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Abstract: The NbTiAlZrHfTaMoW refractory high-entropy alloy (RHEA) system with the structure
of the B2 matrix (antiphase domains) and antiphase domain boundaries was firstly developed.
We conducted the mechanical properties of the RHEAs at 298 K, 1023 K, 1123 K, and 1223 K, as
well as typical deformation characteristics. The RHEAs with low density (7.41~7.51 g/cm3) have
excellent compressive-specific yield strength (σYS/ρ) at 1023 K (~131 MPa·cm3/g) and 1123 K
(~104.2 MPa·cm3/g), respectively, which are far superior to most typical RHEAs. And, they still keep
appropriate plastic deformability at room temperature (ε > 0.35). The superior specific yield strengths
are mainly attributed to the solid solution strengthening induced by the Zr element. The formation
of the dislocation slip bands with [111](10

_
1) and [111](11

_
2) directions and their interaction provide

considerable plastic deformation capability. Meanwhile, dynamic recrystallization and dislocation
annihilation accelerate the continuous softening after yielding at 1123 K.

Keywords: refractory high-entropy alloys; B2 phase; specific yield strength; strain softening;
deformation microstructure

1. Introduction

With the development of high-temperature metallic materials, Ni-based superalloys
have been unable to meet the requirements of aerospace engines. It is urgent to find a new
high-performance alloy to replace the Ni-based superalloy [1]. Refractory high-entropy
alloys (RHEAs) based on refractory elements with superior high-temperature mechanical
properties have recently attracted intensive research attention, which are regarded as
promising candidates for high-temperature structural materials [2–4]. However, their
inferior plasticity along with high ductile–brittle transition temperature and high density
seriously limits their aerospace applications, where the requirements are mainly focus on
the deformability and high specific strength of alloys.

Research efforts have been attempting to overcoming these shortcomings via com-
ponent and structure regulation [5,6]. In order to improve plasticity at room temperature
(RT), a new refractory high-entropy alloy (RHEA), HfNbTaTiZr [7], with excellent RT com-
pression plasticity (ε > 50%), has been developed. However, its specific yield strength
(SYS) at high temperatures is undesirability (such as <60 MPa·cm3/g at 1073 K). For better
SYS, Han et al. [5] and Wang et al. [8] added Ti or V to NbMoTaW and NbMoTa RHEAs,
respectively. Unfortunately, their SYSs are still lower than 90 MPa·cm3/g at 1073 K. Hence,
the harmonization of strength, plasticity, and density is an intractable problem in RHEAs.
Meanwhile, the strain softening phenomenon in RHEAs at high temperatures is ubiquitous,
but the quantitative analysis of the softening mechanism is still lacking [9–12].
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For the two crucial issues mentioned above, in this work, we realized the struc-
tural transition from disorder to order of a plastic NbTi-based RHEA via Al-Zr regula-
tion. Meanwhile, high-temperature solid solution strengthening and grain boundary (GB)
strengthening were also introduced into the RHEA by adding appropriate amounts of
Hf, Ta, Mo, and W. On this basis, the fresh Nb42Ti25Al15Zr5Hf5Ta5Mo2W1 (NbTiAl-1),
Nb39Ti23Al15Zr10Hf5Ta5Mo2W1 (NbTiAl-2), and Nb37Ti20Al15Zr15Hf5Ta5Mo2W1 (NbTiAl-
3) RHEAs with the B2 matrix and antiphase domain boundaries (APBs) are firstly devel-
oped. The RHEAs exhibit excellent SYS at high temperatures, maintaining the top level in
the field of plastic RHEAs. In addition, the deformation mechanism and strain softening
characteristic at RT and 1123 K are also discussed in detail.

2. Materials and Methods

The RHEAs (the purity of elements was higher than 99.9 wt%) were prepared by
vacuum melting in a furnace with a Ti-gettered argon atmosphere. The Zr-Ti-Al and
Nb-Hf-Ta-Mo-W intermediate alloys were prepared, respectively in order to avoid the
volatility of Al and Ti. Then, they were blended for the final button ingots, which were
remelted at least six times to ensure chemical homogeneity. Compression samples with
sizes of Φ5 mm × 7.5 mm and Φ8 mm × 12 mm were obtained directly from the button
ingots. The 298 K compression tests (Φ5 mm × 7.5 mm) at RT were conducted on an
Instron 5582 machine with a strain rate 0.001/s. The 1123 K compression tests (Φ8 mm ×
12 mm) were conducted on a GLEEBLE 3800 machine with the same rate. Microstructure
and composition analyses were performed with a scanning electron microscope (SEM;
XL30-FEG, FEI, Eindhoven, Holland). In this work, both SEM and electron backscatter
diffraction (EBSD) samples were, firstly, mechanically ground with 1200 to 2000 grit SiC
sandpapers, followed by mechanical polishing. The mechanically polished surfaces were
ultrasonically cleaned with alcohol and then electrolytically polished with an electrolyte of
6% HClO4 + 35% CH3(CH2)3OH + 59% CH3OH at about −30 ◦C. Phase identification was
conducted using an X-ray diffractometer (XRD; Rigaku D/max-2500PC, Tokyo, Japan) and
transmission electron microscope (TEM; Talos F200X, ThermoFisher, Waltham, MA, USA).
The as-cast TEM samples, slices cut from the bulk samples, were mechanically ground
to a thickness of ~70 µm. Disks with a diameter of 3 mm punched out from the thin
foils were further ground to ~40 µm and finally thinned using a Gatan Model 695 after
dimpling [13]. For TEM samples after deformation, thin specimens cut from the core of the
column sample were mechanically ground to a thickness of approximately ~70 µm. The
subsequent thinning process was consistent with the as-cast TEM samples.

3. Results and Discussion

The XRD results of the as-cast NbTiAl-1, NbTiAl-2, and NbTiAl-3 RHEAs are shown in
Figure 1. All three alloys have a BCC structure. The XRD pattern of the NbTiAl-3 shows the
presence of weakly ordered B2 phase structural diffraction peaks at about 26◦. As shown in
the enlarged illustration in Figure 1, the (110) diffraction peaks are obviously shifted to the
left with the increase in Zr elements, indicating a significant increase in the lattice constants,
which are 0.3302 nm for the NbTiAl-1, 0.3310 nm for the NbTiAl-2, and 0.3317 nm for the
NbTiAl-3, respectively. Combined with the XRD results, Zr is the element with the largest
atomic size in this alloy system, which results in the largest solid solution effect and thus
a significant increase in the lattice constant. Meanwhile, the density values of NbTiAl-1,
NbTiAl-2, and NbTiAl-3 are 7.51 g/cm3, 7.44 g/cm3, and 7.41 g/cm3, respectively.
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Figure 1. XRD pattern of as-cast NbTiAl-1, NbTiAl-2, and NbTiAl-3 RHEAs. 

As shown in Figure 2a, the as-cast structure of NbTiAl-1 is equiaxial dendritic segre-
gation. NbTiAl-2 and NbTiAl-3 are dendritic structures, as shown in Figure 2b,c, which 
are mainly due to the rapid solidification process of elemental segregation. The EDS re-
sults shown in Figure 2d reveal that, due to the differences in the melting points of the 
constituent elements, the high-melting-point elements Nb, Ta, Mo, and W firstly solidify 
in the dendrite region (DR), and then drive the lower-melting-point Zr and Al elements 
into the inter-dendrite region (ID), which promotes the formation of the dendritic struc-
ture, whereas the distribution of the Ti and Hf elements is relatively uniform. This den-
dritic structure induced by the difference in elemental melting point is highly consistent 
with the as-cast microstructure of previous RHEAs [14,15]. 

 
Figure 2. SEM images of as-cast (a) NbTiAl-1, (b) NbTiAl-2, (c) NbTiAl-3 RHEAs, (d) EDS maps of 
as-cast NbTiAl-3 RHEA. 

Figure 3 shows the dark-field TEM (DF-TEM) images with the superlattice spots of 
(100) of as-cast NbTiAl-1, NbTiAl-2, and NbTiAl-3, which indicates that the as-cast struc-
ture of the RHEAs is composed of an ordered B2 matrix and APBs [16–18]. The presence 

Figure 1. XRD pattern of as-cast NbTiAl-1, NbTiAl-2, and NbTiAl-3 RHEAs.

As shown in Figure 2a, the as-cast structure of NbTiAl-1 is equiaxial dendritic segre-
gation. NbTiAl-2 and NbTiAl-3 are dendritic structures, as shown in Figure 2b,c, which
are mainly due to the rapid solidification process of elemental segregation. The EDS re-
sults shown in Figure 2d reveal that, due to the differences in the melting points of the
constituent elements, the high-melting-point elements Nb, Ta, Mo, and W firstly solidify
in the dendrite region (DR), and then drive the lower-melting-point Zr and Al elements
into the inter-dendrite region (ID), which promotes the formation of the dendritic structure,
whereas the distribution of the Ti and Hf elements is relatively uniform. This dendritic
structure induced by the difference in elemental melting point is highly consistent with the
as-cast microstructure of previous RHEAs [14,15].
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Figure 2. SEM images of as-cast (a) NbTiAl-1, (b) NbTiAl-2, (c) NbTiAl-3 RHEAs, (d) EDS maps of
as-cast NbTiAl-3 RHEA.

Figure 3 shows the dark-field TEM (DF-TEM) images with the superlattice spots
of (100) of as-cast NbTiAl-1, NbTiAl-2, and NbTiAl-3, which indicates that the as-cast
structure of the RHEAs is composed of an ordered B2 matrix and APBs [16–18]. The
presence of an ordered B2 structure is again verified by the superlattice spots in the electron
diffraction pattern (EDP) with the [001] zone axis. This phenomenon is consistent with

the result that the structure factor ratio |F(100)|
|F(200)|

is small due to a counterbalancing of heavy
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and lighter elements on the different lattice sites according to the site occupation factors
SOFLS

i in MoCrTiAl [18]. From the DF-TEM results, the volume fraction of B2 phase keeps
increasing with the increase in Zr element, i.e., the density of APBs decreases significantly
because Al-Zr partitioning can promote the formation of the B2 structure during the rapid
solidification process. This partitioning trend is consistent with previous studies [19,20]. It
should be noted that the effect of the density of APBs on the yield strength of the RHEAs is
limited because the APBs had no notable influence on the motion and spatial distribution
of dislocations, as demonstrated in our previous work and that of others [21–23].
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(c) NbTiAl-3 RHEAs. The insets in (a–c) are selected-area electron diffraction (SAED) patterns with
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Figure 4 shows the compression true stress–strain curves of the NbTiAl-1, NbTiAl-2,
and NbTiAl-3 at different temperatures. The yield strengths of the three RHEAs at 298 K are
1198.1 ± 7.5 MPa, 1333.1 ± 7.2 MPa, and 1418.1 ± 7.4 MPa, respectively. The yield strength
of the RHEAs increases significantly with increasing Zr content. It indicates that the alloy
has an obvious solid solution strengthening effect after the addition of Zr [17,24]. Similarly,
the yield strengths of the RHEAs at 1023 K and 1123 K shown in Figure 4b,c maintain that
trend, proving that the solid solution strengthening induced by the Zr element are still
effective in that temperature range. The 1223 K compression results in Figure 4d show
that the yield strengths of NbTiAl-2 and NbTiAl-3 are similar, indicating that the solid
solution strengthening induced by the addition of Zr elements are weakening. The obvious
serration behavior of NbTiAl-2 from dynamic strain aging (DSA), shown in Figure 4b, is
caused by the tearing-off and re-pining of alternating dislocations [25,26].
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In order to assess the effect of solid solution strengthening in the RHEAs, a power-law
function was used to plot the relationship between the yield strength increment ∆σ of
NbTiAl-1, 2, and 3 RHEAs and the concentration of Zr in the B2 matrix (CZr, Table 1):
∆σ~Cn

Zr. A good linear fit between ∆σ and CZr was obtained for NbTiAl-1, 2, and 3 RHEAs
at 298 K, 1023 K, and 1123 K when n = 0.25, as shown in Figure 5. Therefore, the increase
in strength of NbTiAl-1, 2, and 3 RHEAs with increasing Zr content at 298 K, 1023 K, and
1123 K is doubtlessly caused by the solid solution strengthening effect. There is no longer
a linear relationship between ∆σ~C0.25

Zr at 1223 K, which proves that the solid solution
strengthening is significantly reduced at this temperature, which is also consistent with the
trend that the solid solution strengthening effect decreases with increasing temperature [27].
More interestingly, the strain softening of the RHEAs becomes more and more pronounced
with the increase in Zr content in the range of 1023 K–1223 K. The specific strain softening
mechanism will be analyzed below. The compressive yield strength (σYS) and SYS (σYS/ρ)
of the three RHEAs at different temperatures are shown in Table 2.

Table 1. Chemical compositions of the as-cast NbTiAl-1, 2, and 3 RHEAs (at.%).

Nominal Composition Nb Ti Al Zr Hf Ta Mo W

Nb42Ti25Al15Zr5Hf5Ta5Mo2W1 41.2 25.7 14.3 4.6 5.2 6.0 1.4 1.6
Nb39Ti23Al15Zr10Hf5Ta5Mo2W1 40.4 23.7 13.6 8.6 5.1 5.8 1.1 1.7
Nb37Ti20Al15Zr15Hf5Ta5Mo2W1 37.7 20.3 14.1 13.5 5.3 6.2 1.8 1.0
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Table 2. Values of compression yield strength and SYS of as-cast NbTiAl-1, 2, and 3 RHEAs at
different temperatures (Unit: MPa and MPa·g−1·cm3).

Temperature
(K) 298 1023 1123 1223

NbTiAl-1
σYS 1198.1 ± 7.5 705.6 ± 12.8 705.5 ± 12.5 386.2 ± 9.2
σYS/ρ 159.5 93.9 93.9 51.4

NbTiAl-2
σYS 1333.1 ± 7.2 857.9 ± 13.1 764.6 ± 12.7 451.8 ± 11
σYS/ρ 179.1 115.3 102.7 60.7

NbTiAl-3
σYS 1418.1 ± 7.4 951.8 ± 11.5 835.5 ± 13 466.3 ± 11.4
σYS/ρ 191.3 128.4 112.7 62.9

The SYS values and strain of the RHEAs at RT are compared with other represen-
tative RHEAs, such as NbMoTa [28], AlNbTiV [24], ZrTiHfV0.5Nb0.5, Zr2.0TiHfVNb2.0
and ZrTiHfNb0.5Ta0.5 [29], Al1.5NbTa0.5Ti1.5Zr0.5 and AlMo0.5NbTa0.5TiZr [30], HfNbTa-
TiZr, HfMoTaTiZr, HfMoNbTiZr and HfMoNbTaTi [31], NbMoTaW and NbMoTaWV [4],
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CrNbTiVZr [32,33], and HfMo0.5NbTaTiZr [34]. The results show that Al1.5NbTa0.5Ti1.5Zr0.5,
CrNbTiVZr, and AlMo0.5NbTa0.5TiZr RHEAs have high SYSs, but their plasticity is inferior,
which seriously affects the application of these RHEAs as structural materials. Although
the SYSs of NbTiAl-1, 2, and 3 RHEAs at RT are in the middle of the range of representative
RHEAs, all of them have superior plasticity compared with most of the RHEAs. Namely, a
good combination of the SYS and the compression plasticity is realized in these RHEAs.
A comparison of the SYSs of NbTiAl-1, 2, and 3 RHEAs with other representative RHEAs
at different temperatures is shown in Figure 6b, such as NbMoTaW and VNbMoTaW [4],
TaNbHfZrTi [7], NbTaTiV [35], CrNbTiZr and CrNbTiVZr [32], Zr2.0TiHfVNb2.0, [29], and
Ti35Al15V20Nb20Mo10 [36]. The results show that the SYSs of NbTiAl-1, 2, and 3 RHEAs at
298 K are only lower than that of two RHEAs, CrNbTiZr and CrNbTiVZr. However, the
SYSs of the NbTiAl-1, 2, and 3 RHEAs are higher than that of other RHEA systems, and the
SYS of the NbTiAl-3 is the highest in the temperature range of 973 K~1173 K. It is obvious
that the NbTiAl-3 has a substantially higher SYS (σYS/ρ) from 298 K (191.3 MPa·cm3/g) to
1123 K (112.7 MPa·cm3/g) compared with other typical RHEAs. The superior mechanical
property is mainly attributed to the solid solution strengthening induced by the Zr element
in the B2 matrix. Meanwhile, the critical shear stress for the slip of dislocations in ordered
crystalline structures is much higher than that in their solid solution counterparts [17].
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other representative RHEAs at RT, (b) the SYS (σYS/ρ)-temperature of as-cast NbTiAl-1, NbTiAl-2,
and NbTiAl-3 RHEAs and other representative RHEAs [4,7,24,28–36].

Serious plastic deformation occurs near the GB after the fracture of the NbTiAl-3, and
a large number of slip bands appear. The slip bands have two orientations, represented
as slip band 1 and slip band 2 in Figure 7a, respectively, with an orientation difference of
about 26◦ between them. The two-beam condition BF-TEM image with g = (01

_
1) shows two

typical dislocation slip systems ([111](10
_
1) and [111](11

_
2)), which are consistent with the

orientation pile-up of slip bands shown in Figure 7a. There is an obvious dislocation pile-up
in the slip bands while the two types of slip bands interact continually, thus providing
considerable strain hardening capacity, as shown in Figure 4a. In particular, the appearance
of {112} glide plane under RT deformation further provides the NbTiAl-3 with superior
plastic deformation capability.

The electron backscatter diffraction (EBSD) results of the NbTiAl-3 after compression
at 1123 K are shown in Figure 8. The compression axis (CA) is parallel to the vertical
direction of Figure 8a. The grains are elongated along the horizontal direction, and the GBs
slip significantly during compression, as shown in Figure 8a. Moreover, the geometrically
necessary dislocation (GND) map shown in Figure 8b indicates that the dislocations are
accumulated around the GBs, while the dislocation density is much lower inside the grains.
Figure 8c shows that the dislocation density is 5.0 × 1012/m2 at the GBs, which is similar
to the as-cast annealing state [37,38], whereas the dislocation densities around the GBs and
inside the grains are 3.8× 1014/m2 and 1.6× 1014/m2, as shown in Figure 8d,e, respectively.
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It is precisely because of this heterogeneous deformation structure that it provides the
necessary nucleation sites and driving forces for necklace structural dynamic recrystalliza-
tion (DRX) at the GBs. Finally, the NbTiAl-3 forms the deformed structure that fine DRX
grains are surrounded by high-density dislocations at the GBs after deformation, and the
dislocation density gradually decreases, extending into the inside of the grains. Moreover,
the overall dislocation density (1012/m2~1014/m2) of the sample is relative low [39], which
proves that the dislocation annihilation occurs obviously during compression at 1123 K,
resulting in the reduction in the dislocation strengthening effect. Hence, the DRX and
dislocation annihilation accelerate the continuous strain softening after yielding.
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Figure 8. EBSD results after compression true strain 50% at 1123 K. (a) Inverse pole figure (IPF) maps.
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The TEM results are also consistent with the EBSD analysis. Figure 9a shows the
fine DRX grains along the initial GBs. Meanwhile, sub-grains with low-angle GBs are
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also detected, shown in Figure 9a, which indicates that the dynamic recovery (DRV) also
occurs during compression. Accordingly, the dislocation density at the GBs is significantly
reduced due to the consumption of DRX and DRV. Obvious dislocation tangles and high-
density dislocation debris are detected surrounding the DRX and DRV regions, as shown
in Figure 9b. Despite the fact that the NbTiAl-3 RHEA has superior SYS conferred by the
existence of the ordered B2 matrix, DRX and DRV effectively reduce the stored elastic
energy by consuming dislocations along the GBs. Meanwhile, dislocation cross-slip/climb
and annihilation accelerated by thermal actuation are apparent inside the grains at 1123 K,
resulting in continuous strain softening [9,10]. Figure 9c shows a schematic diagram of the
microstructure of recrystallization and dislocation after compression at 1123 K.
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4. Conclusions

Overall, three novel RHEAs, Nb42Ti25Al15Zr5Hf5Ta5Mo2W1 (NbTiAl-1), Nb39Ti23Al15
Zr10Hf5Ta5Mo2W1 (NbTiAl-2), and Nb37Ti20Al15Zr15Hf5Ta5Mo2W1 (NbTiAl-3), with the
B2 matrix and APBs were developed. The microstructure, RT, and high-temperature
mechanical properties of the RHEAs in the as-cast state were systematically analyzed, and
the deformation mechanism was also studied by taking the NbTiAl-3 RHEA as an example,
with the following specific conclusions:

(1) The RHEAs exhibit an excellent combination of high yield strength, low density
(7.41~7.51 g/cm3), and large plasticity (ε > 0.35) at RT. The SYSs of the NbTiAl-3
RHEA are ~131 MPa·cm3/g at 1023 K and ~104.2 MPa·cm3/g at 1123 K, respectively,
which are far superior to most typical RHEAs. These excellent mechanical properties
are mainly attributed to the solid solution strengthening induced by the Zr element.

(2) The deformation of the NbTiAl-3 RHEA at 298 K is dominated by the planar slip of
dislocations, resulting in two dislocation slip bands oriented in the [111](10

_
1) and

[111](11
_
2) directions. Dislocation pile-up in the slip bands and the two types of slip

bands interact continually, providing considerable plastic deformation capability.
(3) The DRX formed at GBs and low dislocation density inside the grains induced via

dislocation annihilation accelerate continuous strain softening after yielding during
the 1123 K compression of the NbTiAl-3 RHEA.
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