure’s response, such
as crucial design parameters.

The structural response of RC members is obtained from laboratory tests carried out
on basic structural configuration through finite element analysis techniques, as well as
available assessment methods. Experimental studies on reinforced concrete (RC) structures
typically involve scaled models of the actual structural members [2,10,11]. The database
for the ANN model is based on these experimental results because their inputs based on
key design parameters describe the specimen’s behaviour and its load-carrying capacity.
However, the range of input values from the selected database may not represent the actual
design parameters used in full-scale RC members, making it difficult for Artificial Neural
Networks (ANNs) to predict more precise output based on these data alone. Therefore,
sometimes Nonlinear Finite Element Analysis (NLFEA) is used to investigate the behaviour
of RC structural elements. Although it can provide valuable information, NLFEA predic-
tions’ accuracy can depend on essential parameters and require re-calibration. Additionally,
detailed parametric studies conducted with NLFEA can be computationally intensive and
time consuming. Physical models using RC design codes [2,10,12] can also predict the RC
structural response. These model predictions are based on specific assumptions about the
underlying mechanics of the RC structural response and describe the actual condition of
the physical model of the structural elements at the ultimate limit state (ULS). Therefore,
while these methods offer valuable interpretations of available test data, they may not
always provide accurate predictions for full-scale RC members [13].

This study has substantially enhanced the mechanics-based code-conforming shear
capacity equation for reinforced concrete elements with stirrups by leveraging machine
learning. The empirical results have showcased a remarkable reduction in prediction errors,
with an average accuracy improvement of 10%. This validates the proposed methodology’s
efficacy and underscores its potential to revolutionise industry standards. These tangible
outcomes mark a crucial step towards more precise and reliable shear capacity assessments,
laying the foundation for a future where machine learning is pivotal for optimising the
design and safety of Reinforced Concrete structures [14]. This demonstrates the successful
application of machine learning models, revealing high accuracy in shear strength pre-
dictions. These results underscore the potential of advanced computational methods to
enhance structural engineering practices, offering valuable insights for optimising design
and analysis processes in civil infrastructure. The research represents a significant advance-
ment in the field, providing a promising avenue for improving the efficiency and reliability
of shear strength forecasts in reinforced concrete structures [15]. The research analyses
machine learning models to predict the shear strength of RC (reinforced concrete) deep
beams. The investigation encompasses a range of algorithms, such as neural networks,
decision trees, and support vector machines, assessing their effectiveness in this predictive
task. This study relies on a comprehensive dataset containing a diverse array of RC deep
beam configurations and material properties. By leveraging this varied dataset, which
encapsulates a broad spectrum of RC deep beam setups and material characteristics, the
findings underscore the superior performance of neural networks. Notably, these neural
networks exhibit a 15% enhancement in predictive accuracy compared to alternative mod-
els used in the analysis [16]. This study delves into predicting displacement in Reinforced
Concrete structures by harnessing the potential of artificial neural networks (ANNs) in
conjunction with sensor technology. Four distinct sensor types—force resisting, piezo-
electric, MEMS accelerometer, and flex sensors—were experimented with in RC beams
subjected to monotonic loading conditions, with the MEMS sensors displaying notably
superior performance. The research successfully implemented an ANN model, employing
beam position and load as input parameters, and thus effectively forecasting displacement
values. This nonlinear model demonstrates considerable promise for structural health
monitoring (SHM) applications, particularly in advocating for the use of MEMS sensors
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across various civil engineering contexts. The findings emphasise the pertinence of SHM
for evaluating structural integrity while highlighting the ANN’s capacity to assess damages
beyond conventional methods. This underscores its practicality as an alternative tool for
intricate structural evaluations in real-world scenarios [17].

Artificial Neural Network Morphology

Artificial Neural Networks (ANNs) show their operational similarity to the biological
counterparts present in human and animal Brain and Central Nervous Systems (CNSs).
ANNs are designed to perform functions, such as processing information, learning from it,
recognising patterns, and predicting outcomes, similarly to how the biological nervous sys-
tem functions in living organisms. By mimicking the human brain’s basic operations, ANNs
can solve complex problems, and they have numerous applications in natural language
processing, image reading, and data prediction (see Figure 1a for reference) [15–17]. The
structure of an ANN is a multilayer structure (input layer, hidden layer, and output layer)
with interconnected neurons; a specific weight coefficient is assigned to links between
neurons. As input values from neurons are evaluated and then multiplied with the weight
coefficient, these values from all neurons in each layer are summed with a biases value.
This procedure is repeated for each successive layer of the ANN model, creating a system of
interconnected layers and neurons that work together to process and transmit information
(see Figure 1b for reference) [18–20]. As soon as results are obtained after the summation of
bias value from all of the neurons, a predetermined activation function (f), which represents
the relationship between the neurons in consecutive layers, is applied. The output from
this process of the last neuron of the previous layer is used as input for the next layer
neuron (as shown in Figure 1). Initially random, weights are assigned between links; later
on, during the training process of the network, multiple iterations are performed to adjust
the values of weights to obtain a final value to justify the output prediction based on the
input database. Equations (1) and (2) provide an analytical expression for the summation
of weights [21].

xj = ∑
(
yiWji

)
+ bj (1)

yj = f
(
xj
)

(2)
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In the above Equations, xj represents the output from a specific neuron, yk represents
the results received from applying the activation function f

(
xj
)
, Wji represents the weights

coefficients used between interconnected neurons, bj is the bias value for the neuron, and
“j” and “i” represent the number of layers and neurons in each network, respectively.
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2. Artificial Neural Network Model Formation

The primary objective of this research is to train a model using Artificial Neural
Networks (ANNs) to precisely predict structural properties (i.e., flexural strength, shear
strength, and first crack load value) of RC beams based on key design parameters when
they approach their ultimate limit state (ULS). This model will consider the benefits and
limitations of the available information sources related to the reinforced concrete beam
responses. The objective is to create a knowledge-based tool to predict the structural
behaviour of reinforced concrete beams. The study uses Multilayer Backpropagation
(MBP) Neural Networks and MATLAB [12,13] to develop an open-source analysis tool that
allows users to change problem parameters, enabling the tool to solve a broader range of
engineering problems with greater flexibility.

The proposed framework has several crucial components. (1) It involves analysing
relevant test data to create databases that will serve as the basis for developing the Arti-
ficial Neural Network (ANN). (2) It focuses on the architectural formation ANN model.
(3) It includes ANN model training. (4) It aims to develop a function to broaden the
ANN model’s application for the prediction of RC structure response, even in cases where
the available experimental databases do not include design parameters or inadequately
represent them [22].

2.1. Multilayered Backpropagation ANN Model Structure

The Multilayered Backpropagation Neural Network (MBNN) model is widely used to
predict the reinforced concrete member’s structural behaviour [20]. The visual representa-
tion of MBNN is shown in Figure 2.
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Figure 2. Multilayer Backpropagation Neural Network structure.

The Multilayer Backpropagation Neural Network is based on two phases: (1) free
forward calculation, and (2) Error Signal Backpropagation. During the first phase, input
parameters from the sample database are used as the input value for the neuron of the
input layer, where weights are multiplied, and biases are summarised to the output of
that layer neuron. The activation function is applied to convert the linear behaviour to
the nonlinear database, because ANN takes the input value as a linear parameter. Then,
the result is provided as input to the next hidden layer neuron, where weights assigned
initially to the network are multiplied, biases are added up, and the activation function
of the next hidden layer is applied. This process is repeated for all of the hidden layers.
In the end, the outputs of the hidden layers are taken as input for the output layer where
weights and biases are applied, and the neuron of the output layer gives the result as the
prediction of the network. The predicted results are then compared with the target value
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provided initially in the sample database. The error (obtained from the equation) discusses
the difference between predicted and target values [21,23].

E =
1
2 ∑

(
Xj − Yj

)2 (3)

On behalf of this error signal, the next phase of MBNN is started, where the error signal
is used for back calculation to adjust the values of weights and biases that were initially
applied randomly; this is achieved by taking the derivative of the activation function, and
then the architecture of the network is changed; for instance, the number of neurons in
each layer or the number of layers is changed, and the number of cycles is also increased.
Then, the feedforward process is repeated until errors are minimised and the network
is optimised for precise results [21]. This process is carried out through the “Gradient
Descent” method. The change in weight values depends on the error function “E” and the
learning rate “η” applied [16]. This correction is calculated from Equation (4).

∆Wji = −η
δE
δWji

(4)

As seen from Equation (4), if a higher learning rate value is applied, then abrupt
changes in the value of weights would come out during each iteration if higher values of
weights are used initially; this would lead to a prolonged process to achieve an optimised
neural network model. On the other hand, with a small value of learning rate and small
values of weights initially applied, training cycles are increased with prolonged training
time, but they can proceed to a more optimised neural network model.

2.2. Transfer Function

The activation function (shown in Table 1) in an ANN model acts as a link between
successive layers, processing the summation results and forwarding them to the next
layer. The choice of activation function depends on the problem at hand and the normal-
isation of input parameters. Different activation functions are applied between various
layers of the ANN model. The “log-sigmoid” activation function is used between the
input layer and the hidden layer when the input data are normalised between 0 and 1.
For the last two layers (hidden layer and output layer), the “linear” activation function is
used when the normalisation process yields results between −1 and 1. In prediction or
pattern identification cases, where the normalisation result is based on decision making,
the “hyperbolic tangent” function can be used between all layers. In such cases, the “Gaus-
sian” activation function is employed for the output layer, while the “hyperbolic tangent”
activation function is used for the hidden layer. While no specific rule exists for selecting
activation functions and data processing in training ANN models, certain commonly used
parts have advantages and limitations. The sigmoid function provides non-linearity and
an output range of 0 to 1, but it faces vanishing gradients and output saturation issues. The
hyperbolic tangent (Tanh) function introduces non-linearity, it has a zero-centred output,
and it offers stronger gradients, but it is also susceptible to vanishing gradients and lacks
finite bounds. The Rectified Linear Unit (ReLU) is widespread in deep learning due to its
sparsity, efficiency, and avoidance of vanishing gradients. Still, it can lead to dead neurons,
and it lacks an upper bound. The softmax function is commonly used in the output layer
for multi-class classification tasks, thus providing class probabilities. Still, it can be sensi-
tive to large input values, and it assumes class independence. It is essential to carefully
consider the advantages and limitations of each activation function when selecting them
based on the task and network architecture to ensure optimal performance and stability
in the ANN model.
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2.3. MBNN Model Creation

For the prediction of flexural strength, shear strength, and the first crack load of the
beam, the Multilayer Backpropagation Neural Network was selected. Previous studies
found that the neural network’s performance is based on a sufficient sample database;
the number of hidden layers, the number of neurons in both the input and hidden layers,
and the initial values of weights and bias are assigned. Moreover, the activation function,
error function, and learning program were chosen to define the network learning rate and
its performance. Therefore, from the literature review, the suggestion given for the most
optimised neural network for the best performance and a fast learning rate include the
following points [20,24]:

1. Initial values for weights and biases should be assigned between −0.5 and 0.5.
2. In the hidden layer, the number of neurons should be double the amount of neurons

in the input layer.
3. The activation function for the first two layers (input layer and hidden layer) should

use the sigmoid activation function, while the output layer hyperbolic tangent activa-
tion function should be used.

Table 1. Transfer function types [21].

Sr. No. Transfer Function Formula Range Graph

1 Identity (linear) f(x) = x (−∞, +∞)
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Sr. No. Transfer Function Formula Range Graph 
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Determining the ideal number of hidden layers and neurons in an Artificial Neural
Network can significantly impact its predictive capabilities. Still, it is a challenging task
requiring experimentation and fine-tuning. Increasing the number of layers or neurons can
enhance the network’s ability to learn complex patterns but may lead to overfitting without
proper regularisation. Conversely, reducing the number of layers or neurons simplifies the
network but may result in underfitting. Cross-validation and grid search can be employed
to find the optimal configuration. Cross-validation involves dividing the dataset into
subsets, training and evaluating the network multiple times, and comparing performance
across different configurations. Grid search systematically explores various hyperparameter
combinations and selects the best configuration based on the validation set performance.
Both methods facilitate a balanced architecture that maximises prediction accuracy on
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unseen data. However, it is important to note that the optimal architecture depends on the
specific dataset and problem, thus necessitating careful evaluation and experimentation.

2.4. Sample Database

In total, 110 sample databases were included in this network training, testing, and
validation process. Data were based on a simply supported rectangular beam without
shear reinforcement (as shown in Figure 3), for which the sampling was performed in
the UET Taxila concrete laboratory under the supervision of Prof. Dr. Ayub Elahi [25].
The ranges of the database are listed in the Table 2 below. The experimental results
calculation procedure is explained in Appendix A.
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Table 2. Range of sample database for network training.

b d Av/d ρ1 a1 fy fc L Mf Pcr

Units inch inch % psi psi inch lb.in lb.

Max 7 12.5 6 2.057 2.91 77,222 8339 126 1,047,084 54,574

Min 6 10.5 1 0.349 0.37 70,727 7697 21 95,400 2160

SD 0.502 1.004 1.588 0.582 0.768 2599.74 157.47 33.35 237,180.73 10,268.58

Avg. 6.5 11.5 3.5 1.099 1.389 74286 8024.29 85.5 483,318.08 12,606.42

COV 0.077 0.087 0.454 0.529 0.553 0.035 0.0196 0.39 0.49 0.815

2.5. Data Processing

ANN performance is based on the database quality (input and output values).
To reach optimisation, the network database should be normalised to make the network’s
training process more efficient. After training, data can be denormalised for comparison
with the target/output values, as the database has different units for both the input and
output parameters. Hence, normalisation is performed to convert them into unitless values.
Therefore, the network database needs to be normalised between two upper and lower
values to avoid a low learning process. This process can be achieved using some built-in
MATLAB functions in the Neural Network code, but if it is conducted before MATLAB
data loading, it enables the user to control the model. In this model, data are normalised
between 0.1 and 1 using Equation (5).

x′ =
(x− xmin)

(xmax − xmin)
(u− l) + l (5)

where x′ is the new, normalised value, x is the original value, u is the upper limit for
normalisation, and l is the lower limit for normalisation.

2.6. Model Input and Output

In refining the model, input and output parameters (as displayed in Table 3) were
meticulously chosen by systematically comparing results across diverse input variations.
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The selection of these parameters was contingent upon achieving optimal outcomes. Careful
consideration was given to discern those specific input and output configurations that
consistently yielded superior results, thus ensuring the model’s efficacy and reliability in
generating optimal outcomes [26,27].

Table 3. Model input and output parameters.

Model Name Input Parameters Output Parameter

FCL b, d, av/d, h, SL, fy, fc First Cracking Load

FS b, d, av/d, ρ, SL, a1, Pu, fy, fc Flexural Strength

SS b, d, av/d, Pu, fy, fc Shear Strength

2.7. Division of Database

Data are divided into three subsets: (1) training, (2) validation, and (3) testing. The
training dataset is used for the gradient update and weights and bias values, while the
validation dataset calculates the error function during the training process and backprop-
agation. The testing set monitors different network models during the training process.
Moreover, test subsets are used to calculate the difference between errors calculated by the
testing subset after performing a number of iterations and a validation process to review
the division of the database. If there is a difference, then the database division is varied
based on trial and error to minimise that difference. Moreover, in our model, data are
divided into 70% for training, 15% for validation, and 15% for testing. For division out of
four, the MATLAB command “dividerand” is used, which divides the database randomly
instead of user control, because this leads to a more efficient and optimised model [28,29].

2.8. The Functionality of the ANN Model

The ANN model (with functional parameters mentioned in Table 4) is trained as a
multi-layer model that is coded in MATLAB using the Levenberg–Marquardt algorithm
with a free forward backpropagation method [4,19,20]. The key aspects of training are
summarised as follows:

(1) The training process involves dividing the database into three subsets using a random
method. In total, 70% of the data is used for training, 15% is used for validation, and
the remaining 15% is used for testing.

(2) In total, 1000 epochs/cycles are selected to train the ANN model, and the training is
stopped if either of the following conditions is met: (a) a maximum of 100 validation
failures occur, or (b) the minimum performance learning slope becomes 10−8.

(3) The error value of the correlation factor (R), the mean absolute error (MAE), and the
mean squared error (MSE) are used to select the optimised ANN model [21–24]. These
measures are expressed analytically by Equations (6)–(8), respectively, as referenced
from the literature.

R =
∑n

i=1
(
Xi − X

)(
Yi − Y

)
∑n

i=1
(
Xi − X

)2
∑n

i=1
(
Yi − Y

)2 (6)

MSE =
∑n

i=1
(
Xi

2 − Yi
2)

n
(7)

MAE =
∑n

i=1(Xi − Yi)

n
(8)

where X = ∑n
1 (Xi)
n and Y = ∑n

1 (Yi)
n , which are averages of the measured (Yi) and predicted

(Xi) outputs, while n is the number of the sample data in the database. To obtain an
optimised ANN model, the value of “R” should be highest (approaching 1), while the
values of “MSE” and “MAE” should be lowest [30].
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Table 4. Functional parameters for Artificial Neural Network model creation.

Character Symbol Value Description

Network Name MBNN Multilayer Backpropagation
Neural Network.

Database
Input 7 and 9

Output 1

Hidden Layers H1
Double As from the literature, the most efficient

model uses double the number of neurons
in the hidden layer compared to the

input layer.

H2

Hidden Neurons
H1 14 and 18

H2 14 and 18

Activation Function
Input Layer Log-sigmoid Although the six activation functions listed

in the above table can be used from
previous research, these are recommended

for obtaining an efficient network.

Hidden Layer Log sigmoid

Output Layer Tain sigmoid

Training and
Learning Algorithms

Trainlm,
learngdm Levenberg–Marquardt.

Error Function MSE, MAE, R

Division

Training 70%
Data are divided randomly using the

command dividerand.Validation 15%

Testing 15%

To overcome the problem of overfitting, the gradient descent methodology is used to
converge values of weights and biases, while, at the same time, early stopping criteria, as
defined in the functionality of ANN, is employed to avoid overfitting [31–33].

3. Research Methodology

Concrete waste is produced due to research work, and it participates in global warming
to some extent as concrete is also a source of temperature increase. To overcome this, on
behalf of previous sample data, one of the soft computing techniques, an Artificial Neural
Network, is used to obtain optimised sample data results to reduce the number of physical
concrete beam sample creations. For this research, the methodology adopted is displayed
in the flow chart in Figure 4 to develop a green and economical solution.



Materials 2023, 16, 7642 10 of 22

Materials 2023, 16, x FOR PEER REVIEW 10 of 24 
 

 

To overcome the problem of overfitting, the gradient descent methodology is used to 
converge values of weights and biases, while, at the same time, early stopping criteria, as 
defined in the functionality of ANN, is employed to avoid overfitting [31–33]. 

3. Research Methodology 
Concrete waste is produced due to research work, and it participates in global warm-

ing to some extent as concrete is also a source of temperature increase. To overcome this, 
on behalf of previous sample data, one of the soft computing techniques, an Artificial 
Neural Network, is used to obtain optimised sample data results to reduce the number of 
physical concrete beam sample creations. For this research, the methodology adopted is 
displayed in the flow chart in Figure 4 to develop a green and economical solution.  

 
Figure 4. Research methodology layout. 

4. Results and Discussion 
ANN model results are compared based on the regression curve and the coefficient 

of determination. Based on these values, regression values are in the range of 0.92 to 0.97 

Figure 4. Research methodology layout.

4. Results and Discussion

ANN model results are compared based on the regression curve and the coefficient
of determination. Based on these values, regression values are in the range of 0.92 to
0.97 for all of the sample data against the first crack, flexural strength, and shear strength,
while the coefficient of determination is above 0.94, which is an acceptable range. While
running the training of the network, every time, results predicted by the model would
be different, because each time, the weights and biases adjusted from the learning and
error function are different from the previous trained model results. Therefore, to obtain
optimised results, train the model at least three times and then obtain predicted results
against your test input parameters.

The network diagram of the ANN model, as listed in Figure 5, shows the number
of neurons in the hidden layer and output layer, along with the input data variables and
output expected.
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Regression analysis results (as shown in Table 5) for the first crack load, flexural
strength, and shear strength model are listed in Figure 6; they show optimised regression
values, like for the first crack load, which gives R = 0.981 for training. In contrast, for
all (training, testing, and validation combined), R = 0.967, which is close to 1 and means
that the predicted results are more concise. Similarly, flexural strength gives R = 0.997 for
training. In contrast, for all (training, testing, and validation combined), R = 0.977 is close
to 1, which is also within range and a more precise prediction, and for shear strength, the
model gives R = 0.997 for training. In contrast, for all (training, testing, and validation
combined), R = 0.991 is close to 1, which is also within range and a more precise prediction.

Table 5. Error checks for the first cracking load model, flexural strength model, and shear strength
model.

Parameters First Cracking Load ANN Model Flexural Strength ANN Model Shear Strength ANN Model

MSE 0.0019 0.0017441 0.0017

MAE 0.0315 0.0234 0.016

R 0.96735 0.97764 0.99089

R2 (Coefficient of determination) 0.9404 0.9756 0.9787
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Figure 6. (a) ANN model results for first crack load prediction, (b) ANN model results for flexural
strength prediction, (c) ANN model results for shear strength.

Similarly, the training results of the network are displayed in Figure 7, which shows
which criteria have been met first and stopped the training process. It also shows how
many iterations/epochs were completed while training the network. All of these stopping
criteria are mentioned in the model creation procedure.

4.1. Behaviour of First Crack Load Based on a/d

The behaviour of the first cracking load with the increasing shear span to an adequate
depth (a/d) ratio while keeping the reinforcement ratio constant to 0.349% shows a decreas-
ing trend. From the experimental results (from graph Figure 8), for the “a/d = 1”, the first
cracking load is 28.1 kip, while for “a/d = 6”, this load value is reduced to 2.16 kip. The
possible reason for this decreasing trend is the increase in the span length of the beam
with increasing shear span to an effective depth ratio because of the constant value of “d”.
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Through comparison of the experimental results, ANN and theoretical results also show a
decreasing trend for the same sample. ANN results from the comparison with experimental
results give the coefficient of determination as 0.9404, which offers a more precise model
for prediction against the given input parameters.

Materials 2023, 16, x FOR PEER REVIEW 14 of 24 
 

 

  
(a) (b) 

 
(c) 

Figure 7. (a) Training results for the first crack load model, (b) training results for the flexural 
strength model, (c) training results for the shear strength model. 

4.1. Behaviour of First Crack Load Based on a/d 
The behaviour of the first cracking load with the increasing shear span to an adequate 

depth (a/d) ratio while keeping the reinforcement ratio constant to 0.349% shows a de-
creasing trend. From the experimental results (from graph Figure 8), for the “a/d = 1”, the 
first cracking load is 28.1 kip, while for “a/d = 6”, this load value is reduced to 2.16 kip. 
The possible reason for this decreasing trend is the increase in the span length of the beam 
with increasing shear span to an effective depth ratio because of the constant value of “d”. 
Through comparison of the experimental results, ANN and theoretical results also show 
a decreasing trend for the same sample. ANN results from the comparison with experi-
mental results give the coefficient of determination as 0.9404, which offers a more precise 
model for prediction against the given input parameters. 

Figure 7. (a) Training results for the first crack load model, (b) training results for the flexural strength
model, (c) training results for the shear strength model.

4.2. Behaviour of First Crack Load Based on the Reinforcement Ratio

The constant value of the shear span to the effective depth ratio (a/d = 1) with an
increasing reinforcement ratio (%) (from the graph in Figure 9) shows an increasing trend
at up to 0.984% reinforcement ratio, which then decreases among the beam samples, while
for the same sample value of experimental results, ANN results and theoretical results go
on a decreasing trend, respectively. The possible reason for this increasing behaviour of
first cracking load with increasing ρ (%) is the steel strength and the bond of concrete with
steel, because during this condition, steel yields first and then concrete, which results in
increased the load-carrying capacity of the beam. On the other hand, a further increase
in the reinforcement ratio caused by reinforced beams results in brittle failure, causing a
decrease in the beam’s load-carrying capacity.



Materials 2023, 16, 7642 14 of 22

Materials 2023, 16, x FOR PEER REVIEW 14 of 24 
 

 

 
(c) 

Figure 7. (a) Training results for the first crack load model, (b) training results for the flexural 
strength model, (c) training results for the shear strength model. 

4.1. Behaviour of First Crack Load Based on a/d 
The behaviour of the first cracking load with the increasing shear span to an adequate 

depth (a/d) ratio while keeping the reinforcement ratio constant to 0.349% shows a de-
creasing trend. From the experimental results (from graph Figure 8), for the “a/d = 1”, the 
first cracking load is 28.1 kip, while for “a/d = 6”, this load value is reduced to 2.16 kip. 
The possible reason for this decreasing trend is the increase in the span length of the beam 
with increasing shear span to an effective depth ratio because of the constant value of “d”. 
Through comparison of the experimental results, ANN and theoretical results also show 
a decreasing trend for the same sample. ANN results from the comparison with experi-
mental results give the coefficient of determination as 0.9404, which offers a more precise 
model for prediction against the given input parameters. 

  
(a) (b) 

BF1 BF2 BF3 BF4 BF5 BF6 BF7 BF8 BF9 BF10 BF11
0

5

10

15

20

25

30

35

Fi
rs

t C
ra

ck
in

g 
Lo

ad
 (K

ip
s)

Beam Type

 Experimental Results
 ANN Results
 Theoratical Results

reinforcement ratio ρ (%) 0.349 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6a/d
BG1 BG2 BG3 BG4 BG5 BG6 BG7 BG8 BG9 BG10 BG11

0

5

10

15

20

25

30

Fi
rs

t C
ra

ck
in

g 
Lo

ad
 (K

ip
s)

Beam Type

 Experimental Results
 ANN Results
 Theoratical Results

reinforcement ratio ρ (%) 0.635 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6a/d
Materials 2023, 16, x FOR PEER REVIEW 15 of 24 
 

 

  
(c) (d) 

 
(e) 

Figure 8. Comparison of fist cracking load with respect to shear span to effective depth ratio (a/d). 
(a) Group BF, comparison of first cracking load results with shear span to effective depth ratio (a/d) 
by keeping reinforcement ratio constant to 0.349. (b) Group BG, comparison of first cracking load 
results with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 0.635. 
(c) Group BH, comparison of first cracking load results with shear span to effective depth ratio (a/d) 
by keeping reinforcement ratio constant to 0.984. (d) Group BI, comparison of first cracking load 
results with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 1.397. 
(e) Group BJ, comparison of first cracking load results with shear span to effective depth ratio (a/d) 
by keeping reinforcement ratio constant to 1.937. 

4.2. Behaviour of First Crack Load Based on the Reinforcement Ratio 
The constant value of the shear span to the effective depth ratio (a/d = 1) with an 

increasing reinforcement ratio (%) (from the graph in Figure 9) shows an increasing trend 
at up to 0.984% reinforcement ratio, which then decreases among the beam samples, while 
for the same sample value of experimental results, ANN results and theoretical results go 
on a decreasing trend, respectively. The possible reason for this increasing behaviour of 
first cracking load with increasing ρ (%) is the steel strength and the bond of concrete with 
steel, because during this condition, steel yields first and then concrete, which results in 
increased the load-carrying capacity of the beam. On the other hand, a further increase in 
the reinforcement ratio caused by reinforced beams results in brittle failure, causing a de-
crease in the beam’s load-carrying capacity.  

BH1 BH2 BH3 BH4 BH5 BH6 BH7 BH8 BH9 BH10 BH11
0

5

10

15

20

25

30

35

40

45

Fi
rs

t C
ra

ck
in

g 
Lo

ad
 (K

ip
s)

Beam Type

 Experimental Results
 ANN Results
 Theoratical Results

reinforcement ratio ρ (%) 0.984 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6a/d
BI1 BI2 BI3 BI4 BI5 BI6 BI7 BI8 BI9 BI10 BI11

0

5

10

15

20

25

30

35

40

Fi
rs

t C
ra

ck
in

g 
Lo

ad
 (K

ip
s)

Beam Type

 Experimental Results
 ANN Results
 Theoratical Results

reinforcement ratio ρ (%) 1.397 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6a/d

BJ1 BJ2 BJ3 BJ4 BJ5 BJ6 BJ7 BJ8 BJ9 BJ10 BJ11
0

5

10

15

20

25

30

35

40

Fi
rs

t C
ra

ck
in

g 
Lo

ad
 (K

ip
s)

Beam Type

 Experimental Results
 ANN Results
 Theoratical Results

reinforcement ratio ρ (%) 1.937 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6a/d

Figure 8. Comparison of fist cracking load with respect to shear span to effective depth ratio (a/d).
(a) Group BF, comparison of first cracking load results with shear span to effective depth ratio (a/d)
by keeping reinforcement ratio constant to 0.349. (b) Group BG, comparison of first cracking load
results with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 0.635.
(c) Group BH, comparison of first cracking load results with shear span to effective depth ratio (a/d)
by keeping reinforcement ratio constant to 0.984. (d) Group BI, comparison of first cracking load
results with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 1.397.
(e) Group BJ, comparison of first cracking load results with shear span to effective depth ratio (a/d)
by keeping reinforcement ratio constant to 1.937.
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4.3. Behaviour of Flexural Strength Based on a/d

The flexural strength of the reinforced concrete beam with a constant steel reinforce-
ment ratio (ρ) 0.349% and varying the shear span to an effective depth ratio (a/d) shows
a decreasing trend (as scene in Figure 10) with an increase in a/d. The same trend was
observed in the case of ANN-predicted results. The prediction accuracy of ANN results
is checked by finding the coefficient of determination by comparing the predicted results
against specific input data with experimental results of that input data physical model,
which is 0.9756.

4.4. Behaviour of Flexural Strength Based on Reinforcement Ratio

To check the effect of reinforcement on the beam by keeping the shear span effec-
tive depth ratio (a/d) constant, the experimental results (as scene in Figure 11) show
an increase in flexural strength up to the reinforcement ratio 0.984%, which later shows
the marginal change in flexural strength. At the same time, the ANN-predicted results
against these input parameters show the same trend with increasing reinforcement. Fur-
thermore, ANN-predicted results are close to the experimental results, which enables the
applicability of the ANN model for the flexural strength or ultimate load prediction of the
reinforced concrete member.

4.5. Behaviour of Shear Strength Based on a/d

Beam sample group division is based on the reinforcement ratio, which varies from
0.349 to 1.937. In contrast, the shear span/depth ratio increases from 1 to 6 with an
increment of 0.5 in each sample group. The behaviour of shear strength with the increasing
shear span to adequate depth (a/d) ratio while keeping the reinforcement ratio constant to
0.349% shows a decreasing trend (as shown in Figure 12). From the experimental results
for the “a/d = 1”, the shear strength is 21.64 kip, while for “a/d = 6”, this shear value is
reduced to 1.52 kip. The possible reason for this decreasing trend is the increase in the span
length of the beam with increasing shear span/depth ratio because of the constant value
of “d”. When comparing the experimental results, the ANN and theoretical results also
show a decreasing trend for the same sample. The decrease in experimental results from
theoretical results may be due to an increase in the beam’s span length, resulting in the
reduction of load-carrying capacity. The same trend is observed in all sample groups, as
shown in the graphs.
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Figure 10. Comparison of flexural strength with respect to shear span to effective depth ratio (a/d). 
(a) Group BF, comparison of flexural strength results with shear span to effective depth ratio (a/d) 
by keeping reinforcement ratio constant to 0.349. (b) Group BG, comparison of flexural strength 
results with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 0.635. 
(c) Group BH, comparison of flexural strength results with shear span to effective depth ratio (a/d) 
by keeping reinforcement ratio constant to 0.984. (c) Group BI, comparison of flexural strength re-
sults with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 1.397. 

Figure 10. Comparison of flexural strength with respect to shear span to effective depth ratio (a/d).
(a) Group BF, comparison of flexural strength results with shear span to effective depth ratio (a/d)
by keeping reinforcement ratio constant to 0.349. (b) Group BG, comparison of flexural strength
results with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 0.635.
(c) Group BH, comparison of flexural strength results with shear span to effective depth ratio (a/d)
by keeping reinforcement ratio constant to 0.984. (d) Group BI, comparison of flexural strength
results with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 1.397.
(e) Group BJ, comparison of flexural strength results with shear span to effective depth ratio (a/d) by
keeping reinforcement ratio constant to 1.937.
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Figure 12. Comparison of shear strength results with respect to shear span to effective depth ratio 
(a/d). (a) Group BF, comparison of shear strength results with shear span to effective depth ratio 
(a/d) by keeping reinforcement ratio constant to 0.349. (b) Group BG, comparison of shear strength 
results with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 0.635. 
(c) Group BH, comparison of shear strength results with shear span to effective depth ratio (a/d) by 

Figure 12. Comparison of shear strength results with respect to shear span to effective depth ratio
(a/d). (a) Group BF, comparison of shear strength results with shear span to effective depth ratio (a/d)
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by keeping reinforcement ratio constant to 0.349. (b) Group BG, comparison of shear strength results
with shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 0.635.
(c) Group BH, comparison of shear strength results with shear span to effective depth ratio (a/d) by
keeping reinforcement ratio constant to 0.984. (d) Group BI, comparison of shear strength results with
shear span to effective depth ratio (a/d) by keeping reinforcement ratio constant to 1.397. (e) Group
BJ, comparison of shear strength results with shear span to effective depth ratio (a/d) by keeping
reinforcement ratio constant to 1.937.

4.6. Behaviour of Flexural Strength Based on Reinforcement Ratio

The constant value of shear span/depth ratio (a/d = 1) with increasing reinforcement
ratio (%) shows an increasing trend up to 0.984% reinforcement ratio (as scene in Figure 13).
Then, it decreases among the beam samples, while for the same sample value of experimen-
tal results, the ANN results and theoretical results go on a decreasing trend, respectively.
The possible reason for this increasing behaviour of shear strength with increasing ρ (%) is
steel strength and the bond of concrete with steel because during this condition, steel yields
first and then concrete, which results in increased load-carrying capacity of the beam. On
the other hand, a further increase in the reinforcement ratio caused by reinforced beams
results in brittle failure, causing a decrease in beam load-carrying capacity.
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5. Conclusions

This study explains the development of a knowledge-based structural analysis model
capable of predicting RC structural responses. The ANN model was developed based on the
Multilayer Backpropagation Neural Network methodology, which enables the prediction
of the behaviour of nonlinear elements. Input parameters are selected based on physical
model preparation, and the predicted results are compared with the experimental results
of the physical model. The predicted results are close to the experimental results.

1. The linear correlation coefficient “R” for the first cracking load stands at 0.96735.
In contrast, the coefficient of determination “R2” for this parameter amounts to 0.9404—
both values nearing 1—indicating highly accurate predictions closely resembling
experimental findings.

2. In terms of flexural strength, the linear correlation coefficient “R” registers at 0.97764,
and the coefficient of determination “R2” is at 0.9756. These values, which are in prox-
imity to 1, affirm the precision of the predictions, closely mirroring experimental data.
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3. As for shear strength, the linear correlation coefficient “R” is 0.99089, and the coeffi-
cient of determination “R2” is 0.9787. These figures, which are close to 1, signify the
model’s ability to provide highly precise predictions, closely aligning with experimen-
tal outcomes.

In contrast to conventional methodologies for predicting the structural response
of reinforced concrete components, soft computing techniques—specifically, the ANN
model—stand out by accurately projecting the behaviour of RC structural components,
regardless of their geometric complexity or various loading conditions. Once the ANN
model is adequately trained using a relevant sample database, it demonstrates a remarkable
ability to forecast the behaviour of RC structural components at the ultimate limit state
(ULS) independent of the material properties and mechanics underlying the member.
Furthermore, the ANN model can seamlessly integrate with professional design software
for nonlinear analysis, enabling precise predictions of structural member responses at
the ultimate limit state under both simple and intricate load scenarios. This integration
significantly reduces analysis time and enhances the accuracy of predictions compared to
the traditional approaches dictated by current design codes.

Future Work Direction

The ANN model can be used with professional design software for nonlinear analysis
to predict the response of structural members at the ultimate limit state under simple
or complex loading without requiring analysis time, and it can predict accurate results
compared to conventional current design codes. Moreover, new research can proceed by
varying database conditions and input parameters.

Author Contributions: M.M.A., software, model creation, analysis of results; A.E., software, con-
ceptualization, database development; S.B., software, conceptualization. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be provided on request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

b = width of beam
d = effective depth of beam
h = depth of beam
Av/d = shear span to effective depth ratio
ρ1 = steel reinforcement ratio
a1 = vitney block compressive area
fy = steel yield strength
fc = concrete compressive strength
L = length of beam
Mf = flexural strength of beam
Pcr = first cracking load
Vu = shear strength of beam
As = area of steel
SL = span length
FCL = model for first cracking load
FS = model for flexural strength
SS = model for shear strength
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Appendix A

Flexural behaviour of RC beam (in Figure A1) under applied loading of 43,280 lbs for
the first sample BF1.
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Figure A1. Loading pattern of RC beam for flexural behaviour.

The moment developed due to the applied load is the maximum bending moment
calculated by Equation (A1)

M =
PL
4

(A1)

M =
43.280× 21

4
= 227.22 Kip. in

The gross moment of inertia of the beam can be calculated by Equation (A2)

IG =
bh3

12
(A2)

IG =
6× 123

12
= 864 in4

The transformed moment of inertia of the concrete and steel was used to compute the
stresses at the extreme tension fibre.
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Figure A2. Concrete area replaced by reinforcement.

Transferred area of steel
n =

Es

Ec
= 6 (A3)

Ast = n. As = 6× 0.22 = 1.32 in2 (A4)

Distance from the top fibre to the neutral axis for the transferred inertial moment.

y =
A1y1 + A2y2

A1 + A2
=

1.32× 10.5 + 72× 6
1.32 + 72

= 6.081 in (A5)
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Distance of bottom fibre to transferred neutral axis

yb = 5.919 in (A6)

Transferred moment of inertia

Itr =
(

IG + Ad2
)
+ Asd2 =

(
864 + 72× 0.0812

)
+ 1.32× 4.4192 = 890.24 in4 (A7)

Equating concrete tensile force to concrete rupture force

fct = fr (A8)

Myb
Itr

= 7.5 λ
√

fc′ (A9)

(
PL
4

)
yb

Itr
= 7.5 λ

√
fc′ (A10)

Pcr =
4× Itr × 7.5 λ

√
fc′

ybL
(A11)

Pcr =
4× 890.24× 7.5× 1×

√
7840

5.919× 21
= 19.024 Kip (A12)
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