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Abstract: The modern lifestyle has increased our utilization of pollutants such as heavy metals,
aromatic compounds, and contaminants that are of rising concern, involving pharmaceutical and per-
sonal products and other materials that may have an important environmental impact. In particular,
the ultimate results of the intense use of highly stable materials, such as heavy metals and chemical
restudies, are that they turn into waste materials, which, when discharged, accumulate in environ-
mental water bodies. In this context, the present review presents the application of metal–organic
frameworks (MOFs) in electrochemiluminescent (ECL) sensing for water pollutant detection. MOF
composites applied as innovative luminophore or luminophore carriers, materials for electrode modi-
fication, and the enhancement of co-reaction in ECL sensors have enabled the sensitive monitoring of
some of the most common contaminants of emerging concern such as heavy metals, volatile organic
compounds, pharmaceuticals, industrial chemicals, and cyanotoxins. Moreover, we provide future
trends and prospects associated with ECL MOF composites for environmental sensing.

Keywords: metal organic frameworks; luminescence; electroluminescent detection; water pollutants

1. Introduction

Pollution from different sources due to extensive urbanization and industrialization is
placing the global water budget under pressure by reducing the water available for benefi-
cial use [1]. The demand for water has increased tremendously in agricultural, industrial,
and domestic domains, resulting in the huge impact of natural and anthropogenic sub-
stances that are constantly released into the environment. Prime agricultural land is being
lost to urbanization, threatening the aquatic and terrestrial ecosystems due to the increased
use of chemicals. Anthropogenic sources of pollution are growing in number in line with
progressing human development. Industrial, agricultural (pesticides and fertilizers), and
mining activities, accompanied by construction, fuel and coal burning, traffic emissions
(i.e., exhaust gases), and sewage waste, are the most customary pollution sources.

Amid different pollutants, even low concentrations of heavy metals have raised health
concerns owing to their capability for hazardous bioaccumulation through food chains
via the formation of metal–organic complexes [2]. The greatest number of non-degradable
potentially toxic elements (PTEs) include Arsenic (As), Cadmium (Cd), Chromium (Cr),
Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), and Zinc (Zn), pose a serious threat
to the ecosystem [3] when they are above the maximum allowable limits and are listed as
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priority pollutants requiring control by the U.S. Environmental Protection Agency and the
EU Commission. These elements are found in varying amounts throughout the Earth’s crust
as naturally occurring components in the water–sediment environment. Their geochemical
levels in sediments are, thus, expected to be relatively low [4]. However, when heavy metals
are discharged into aquatic environments from anthropogenic sources, they accumulate
between the aqueous phase and the sediments.

Volatile organic compounds (VOCs) are persistent and important organic pollu-
tants that can lead to groundwater contamination. VOCs include chlorinated solvents
(e.g., hydrogen sulfide, trichloroethene, carbon tetrachloride) and petroleum hydrocarbons,
especially BTEX (benzene, toluene, ethyl-benzene, and mixtures of o-, m- and p-xylene)
compounds. These volatile aromatic compounds are severely toxic to aquatic organisms if
contact is maintained. They are generated by the incomplete combustion of organic matter,
which is often found in discharges and petroleum products (vehicle exhaust, coal burning
and residential heating, waste incineration, petroleum refining processes, and aluminum
production). Groundwater contaminated with VOCs can potentially affect freshwater
aquatic ecosystems as it can discharge for a long period of time to surface water bodies.
Gasoline can contain large amounts of BTEX (up to 40%), and therefore, BTEXs are used as
indicators of the gasoline contamination of sediment samples when gasoline contamination
is suspected.

Aquatic ecosystems are also under threat from the bioaccumulation of other sustain-
able freshwater contaminants, which are classified as contaminants of emerging concern
(CECs) [5–7]. Under this broad family of chemical pollutants, we find synthetic chemicals
that could have an impact on human health or ecology. Endocrine-disrupting chemi-
cals or endocrine disruptors (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs)
represent two main CEC subgroups. These pollutants can originate from agriculture,
urban runoff, or ordinary household products (disinfectants, fragrances, pesticides) and
pharmaceuticals dispatched to sewage treatment plants and then discharged. One main
concern with CECs is that existing traditional wastewater treatment processes are ineffec-
tive in their removal. The most common include hormones endocrine-disrupting chemicals
(estrone, 17ß-estradiol, 17α-ethynylestradiol, testosterone), disinfection by-products, fluori-
nated substances (bisphenols, phthalates, synthetic estrogens), pesticides (glyphosate and
organophosphorus pesticides), and antibiotics.

Finally, waterborne pathogenic bacteria and the mass occurrence of cyanobacteria
blooms due to anthropogenic activities in freshwaters, including drinking water reservoirs,
threaten human health and the environment because of their toxin-producing qualities [8].
The most frequently occurring and studied biologically active cyanobacteria toxins are
anatoxins (ATXs) and microcystins (MCs), whose toxicity is a major cause of concern in the
scientific community and the World Health Organization [9,10]. Anatoxin-a(S) represents
an extremely potent natural neurotoxin generated by freshwater cyanobacteria, while
exposure to microcystins, which are chemically very stable, leads to liver dysfunction, hem-
orrhage, and, in acute doses, causes cancer. Due to chronic low-dose exposure, microcystins
are cancer promoters. The stability of MCs is attributed to their cyclic structure, which
remains unchanged after a few hours in boiling water and even for several years at room
temperature if they are in a dry state. Indeed, microcystins are not readily removed from
drinking water via conventional treatment methods, which indicates the importance of
toxin detection and monitoring in freshwater [11,12].

With such a vast variety of pollutants, the control of water–sediment environments
remains a priority and a problem, which has been highlighted in a considerable number
of scientific publications [13]. While plans to minimize global environmental pollution
exist, the contamination of water and its sediments is stressing the urgency of technological
advances in materials for pollutant-sensitive detection and their elimination. New sensing
materials and methods showing outstanding performance, reflected by high sensitivity
and selectivity, rapid detection, and ease of use, in comparison with traditional expensive
chromatography with complex pretreatment and long test times, are decidedly needed.
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A wide range of micro- and nanomaterials, including nanocarbon materials (carbon nan-
otube and graphene), metals and metal oxides, semiconducting materials, quantum dots,
and polymers with different characteristics, have been applied in environmental monitor-
ing sensors [14–17]. Among these advanced novel materials, metal–organic frameworks
(MOFs), also recognized as porous coordination polymers (PCPs), have attracted intense
attention due to their excellent physicochemical characteristics owing to the coexistence
of crystallinity and porosity [16,18–20]. The rational design of MOFs could especially
provide innovative emitters or luminophore carriers for the hybrid analytical method of
electrochemiluminescence (ECL). ECL combines light-emission detection with orthogonal
electrochemical initiation [21–23]. The classical and most exploited ECL system is com-
posed of tris(bipyridine)ruthenium (Ru(bpy)3

2+) as the luminophore and tri-n-propylamine
(TPrA) as the sacrificial co-reactant [24–30]. This ECL system can be significantly improved
by utilizing nanomaterials [31–42]. Accordingly, ECL-based MOFs provide a new prospect
for highly sensitive and targeted bioanalysis combined with functional nanomaterial design
and controllable and tunable photophysical and photochemical properties through the
structural modifications of organic linkers, metal clusters, and guest species [43]. Among
other benefits, ECL MOFs enable the re-use of potassium persulfate as a non-toxic co-
reactant in comparison to TPrA while providing the same or better sensitivity, thus making
the whole system more environmentally friendly. In addition, the nanoconfinement that
occurs in such mesoporous materials based on the intensity of ECL has been imaged and
spatially resolved with a remarkable spatial resolution. Liu’s group showed that the ECL
signals were very stable even in biological media, allowing single biomolecule imaging [43].
The high sensitivity of ECL sensors based on MOF luminophores allows the efficient de-
tection of water pollutants, which are typically present in low amounts in water bodies.
This set off the recent development of novel MOF materials for ECL and new applications,
especially sensing and imaging [35,39,44–50].

In this review, we present recent developments in the development of luminescent
MOF-based ECL sensors for water pollutant detection. First, we provide a brief description
of the ECL method. Second, we introduce different MOFs as carriers of ELC emitters,
including luminol, Ru(bpy)3

2+, and their derivatives. Third, we outline promising applica-
tions of MOF-based ECL in water monitoring. Finally, we discuss some perspectives on the
synthesis and applications of MOF luminophores for ECL sensors.

2. ECL Sensors

Current (bio)sensors for the detection of pollutants aim to replace classical detection
techniques based on liquid and gas chromatography or mass spectrometry by providing the
coupling of the accuracy of measurements equivalent to such instrumental methods with
the portability, affordability, and simplicity of analysis. As already mentioned, ECL is an
electrochemical process in which an electron-transfer reaction taking place at an electrode
surface triggers light emission. In co-reactant ECL, the emission of light is generated via a
charge transfer between the electrochemical reaction intermediates of both the emitter and
co-reactant (Figure 1).

The most widely used system applied for analytical purposes is composed of the
luminophore species Ru(bpy)3

2+, or its derivative, and TPrA as a co-reactant. An ECL
co-reactant can be defined as a reagent that, following oxidation or reduction, is able to
decompose, producing highly reactive reductive or oxidative species (Figure 1), which can
proceed through an electron transfer reaction with an oxidized or reduced luminophore
in order to generate ECL. Combining electrochemistry and luminescence in this smart
way enables the unique advantages of ECL compared to other optical sensing methods,
as a light source is not necessary, and this makes the detection set-up simpler and most
importantly, no background signal is generated from scattered light, and luminescent im-
purities. As ECL does not require a light source, it simplifies the detection apparatus, and,
most importantly, invalidates background signals from scattered light and luminescent
impurities, thus providing improved sensitivity. However, some specific ECL configu-
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rations employing semiconductors and named photo-induced ECL require an excitation
light to photo-generate holes and electrons that trigger the emission of ECL [48–50]. These
properties have resulted in ECL becoming a significant detection method in analytical
chemistry and microscopy [23,30,51–60]. Commercial ECL systems for clinical diagnostics
using standard ECL pair, Ru(bpy)3

2+, or one of its derivatives, and TPrA run over 1.3 billion
tests per year [26,60].
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Figure 1. Overview of the ECL process for the most common system used, consisting of the lu-
minophore, Ru(bpy)3

2+, and the tri-n-propylamine (TPrA) co-reactant. The ECL reagents are gen-
erated in situ at the electrode using cyclic voltammetry or chronoamperometry by sweeping the
applied potential. Upon the oxidation of both the luminophore and co-reactant, the formed activated
species further interact to form the excited state Ru(bpy)3

2+∗ resulting in an ECL emission. Ru2+

represents Ru(bpy)3
2+.

Organometallic compounds are in focus for the development of ECL-emitting species
due to their ECL nature. In order to advance the sensitivity, stability, and reproducibility of
ECL biosensors, it is particularly important to optimize luminophores in terms of robust
ECL signals and stability. Conventional luminophores, including luminol, Ru(bpy)3

2+,
g-C3N4, and derivatives, all have excellent ECL responses, but their utilization in an ECL
sensor can be affected by their stability in water solutions, or reduced contact probability
with the co-reactant. Ru(bpy)3

2+ species and their derivatives are considered to be the
most efficient luminophores as they possess excellent electrochemical and spectroscopic
properties. Ru(bpy)3

2+ can be applied in both water and organic solutions depending on
the counter-ion, and also immobilized on the electrode surface. For instance, Ru(bpy)3

2+

is stable in the solution, and electrochemical oxidation can generate the reactive species
Ru(bpy)3

2+ (Figure 1). Classical anodic co-reactants are tertiary, secondary, and primary
alkyl amine groups (especially TPrA or DBAE) and oxalate [29,51–53]. For instance, after its
heterogeneous oxidation at the electrode surface or homogeneous oxidation via Ru(bpy)3

2+,
the TPrA•+ cation radical deprotonates rapidly to form the reducing neutral radical, TPrA•.
Ru(bpy)3

3+ is then reduced exergonically via TPrA•, forming the excited state Ru(bpy)3
2+∗

(Equation (1)), which decays to the ground state and emits orange-red light [54–57].

Ru(bpy)3+
3 +TPrA•

Ru(bpy)+3 +TPrA•+

}
→ Ru(bpy)2+∗

3 +products
(1)
(2)

Ru(bpy)+3 +Ru(bpy)3+
3 → Ru(bpy)2+*

3 +Ru(bpy)2+
3 (3)

Furthermore, the excited state of Ru(bpy)2+
3 can be produced via three different

routes: (1) Ru(bpy)3
3+ with reduction by TPrA• as explained above, given in Equation (1);

(2) Ru(bpy)3
+ with oxidation by TPrA•+ radical cation (Equations (2) and (3)); and (3) the

Ru(bpy)3
3+ and Ru(bpy)3

+ annihilation reaction (Equation (3)).
Thus, in ECL reactions, light emissions lead to the regeneration of ruthenium com-

plexes, making the ECL methodology reusable and highly attractive from an analytical
point of view. Therefore, they act as labels for ECL bioassays. In addition, several advan-
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tages exist for immobilizing luminophores, and they include improved sensitivity due to
the concentration of emitter centers in the detection region near the electrode’s surface
and reduced chemical consumption, particularly impacting flow systems. Hence, the
integration of luminophores in materials with a high porosity and specific surface area,
such as MOF, can significantly increase the ECL sensor’s analytical performance. Even
if TPrA is an effective co-reactant for Ru(bpy)3

2+ ECL, there are well-known backdowns
associated with its properties. Crucially, TPrA is highly toxic (LD50 oral: 98 mg/kg, LC50
inhalation: 1500 mg/m3) and very volatile. The co-reactant ECL technology is an essential
part of all commercially available ECL analytical instrumentations. Co-reactants are more
comfortable to work with not only in aqueous media but also in physiological conditions
(pH~7.4). Finding new co-reactants with a high ECL efficiency for bioassays is a constant
driving force in this area [25,51,58–61]. Among others, persulfate is the first example of a
co-reactant ECL system produced by applying cathodic potential [62]. The application of
MOFs as luminophore carriers for pollutant detection enabled the use of persulfate as a less
toxic and efficacious co-reactant, reaching extremely low LOD in water pollutant detection
such as femtomolar, and making the whole system more environmentally friendly [63].
Nevertheless, ECL MOFs are, therefore, promising materials for the development of clinical
diagnostic assays using a non-toxic ECL system.

3. MOFs for ECL Sensors

Metal–organic frameworks represent an attractive group of highly ordered crystalline
coordination polymers shaped via the coordination of metal ions/clusters and organic
bridging linkers/ligands. Taking into account the unique structures and properties of
MOFs, which include high surface area, tailorable pore size, the high density of active sites,
and high catalytic activity, different MOF-based sensing platforms have been designed for
environmental contaminant detection and purification involving anions, heavy metal ions,
organic compounds, and gases. Figure 2 shows the articles published for “Environmental
pollutant” and “MOF for Environmental Pollutant”, along with the future trends according
to their publication rate in the last twenty years.
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tendency curve and projecting it for the next 4 years (dotted lines).

Due to their high chemical stability, MOFs have been exploited not only as a promising
sensing material but also as superior adsorbents of different environmental pollutants from
both soil and water. In comparison with MOFs, different porous sorbents like zeolites,
activated carbon, and others have several disadvantages, including material stability, high
density, a lack of structural tenability, and low uptake capacity or selectivity. MOFs of differ-
ent sizes and morphologies can be controllably produced using various synthesis methods
such as sonication, electrochemical, hydro/solvothermal, mechanochemical, microwave,
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etc., [64–67]. The diverse MOFs obtained, which can be a class of 2D or 3D microporous
materials, have emerged as prominent materials for water contaminant research. In these
materials, porous structures are assembled using metal cation salts or clusters linked
with polydentate organic ligands with coordination-type connections. They can also be
combined with other materials, such as nanoparticles, to form advanced nanocomposite
materials. For instance, MOFs combined with conductive nanoparticles show exceptional
electron conductivity, while MOFs alone have poor conductivity. In this review, we explore
the relationship between the characteristics of ECL-active MOFs and their application for
the detection of water pollutants (Figure 3).

Electroactive luminophores can be easily incorporated in MOFs due to their nano-scale
and ordered porosity or through metal ion chelation to generate ECL-active MOFs [68].
Luminophores can be incorporated in MOFs during their synthesis or via post-synthesis
modifications. The integration of MOFs is achieved through functional nanomaterial de-
sign by monitoring and tuning photophysical and photochemical properties and changing
the structure of organic linkers, metal clusters, and guest species. For instance, when
Ru complexes are integrated into 2D MOF nanosheets during the synthesis, a significant
improvement in ECL luminescence efficiency was obtained [69]. In comparison to Ru
complexes alone, the resulting emitter within the composite has a high level of mobility
inside frameworks with restricted intramolecular rotation and exhibits enhanced charge
delocalization. Moreover, an additional increase in ECL efficiency can be obtained by
integrating Ru complexes in MOFs doped with other transition metals. The doping of
MOFs with transition metals improves their electrical conductivity. Zhao and cowork-
ers [70] showed that introducing a ruthenium pyridine complex in Ni-MOFs to produce
NiRu-MOFs can lead to a significant boost in ECL efficiency compared to pure Ni-MOFs.
Another approach consists of the encapsulation of the luminophore during the growth
of MOF. For instance, Dong et al. [71] encapsulated Ru(bpy)3

2+ within mesoporous and
hollow MIL-101(Al)–NH2 to which the co-reactant, poly(ethylenimine), was covalently
linked. The co-reactant prevented luminophore leakage and enabled a self-enhanced ECL
response. Post-synthesis modifications of MOFs are possible due to well-defined pore sizes
and their charge via some linkers [44,68,72,73].
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requirements for signal amplification. Recently, luminescent MOFs, which belong to the
group of multifunctional MOFs, were designed as highly crystallized ECL emitters in an
aqueous medium [74]. These MOFs demonstrated exceptional performance with surface
state models in both the co-reactant and annihilation of ECL in the aqueous medium. In
comparison with individual elements, the framework structure of multifunctional MOFs
significantly upgrades the emission of ECL. A high-stability self-enhanced ECL emission
can be achieved and realized by the accumulation of MOF cation radicals via pre-reduction
electrolysis. These MOFs enable a proof of concept that molecular crystalline materials can
be applied as new ECL emitters.

Table 1 shows some recent examples of ECL-active MOFs applied in the sensing of
potentially toxic species, the linear detection range (LDR), the type of co-reactants, and
the type of the real sample’s medium. Sensor performances were in accordance with
provisional guideline values for pollutant concentrations in drinking water regarding the
limit of detection for the adequate analytical detection method as recommended in the
drinking-water quality guidelines provided by WHO [75].

Table 1. MOF-based ECL sensing of water pollutants.

MOF Type Analyte Limit of Detection
(LOD)

Type of MOF
Synthesis Linear Detection Range (LDR) Co-Reactants Medium Reference

Ru-Zn: MOF
Ru(bpy)3

2+

1,3,5-benzentriic acid
Ag+/Hg2+ 0.00298–0.00032 pM

Electrodeposition,
electrochemical

synthesis

0.001–1000 pM/
0.01–10,000 pM K2S2O8

Seawater,
water [76]

Ag-MOF@CS
@(Au-NPs) Hg2+ 66 fM Ultrasonic,

solvothermal 300 fM–1 µM K2S2O8
Water, lake

water [63]

NH2-SiO2/Ru(bpy)3
2+-

UiO66 Pb2+ 1.0 × 10−7 µM 1.0 × 10−6–
1.0 × 10−2 µM

TEA
Water,

tap
water

[77]

Ru-MOFs H2S 2.5 × 10−12 mol L−1 1.0 × 10−11 mol L−1–
1.0 × 10−4 mol L−1

NBD-amine
7-nitro-1,2,3-

benzoxadiazole
amine

Water,
human serum

samples
[78]

S2-Fc/S3/S1-AgNPs
@Ru-MOF Anatoxin-a 0.034 µg/mL Solvothermal 0.001–1 mg/mL TPrA Lake and river

water [79]

Ru-Cu MOF Microcystin-LR 0.143 pg/mL Ultasonication 0.0001–50 ng/mL TPrA Tap water [80]

Hf-MOF/Ir2PD/APS/
ITO Acetamiprid 0.0025 nM Directional

self-assembling 0.01–10 nM TPrA Pakchoi [81]

CdTe@ZnNi-MOF Chlorpyrifos 6.23 × 10−17 M Blending 1.0 × 10−14–
1.0 × 10−9 M

Luminol-O2 Vegetables [82]

Co-Ni/MOF Chloramphenicol 2.9 × 10−14 M Solovothermal 1.0 × 10−13–
1.0 × 10−6 M

BP/PTC-
NH2)/S2O8with

K2S2O8
Tap water [83]

Hollow Cu/Co-MOF Acetamiprid
and malathion

0.015 pM/
0.018 pM

In situ,
solvothermal 0.1 µM–0.1 pM Luminol

H2O2 , K2S2O8
Apple and

tomato [84]

UCNPs/Pt@MOF Diethylstilbestrol 3.8 fg/mL Layer-by-layer
growth method 0.1 pg/mL to 30 ng/mL CBS

H2O2
Tap and river

water [85]

Ru(bpy)3
2+/UiO-67 Diethylstilbestrol 3.27 fg/mL Solvothermal 0.01 pg/mL to 50 ng/mL TPrA Urine [86]

Eu(II)-MOFs Trenbolone 4.42 fg/mL 10 fg/mL–100 ng/mL TPrA River water [87]

CDs@HKUST-1 Catechol 3.8 × 10−9 mol/L
Hydrothermal

synthesis 5.0 × 10−9–2.5 × 10−5 mol/L K2S2O8 Tea sample [88]

NH2-Zr-MOF DEHP 2.43 × 10−13 mg/mL 1.0 × 10−12–
1.0 × 10−4 mg/mL

K2S2O8

River and
urban

drinking
water

[89]

Ru-MOF 5-fluorouracil 0.031 pg/mL Ultasonication 0.0001–100 ng/mL K2S2O8 Serum [90]

PCN-222@CdSe p-PNP 0.03 ppb Solvothermal 100 ppm to 0.1 ppb K2S2O8
Lake and
tap water [91]

PtNPs@Ce-MOFs Trenbolone 3.61 fg/mL One-pot
solvothermal 10 pg/mL–100 ng/mL K2S2O8 River water [92]

4. Applying ECL-Active MOFs in Water Pollutant Sensing
4.1. ECL MOF Sensors for Heavy Metals Detection

Waterbody contamination with heavy metals is a critical issue that adversely affects
humans, plants, and animals. Heavy metal pollution has been found in sediments of rivers,
lakes, and other waters and is a reason for significant concern because of their enrichment,
concealment, persistence, and toxicity. A large number of scientific reports deal with the
improvement of systems for the detection of heavy metals compared to time-consuming
classical analytical techniques, including atomic absorption spectrometry and inductively
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coupled plasma—optical emission spectrometry. The application of MOFs as platforms for
sensing and capturing heavy metals has significantly increased due to their high surface
area, tunable pore chemistry, and fast adsorption kinetics. Currently, photoluminescence is
the most exploited method for detecting heavy metals with MOFs, and in this case, inter-
actions between the pollutants and MOFs modify luminescent properties [93,94]. Among
the luminescent MOFs, MOFs with luminophores that exhibit ECL signals have drawn
a lot of attention as emitters for the sensitive detection of heavy metals. Shan et al. [77]
reported on an ECL sensor for the highly sensitive and selective detection of Pb2+ based on
Ru(bpy)3

2+ and the encapsulated UiO66 metal–organic framework. The nanocomposite
contained Ru(bpy)3

2+—UiO66 MOF and –NH2—group functionalized silica nanoparticles
(NH2-SiO2). The large surface area of NH2-SiO2 ensured an excellent platform for ECL
sensing. The encapsulation of Ru(bpy)3

2+ in UiO66 MOF significantly enhanced the ECL ef-
ficiency of the suggested sensor. The good linear relationship of the quenched ECL intensity
within Pb2+ concentrations in the range from 1.0 × 10−6 to 1.0 × 102 µM with a detection
limit of 1.0 × 10−7 µM was obtained under optimal conditions. The oxidation-initiated re-
ductive excitation pathway (vide supra) represented the ECL excitation route of Ru(bpy)3

2+.
The co-reactant used in the generation of ECL was triethylamine (TEA) dissolved in a
buffer solution. The sensor operated at pH 7.5. At a pH lower than 7.5, the signal was
low due to the inhibition of the co-reactant deprotonation, while an alkaline environment
caused the precipitation of Pb2+. The potential ECL mechanism of Ru(bpy)3

2+/TEA was
proposed, suggesting a similar route as in the standard system of Ru(bpy)3

2+/TPrA. Re-
garding its application, the proposed ECL sensor displayed its detection ability with an
average concentration of Pb(II) of 9.99 nM in tap water. This was in accordance with the
WHO guidelines, prescribing 1 µg/L as LOD via AAS and a practical quantification limit
in the region of 1–10 µg/L [75]. Moreover, the sensor showed good stability since the
ECL intensity was stable for 14 scan cycles. In another study, Jin et al. [95] synthesized a
silver–MOF composite (Ag-MOF) with terephthalic acid. The silver ion was used as the
ECL luminophore for an aptamer sensor to detect mercury ions in water. To improve the
ECL stability of the Ag-MOF, chitosan and gold nanoparticles (Au NPs) were additionally
attached to the composite. The ECL response was obtained using K2S2O8 as a co-reactant.

Recently, a di-functional ECL sensor utilizing Ru-MOFs and the strand-displacement-
amplification reaction was proposed for the ultrasensitive detection of two heavy metal ions,
Hg2+ and Ag+, using K2S2O8 as a co-reactant [76]. Several improvements were proposed.
First, the electrochemical method was applied using Ru(bpy)3

2+ and 1,3,5-benzentriic acid
to prepare Ru(bpy)3

2+-functionalized MOFs (Ru-MOFs) under mild conditions. In most
developments, the processes applied to synthesize functionalized MOF take a long time
as they include complex reaction steps and harsh conditions. Secondly, the detection step
included dissolved oxygen in the reaction system and utilized its significant quenching
effect on the ECL signal generated by Ru(bpy)3

2+ [96]. For this, a low concentration of
hemin was used as a quencher O2 [97,98] in order to ultimately and indirectly enhance the
ECL signal. Finally, carboxyl groups in Ru-MOFs films formed on a glassy carbon electrode
(GCE) were activated using EDC/NHS to immobilize the DNA H1 oligomer in the solution
containing hemin. Hemin was bound to the guanine-rich part of DNA H1, forming a
G-quadruplex structure (Figure 4). The ECL signal of Ru(bpy)3

2+ for trace amounts of
Ag+ was recorded after adding EDTA, while Hg2+ was detected in the solution containing
cytosine-rich cDNA to mask Ag+. This ECL sensor operated at pH 7.4 and at 37 ◦C
showed the relative standard deviation (2.62–3.37%) and recovery rates (93.43–105.49%)
when applied in seawater. These values were in acceptable ranges regarding the standard
regulative for these two heavy metals. The sensor had reliable storage stability when placed
at 4 ◦C and provided an unchanged signal for 30 cycles of ECL responses.
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Figure 4. Schematic diagram of ECL ultrasensitive sensing of Hg2+ (A) and Ag+ (B). Adapted with
permission from [76].

4.2. ECL MOF Sensors for CEC Detection

Contaminants of emerging concern (CEC) is a definition for different substances
present in the environment that were not detected before, or at least not in significant
amounts [99]. Nowadays, various CECs, including personal care products, pharmaceuticals,
hormones, and industrial chemicals released into the environment. Their potential toxicity
points out that additional detection methods and new regulations are needed to enable their
control and prevention. Besides presenting risks to human health, the release of various
CECs in nature, even at trace level concentrations, has negative effects on animals and the
environment. For instance, steroid hormones can induce feminization or masculinization
in aquatic fauna, while traces of antibiotics contribute to bacteria becoming more resistant.
In the context that most CECs have unknown toxicity, the United States Environmental
Protection Agency and the European Commission have instigated EDSP and REACH
programs, respectively, to investigate the toxicity and endocrine disruptive properties of
different CECs. By contrast, many developing and underdeveloped countries still do not
have such programs despite the increasing presence of pharmaceuticals, chemicals, and
hormones in domestic sewage and surface water sources.

The quantitative analysis of CECs requires sophisticated and sensitive analytical in-
struments, as mentioned above. MOF ECL sensors could be the answer to such limitations.
In most of them, recognizing the need to target CEC relies on the utilization of specific
antibodies or aptamers that are immobilized in MOFs. For example, a new competitive
ECL immunosensor platform has been designed for the detection of diethylstilbestrol
(DES) via the encapsulation of Ru(bpy)3

2+ in UiO-67 MOF [86]. The interaction with DES
resulted in the activation of Ru-UiO-67 MOF as a luminophore and enhanced ECL signal
emissions. DES is a synthetic non-steroidal estrogen causing reduced fertility upon in utero
exposure. An electrode surface modified by amino-functionalized silica (NH2-SiO2) was
coated using the antibody DES and served as an immunosensing platform. In the con-
structed immunosensor, DES was contested with bovine serum albumin-diethylstilbestrol
(BSA-DES) for binding to antibody-specific sites (Figure 5a). An increase in the unlabeled
DES antigen concentration resulted in a decrease in the number of available paratopes
for the Ru-MOF-labeled antigen and, therefore, the generated ECL signal. The operating
conditions comprised the following: pH 7.5, 10 mM tripropylamine co-reactor, 15 mg/mL
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BSA/DES/Ru(bpy)3
2+/UiO-67, and 2 h incubation time. The novel fabricated immunosen-

sor is a good potential candidate for the detection of other types of biological hormones
with a proven wide linear range from 0.01 pg/mL to 50 ng/mL and an LOD of 3.27 fg/mL.
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Promising 2D ruthenium-MOF nanosheets were synthesized for the ultrasensitive
detection of fluoropyrimidine 5-fluorouracil (5-FU) in an ECL competitive-type immunosen-
sor [90]. The 5-FU is an anticancer drug and is particularly and widely applied for the
treatment of colorectal cancer. A larger surface area of 2D Ru-MOF nanosheets led to
the increased loading of Ru(dcbpy)3

2+, exposing more bindable active sites and thus im-
proving the performance of MOFs as ECL emitters. Electrode surface modification with
thin 2D molybustion/graphene oxide (MoS2@GO) improved the electron transfer rate
of the electrode used as the sensing platform due to the MoS2 graphene-like structure
(Figure 5b). The large specific surface area of MoS2@GO and its piezoelectric catalytic
efficiency further provided the loading of more 5-FU coating antigens. The competition
between free 5-FU- and 5-FU-coating antigens on the sensor platform for the binding sites
in Ru-MOF/antibodies was the competitive immunoassay strategy. The ECL signal was
efficiently generated via a cathodic ECL route using persulfate as a co-reactant with the
0.4 mg/mL MoS2@GO and 12 µg/mL 5-FU antibody and 8 µg/mL 5-FU antigen as the
operating conditions. The proposed immunosensor showed a high sensitivity, wide detec-
tion range (0.0001 ng/mL–100 ng/mL), and low limit of detection of 0.031 pg/mL. The
sensing platform could be adapted for the detection of other types of drugs if other specific
antibodies were used. The sensor exhibited excellent stability under five consecutive scans.

Another example includes an ECL aptamer sensor with NH2-Zr-MOF for ultra-
sensitive detection of a plastic additive—di-(2-ethylhexyl)phthalate (DEHP) [89]. Merging
a highly efficient electrocatalytic NH2-Zr-MOF and graphdiyne (GDY) composite onto a
glassy carbon electrode surface notably enhanced the complete electrochemically active
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surface area and consequently improved ECL’s signal intensity. Lamellar GDY was used
as the luminescent body, combined with NH2-Zr-MOF to modify the surface of a GCE,
followed by the fixing of the carboxylated aptamer (COOH-Apt) that could specifically
identify the target on NH2-Zr-MOF via the amide bond (Figure 5c, left panel). Sodium
ascorbate (NaAsc) was added as a co-reactant accelerator for the GDY/S2O8

2− system
(Figure 5c, right panel). The analytical functionality of the sensor to recognize DEHP
was obtained with 16 µM of NaAsc, 3µM of aptamer immobilized onto the electrode,
and 20 min of incubation time. The ultra-sensitive detection of DEHP in the linear range
of 1.0 × 10−12 to 1.0 × 10−4 mg/mL with an LOD of 2.43 × 10−13 mg/mL of DEPH was
achieved. The practical application of the sensor was shown in river water and urban
drinking water samples in which the presence of the DEPH pollutant raises potential
health hazards.

Li and coworkers [100] developed an ultrasensitive and selective method for detecting
bisphenol A (BPA) using a solid-state ECL aptasensor. This aptasensor utilized titanium-
based MOFs, namely MIL-125, as a carrier for the luminescent Ru(bpy)3

2+. Ru(bpy)3
2+

encapsulating MIL-125 (Ru(bpy)3
2+@MIL-125), which was applied onto a glassy carbon

electrode and functioned as the working electrode. The best operating conditions were
obtained when the electrode was modified with 2.5 µL of Ru(bpy)3

2+@MIL-125. To enhance
selectivity, a thiol-based aptamer specific to BPA was attached to the working electrode
through a Ti-S bond. The specific binding between the aptamer and BPA resulted in the
significant quenching of the ECL signal. This led to the development of a selective ECL
aptasensor for BPA. The ECL aptasensor utilizing Ru(bpy)3

2+@MIL-125 demonstrated a
strong ECL response for detecting BPA. Under optimal conditions, the aptasensor displayed
a wide linear detection range from 1.0 × 10−12 to 1.0 × 10−6 M, with an excellent detection
limit of 6.1 × 10−13 M. Furthermore, the ECL aptasensor was able to selectively detect
BPA even in the presence of other BPA interference compounds in a mixture. Neverthe-
less, the sensor had a relatively high cost because MOF synthesis was time-consuming
and complicated.

In the study by Wen et al. [83], a sensitive and selective ECL aptasensor was de-
veloped using Co-Ni/MOF to enhance the detection of chloramphenicol (CAP). Black
phosphorus quantum dots (BPQDs) were synthesized and introduced into the precursor
solution to create BPQDs-doped PTC-NH2 nanoparticles (BP/PTC-NH2) as ECL emitters.
The Co-Ni/MOF showed a significant improvement in signal amplification compared to
BP/PTC-NH2. Under the optimized operating conditions of 25 min of incubation time,
a 100 mV/s scanning rate, and 2µM aptamer concentration, the aptasensor successfully
detected CAP within a concentration range of 1.0 × 10−13 M to 1.0 × 10−6 M with a low
detection limit of 2.9 × 10−14 M. The developed aptasensor also demonstrated the selective
detection of CAP in the presence of interference compounds, showcasing its potential
applications in detecting antibiotics in aquatic environments.

Recently, an innovative method for the successful loading and anchoring of CdSe quan-
tum dots in the pores of a Zr-based porphyrin MOF using the solvothermal method was
developed for p-nitrophenol (p-NP) detection [91]. p-NP is one of the priority pollutants
on the U.S. Environmental Protection Agency list because it is a carcinogen and potential
endocrine disruptor, which tends to persist in water. The novel compound material is
known as PCN-222@CdSe was characterized by a greatly increased ECL signal intensity
and luminescence stability in comparison with single CdSe quantum dots. p-NP effectively
quenched the ECL signal of PCN-222@CdSe (Figure 6). The operating conditions comprised
4 mg/mL of PCN-222@CdSe, a 100 ◦C reaction temperature, and a 60 min reaction time.
The ECL sensor was able to sensitively and efficiently identify nitrophenol compounds in
the range of 100 ppm to 0.1 ppb, with an LOD as low as 0.03 ppb. It was successfully tested
for samples of tap and lake water.
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4.3. ECL MOF Sensors for VOC Detection

Volatile organic compounds, such as acetone, benzene, xylenes, and toluene, are
primarily emitted from industrial chemical processes, vehicles, various home care prod-
ucts, and building/construction materials. In addition, there are some naturally occurring
sources of VOCs, such as mono- and tri-bromomethane, mono- and di-chloromethane, and
chloroform that are metabolically active products of marine organisms. The production of
VOCs is influenced by the type of sediment [101]. Typically, sediments with more sorptive
properties include muddy sediments that capture and accumulate VOCs (like dimethyl sul-
fide and methyl mercaptan), while less sorptive sandy sediments contain very low amounts
of VOCs. Some VOCs are highly toxic when absorbed through the gastrointestinal tract or
when they penetrate into the organism by crossing the skin barrier. In addition, VOCs can
rapidly evaporate into the air and cause severe intoxication via inhalation. Besides causing
severe harm to human health, VOCs have a negative environmental effect since they can
deplete the ozone. Consecutively, highly toxic VOCs are subject to strict regulations, and
their monitoring is of the utmost importance. Besides laboratory-based instruments for
VOC detection and quantification, many sensors have been validated and are commercially
available such as those based on photo-ionization or electrochemistry [102]. Although
the utilization of MOF-based colorimetric sensors for VOC detection has been extensively
studied, up until now, only a few MOF ECL sensors have been explained. Recently, the ad-
sorption of small molecules via the porous structure of Ru-MOFs was used for the sensitive
ECL detection of H2S [78]. Ru(bpy)3

2+ was encapsulated within a multifunctional MOF,
together with novel co-reactants in the form of NBD-amine, as a recognition probe. In the
presence of H2S, NBD amine released the secondary amine and enhanced the ECL signal of
Ru-MOFs immobilized onto GCE (Figure 7). The increased ECL signal was proportional to
the concentration of H2S. In this sensor, MOFs as nanocarriers efficiently increased the load
and amount of Ru(bpy)3

2+, whose large specific surface area could adsorb more H2S on the
GCE surface and, thus, produce a greater amount of secondary amine as co-reactants. The
encapsulation of Ru(bpy)3

2+ improved its interaction with the co-reactant, contributing to
the enhancement of the ECL signal. As a result, the proposed ECL sensor detected H2S
with the dynamic range from 10−11 M to 10−4 M and an LOD of 2.5 × 10−12 M at 180 min
of the reaction time. Moreover, the sensor was stable under continuous cyclic potential
scans for 10 cycles.
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4.4. ECL MOF Sensors for Cyanotoxin Detection in Water

The rapid proliferation of cyanobacteria in weakly circulating water regularly leads to
water contamination with cyanotoxins that can be classified as hepatotoxines, dermatotoxi-
cines, hepatotoxins, and neurotoxicines. Anatoxins and saxitoxins are the most important
neurotoxins [103,104]. Anatoxin-a is an alkaloid produced from a variety of cyanobacteria,
provoking seriously harmful effects that can be fatal. Although currently there is no set low
value for the allowed anatoxin-a content in drinking water, its accurate detection enables
the efficient control of water quality and prevention of poisoning. Xia et al. [79] reported
a DNAzyme-based, target-triggered, redox-controlled responsive ECL resonance energy
transfer (RET) aptasensor for anatoxin-a detection. The system utilized Ru(bpy)3

2+-doped
MOF as an energy donor and AgNPs/ferrocene as dual-energy acceptors. A Ru(bpy)3

2+

chromophore was encapsulated into zirconium(IV)-based MOFs, followed by the coating
of AgNPs as a primary ECL-RET quencher. Three DNA strands were considered as follows:
the first was a thiolated DNAzyme strand that linked the formed AgNPs@Ru-MOF, the
second was an oligomer modified with ferrocene, and the third was an anatoxin-a specific
aptamer that served as a secondary quencher. When AgNPs@Ru-MOF and three DNA
strands were assembled on the electrode, the recorded ECL background was extremely low
due to dual quenching. However, the binding of anatoxin-a increased the ECL signal inten-
sity significantly by exposing the Ag+ ion and simultaneously moving away ferrocene from
Ru-MOFs (Figure 8), which restored ruthenium luminescence. The sensor was operative
directly in lake and river waters and was stable under continuous scanning for 15 cycles.

Microcystins produced by cyanobacterial bloom are heptapeptide toxins that are dis-
tributed most widely and pose a severe threat to the quality of drinking water. Microcystins
are a type of monocyclic heptapeptide and possess many isomers that are attributed to dif-
ferent compositions of the two variable amino acids in polypeptides. Among them, MC-LR
exhibits the strongest toxicity [105]. A highly sensitive ECL-based apta-sensor was devel-
oped to detect MC-LR in water [80]. The on–off–on signal strategy relied on Ru-Cu MOF as
the ECL signal-transmitting probe and three types of PdPt alloy core–shell nanocrystals as
signal-off probes. Bimetallic-hybridized MOFs (RuCu MOFs) were synthesized as an ECL
signal emitter.

The high porosity combined with intrinsic crystallinity was achieved by combining
the ruthenium bipyridyl with the copper-based MOF (Cu-MOF) precursor. Since bipyri-
dine ruthenium in RuCuMOFs has the ability to perform energy transfer to the organic
ligand (H3BTC), this resulted in an ultra-efficient ligand luminescent ECL signal probe,
which exceptionally improved the aptasensor’s sensitivity. The quenching effects of noble
metal nanoalloy particles with different crystal states obtained using a seed-mediated
growth method further improved the sensitivity of the aptasensor—PdPt octahedral (PdP-
tOct), PdPt rhombic dodecahedral (PdPtRD), and PdPt nanocubic (PdPtNC) nanoparticles
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(Figure 9A). Among them, the PdPtRD nanocrystal showed higher activity when combined
with excellent durability as a result of the charge redistribution due to the hybridization of
Pt and Pd atoms.
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Furthermore, PdPtRD exposed more active sites with a large specific surface area,
resulting in the higher loading of –NH2–DNA strands. Outstanding sensitivity and stability
in MC-LR detection were shown via the fabricated aptasensor, including a linear detec-
tion range of 0.0001–50 ng/mL (Figure 9B). It was applied in tap water under operating
conditions of pH 7.4, a low concentration of the toxic co-reactant TPrA of 7 mM, and only
0.25 mg/mL of RuCu MOFs. The application of alloy nanoparticles of noble metals and
bimetallic MOFs opens new perspectives in the field of ECL immunoassays.

5. Conclusions

In this review, we present some developments in ECL sensors using MOF luminophores
for water quality assessment. ECL-active MOFs have been developed progressively, and
the majority of the results presented here have been published recently. Porous MOFs have
varied functional groups and a large specific surface area, providing a variety of modifica-
tion strategies for loading ECL molecules. Taking into account the fact that waterbodies
may be contaminated with toxic pollutants in trace-level concentrations, the main require-
ment of ECL-active MOFs is high sensitivity. Advanced analytical ECL performances
can be achieved via the incorporation of luminophores and nanoparticles as functional
moieties in multifunctional MOFs. In addition, specificity and selectivity can be further
promoted via signal amplification and/or on–off quenching strategies. Such ECL-sensors
based on multifunctional and multicomponent MOFs benefit the versatile MOF character-
istics, providing the possibility of fine-tuning donor and acceptor distances in the sensor
with a key impact in determining the ECL analytical performances. In addition, MOFs
provide good channels for the transport of co-reactants, electrons, and ions. Indeed, the
integration of luminophores into frameworks results in the confinement-enhancement of
the luminescence signal properties due to the distribution of molecules and intramolecular
energy transfer. Moreover, the electrochemical activation of luminophore is facilitated in
configurations where the luminophore is directly connected to metal within MOFs, leading
to low potential ECL emissions.

In most cases, the recognition of water pollutants relies on a specific antibody or
aptamer associated with MOFs. This is a limiting feature for the future development of
ECL-active MOFs, as only restrictive numbers of such molecules are available. In addition,
being biological molecules, both aptamers and antibodies need to fold into a specific
conformation to be active. Variations in the pH, temperature, or salt content may unfold
and inactivate them. This has to be taken into account when a specific aptamer or antibody
is associated with MOFs. Although many studies have shown the high selectivity and
detection of ECL-active MOFs, their refined selectivity on chemically similar molecules
is rarely tested. The future development of MOFs with differentiated affinities towards
different toxic species allows combinations of multiple ECL-active MOFs in a sensor array
for more complete water analysis. Finally, sustainable applications of ECL-active MOFs
have to consider sensor reusability over the efficiency of detection.
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