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Abstract: In this work, were synthesized (Pb0.91La0.09)(Zr0.65Ti0.35)0.9775O3 ceramic materials with
different concentrations of praseodymium (0, 0.1, 0.3, 0.5, 1 wt.%) via gel-combustion route and
sintered by the hot uniaxial pressing method. Measurements were conducted on the obtained
ceramics using X-ray powder diffraction (XRD), scanning electron microscope (SEM), EDS analysis,
and examination of dielectric and ferroelectric optical properties. Results give us a detailed account of
the influences of the praseodymium ions on the structural, microstructural, and dielectric properties.
3D fluorescence maps and excitation and emission spectra measurements show how a small admixture
changes the ferroelectric relaxor behavior to an optically active ferroelectric luminophore.
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1. Introduction

Perovskite ceramics ABO3 are continuously interesting engineering materials, ex-
tensively commercialized and used in various devices, such as sensors and actuators.
The complex oxide compound lead-lanthanum zirconium titanate (PLZT) is particularly
important among them [1].

PLZT ceramics represent multifunctional and intelligent material, well-known for
its comprehensive applications as resonators, ultrasonic transducers, thermistors, or ca-
pacitors [2]. These high ferroelectric, piezo-, and dielectric properties are consequences
of non-stoichiometry in the cationic subnetwork in the PLZT atomic structure. Therefore,
structural defect B-subnetwork within its perovskite structure is described and taken into
account in the material’s chemical formula [3,4] as follows:

(Pb1−xLax)(ZryTi1−y)1−0.25xVB
0.25xO3 (1)

where VB means a defect in subgrid B, hence the notation 100(x/y/1 − y) PLZT.
As is widely known, extensive research has been conducted in doped PLZT systems to

enhance the performance of this material. Although PLZT ceramics have been studied over
the past decades, there is no systematic study of this material for use as a luminophore [5].
The doping with rare earth metals of oxide compounds with perovskite-type structures
ABO3 usually changes their dielectric and ferroelectric properties. Of course, several publi-
cations, i.e., [6–9], present this issue, but it still requires supplementation, especially the
confirmation of the obtained results. In most cases, when doing so, a photoluminescence
effect has also been achieved [10–12]. Interestingly, structural defects are the reason why
pure PLZT exhibits poor luminescence properties (344 µm excitation, 500 nm emission) [13].
On the other hand, they do not prevent and even favor the introduction of additional
lanthanide ions without any restriction up to relatively high concentrations [14]. Conse-
quently, the electro-optical effects of such doped ceramics are up to several times higher
than in other optically active crystals, making PLZT:RE3+ ceramics an alternative material
in the development of solid-state lasers, e.g., for near-infrared applications [15]. This is
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probably the reason why most researchers focus only on the optical behavior of PLZT:RE3+,
i.e., [16–18] without studying the effect of doping on other properties. The authors do not
provide information on how the ferroelectric state or other dielectric parameters of such
materials change, focusing mainly on describing spectral phenomena without looking for
correlation with the ferroelectric ceramic matrix features, i.e., [19–21].

Since the (Pb0.91La0.09)(Zr0.65Ti0.35)0.9975O3 transparent ceramics show excellent optical
quality and ferroelectric properties due to their relaxor-like properties, they have become
interesting for applications in many electro-optical devices [22–28]. By doping with rare earth
metals, 9/65/35 PLZT ceramics can become a multifunctional (smart) material [29–31]. This
solid solution system, with bright ecru colors, can be an attractive ceramic matrix (host
material), for example, for praseodymium ions (Pr3+); consequently, it can be expected
that not only dielectric and ferroelectric properties but also luminescent properties will
be obtained [21,32]. From the studies of various authors, it appears that the magnitude of
the energy gap Eg for PLZT is about 3 eV. However, this magnitude strongly depends on
the concentration of La3+ ions [33,34]. The electron transitions of Pr3+ ions fall within this
range according to the Dieke diagram (Figure 1) [35].
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Doping with Pr3+ ions will provide a red emission signal, and it is expected that this
process may also enhance the dielectric and ferroelectric properties [36]. The dielectric
properties of PLZT doped with rare earth metals have been improved many times [30,31,37].
In emission, it can be induced by excitation with both UV and blue light. It has also been
proved that titanates–zirconates of alkaline earth metals naturally tend to form defects [38]
and the vacancies are formed during the sintering of PLZT ceramics. These vacancies result
in blue emission (420–480 nm) and dark red emission (718 nm) upon UV excitation [39],
which is more pronounced at low temperatures because the emission of defect structures is
higher. Although the author previously described the behavior of 8/65/35 PLZT doped
with praseodymium ions using the conventional mixed oxide method (MOM) [40], the
influence of Pr3+ on the properties of 9/65/35 PLZT by has not been previously described.
All these facts motivated us to carry out this study.
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Techniques for producing co-doped polycrystalline PLZT ceramics have evolved since [41].
There is a gradual departure from the conventional solid-state reaction between the constituent
oxides. A high-temperature process (~950 ◦C during synthesis to ~1250 ◦C into sintering),
carried out for a prolonged time, is necessary to gain the pure phase, resulting in significant
grain growth [40,42]. In this process, extensive milling of the powders can lead to their
possible contamination, inhomogeneous or non-stoichiometry. As a result, it often reduces
the properties of ceramic products.

One alternative method to the MOM technique for obtaining powders is the low-
temperature gel-combustion synthesis method. This low-cost technique is well known
for synthesizing numerous materials and fabricating several ceramic powders [43]. This
method is classified as the so-called wet chemical method because it is first realized in an
aqueous solution [44]. The oxide powders blend well with inorganically derived metal salts
(such as nitrates and sulfates). Ingredients are dissolved in a solution containing mixed
combustion agents (i.e., citrate acid, polyacrylic acid, trisamine, or urea), which can act as
the metal ion complexing agent and fuel the synthesis of oxide powders [45].

In summary, the gel-combustion technique is easy, time-saving, and energy-efficient
for synthesizing very fine powders. This self-propagating synthesis method can directly
yield the final powders, or calcination of the reaction product is required [43]. Thus, it
is a good method for obtaining single-phase PLZT powders doped with pure and rare
earth ions.

In this work, (Pb0.91La0.09)(Zr0.65Ti0.35)0.9775O3 undoped and praseodymium-doped
powders (with 0, 0.1, 0.3, 0.5, 1 wt.%) were prepared using the self-propagating gel-
combustion synthesis method. The consolidation of ceramic samples was performed
by the hot uniaxial pressing method. The praseodymium dopant’s influence on the struc-
ture and optical, dielectric, and ferroelectric behaviors was studied for all samples with a
composition of 9/65/35 PLZT:Pr3+.

2. Materials and Methods

Based on the chemical Formula (1), five compositions of PLZT were synthesized using
Pb(NO3)2 (POCH, 99.99%), La(NO3)3·6 H2O (POCH, 99.99%), Zr(OCH2CH2CH3)4 (Sigma
Aldrich, St. Louis, MO, USA, 70%), Ti(OCH2CH2CH3)4 (Sigma Aldrich, St. Louis, MO,
USA, 97%), Pr(NO3)3·6 H2O (Sigma Aldrich, St. Louis, MO, USA, 99.9%), HNO3 (POCH,
65%), CH3CH2CH2OH (POCH, 99.99%), Trisamine (NH2C(CH2OH)3-Sigma Aldrich, St.
Louis, MO, USA, 99.8%), n-propanol, and deionized water as starting materials.

First, the raw materials were weighed to the nearest ±0.001 g in stoichiometric quanti-
ties. All compositions were prepared with a 5 wt.% excess of lead compound to protect them
from evaporation during high-temperature processing. For each composition (Table 1), the
aqueous solutions containing Pb2+ and La3+, as well as Pr3+ nitrates and trisamine, were
prepared respectively. Similarly, to obtain the corresponding nitrates, proportional amounts
of nitric acid were added to solutions of Zr4+ and Ti4+ propoxides. The prepared precur-
sor solutions were mixed in the appropriate order with magnetic stirring. Subsequently,
Trisamine was added to the solution as a reaction fuel and stabilizing agent (in a 1:2 mole
ratio for each metal ion). Then, the resulting transparent sol solution was heated up to
70–80 ◦C and evaporated until a viscous ecru color gel was obtained. The outcome gel was
heated further until the initiation of the combustion reaction. Gradual foaming of the solu-
tion and release of gases (N2, CO2) due to the decomposition of trisamine were observed.
The initiation of the combustion synthesis process occurred at a point-like location, and the
self-propagating combustion reaction followed a moving wave across the volume of the
solution. Its duration was several seconds, and the extinction occurred spontaneously. The
final result was an ashen gel with the consistency of a fine, fluffy foam (Figure 2), which
contained the inorganic part and carbon residues of the combustion process.
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Table 1. Materials designation as a function of the praseodymium amount.

Chemical Formula Designed

(Pb0.91La0.09)(Zr0.65Ti0.35)0.9775O3 9/65/35 PLZT:Pr3+0
(Pb0.91La0.09)(Zr0.65Ti0.35)0.9775O3 + Pr3+0.1 wt.% 9/65/35 PLZT:Pr3+0.1
(Pb0.91La0.09)(Zr0.65Ti0.35)0.9775O3 + Pr3+0.3 wt.% 9/65/35 PLZT:Pr3+0.3
(Pb0.91La0.09)(Zr0.65Ti0.35)0.9775O3 + Pr3+0.5 wt.% 9/65/35 PLZT:Pr3+0.5
(Pb0.91La0.09)(Zr0.65Ti0.35)0.9775O3 + Pr3+1 wt.% 9/65/35 PLZT:Pr3+1
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Figure 2. An example of the low-temperature synthesis of 9/65/35 PLZT:Pr3+ powders by gel-
combustion method.

Finally, the product was mixed and ground in absolute ethyl alcohol for 24 h using
a planetary ball mill, polyamide cup, and YTZ cylinders as grinding media (ZrO2-Y2O3,
Ø = 2 and 5 mm in diameter). The slurry was then transferred to evaporate to a porcelain
basin and dried in an air atmosphere for approximately 48 h. Initially, the powder was
crushed and calcined in the air at T = 600 ◦C for 4 h to remove the residual organic materials.
Subsequently, a yellowish ceramic powder was obtained. To eliminate agglomerates in
powders, they were remilled for 24 h with similar conditions, and then it was cold-pressed
into pellets in a stainless-steel die of d = 10 mm in diameter and pressed into pellets under
pressure (p = 600 MPa). Figure 3 illustrates the sample preparation of gel-combustion
synthesized powders after calcination.
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Figure 3. Illustration of the preparation of the 9/65/35 PLZT:Pr3+ powder, obtained via gel-
combustion synthesis and calcined at T = 600 ◦C/4 h.

The creation of vacancies or defects is a common, occurring effect in the fabrication of
perovskite-type ferroelectric materials. During the sintering process, which involves high
temperatures, the evaporation of volatile metallic elements leads to the formation of cation
vacancies within the crystal structure. These vacancies often result in the creation of holes
as a compensatory mechanism. Simultaneously, at elevated sintering temperatures, there is
a loss of oxygen and the emergence of oxygen defects (oxygen vacancies). This occurs due
to a charge imbalance, generating electrons through ionizing these oxygen vacancies [46].
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The process of vacancy ionization resulting in the production of electrons and holes
can be effectively described for PLZT using the Kröger–Vink notation [47]:

VPb, La ↔ V’Pb, La + h· (2)

VO ↔ V’O = e’ or V’O ↔ V”O + e′ (3)

The PLZT doped with praseodymium ions Pr3 and oxygen vacancies might be repre-
sented as follows:

(PbLa)(ZrTi)O3 − x Pr3+ + x/2 VO·, (4)

where x represents the concentration of oxygen vacancies compensated by praseodymium
dopants.

According to the literature [48], minimizing defects in this ceramic material category
can be accomplished by applying suitable technological processes. These processes en-
compass the incorporation of specific admixtures, conducting sintering in a controlled
environment and employing high-pressure sintering techniques, among others [49]. For all
these reasons, the sintering process of ceramics was carried out by hot-uniaxial pressing
(HUP) at T = 1100 ◦C with a uniaxial pressure of 20 MPa for 3 h. Fabricated ceramic samples
were then cut to give parallel plates of 1 mm and polished with the diamond paste to a
smooth surface finish. The bulk density of the prepared samples was measured using
Archimedes’s method.

Differential thermal analysis (DTA) and thermogravimetric analysis (TG) have been
used to determine the thermochemical properties of obtained powders. Thermal analysis
of the produced material was carried out using the MOM q1500D derivatograph (Bu-
dapest, Hungary), Paulik–Paulik–Erdey system. Transmission electron microscopy (TEM,
FEI Tecnai Osiris 200 kV; Hillsboro, OR, USA) was used to determine the morphology
of powders.

The phase composition of all ceramic materials was identified by X-ray diffraction
(XRD; Philips PW 3710, Almelo, The Netherlands). XRD data were collected using CuKα

radiation at room temperature, over a 2◦ range of 10–60◦, with a step of 0.02◦ and a
counting time of 1.0 s/step. Full pattern identification was made by using the X’Pert
HighScorePlus software Version 5.2.0 package (created by Malvern Panalytical B.V., Almelo,
The Netherlands). Data from the PDF database (International Centre for Diffraction Data
(ICDD®)) [50] were used as a reference for the structural analysis of glass material.

The fractured surfaces of prearranged ceramics were coated with graphite for scanning
electron microscopy studies (SEM, HITACHI S-4700, Tokyo, Japan). The NORAN Vantage
system of microanalysis was used to qualify the chemical composition of samples.

3D fluorescence maps and excitation and emission spectra measurements were recorded
on Shimadzu fluorescent spectrometer RF-6000 (Tokyo, Japan) equipped with a 150W Xenon
discharge lamp in the 200–900 nm region, respectively. All spectral measurements were
carried out with a resolution of 0.1 nm and at room temperature. Luminescence lifetimes
were determined with an accuracy of 1 ms.

Before electrical measurements, the silver electrodes were applied to both surfaces
of the annealed bulk ceramic samples and then heated in an oven (T = 850 ◦C/0.5 h) to
evaporate the organic solvent from the silver paste. Temperature dielectric measurements
were performed on an LCR meter (QuadTech 1920 Precision LCR Meter, QuadTech, Inc.,
Maynard, MA, USA). Ferroelectric properties were carried out using a virtual Sawyer-Tower
circuit and a high-voltage amplifier (Matsusada Inc. HEOPS-5B6 precision, Matsusada
Precision Inc., Kusatsu, Japan). The experimental data were stored on a computer disc using
an A/D and D/A transducer card (National Instruments Corporation, Austin, TX, USA).
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3. Results and Discussions
3.1. Thermal Analysis and Electron Microscopy Analysis of Synthesized Powders

After fine grinding, the obtained gel-combustion powders of each PLZT:Pr3+ com-
position containing soot residues were subjected to thermogravimetric analysis (TGA)
and differential thermal analysis (DTA). All samples showed the same trend, as shown
in Figure 4. The TG curves show a two-stage mass loss: The first was about 2% and
ranged from 30 to 250 ◦C, which may be due to gel decomposition and elimination of water
content from the prepared sample, and the second was about 6% and occurred between
250 and 475 ◦C—accompanied by a strong exothermic effect—which can be interpreted as
combustion of organic parts and soot formed in the first stage of synthesis. The presence
of one exothermic peak in curve DTA also indicates the beginning of crystallization of the
perovskite phase. Above the temperature of about 550 ◦C, the mass became fixed, which
could indicate the stability of the composition. X-ray studies show that at temperatures
of 600 ◦C, a perovskite phase of PLZT is formed, known to be stable until above 1000 ◦C
when a lead is partially released.
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The obtained thermogravimetric curves are similar to those obtained in the work [51],
where they worked with citric acid as reaction fuel. Although the exothermic effect was
interpreted as titanate–zirconate formation, this is incorrect. First, this exothermic effect is
related to the rapid loss of mass in this temperature range (thus combustion or burning).
Second, the enthalpy of the formation of zirconate titanates from oxides (generally com-
posed of simple oxides) is very small and practically unmeasurable using this measurement
technique.

3.2. SEM and TEM Analysis of 9/65/35 PLZT:Pr3+ Materials

The SEM studies used to analyze the morphology of 9/65/35 PLZT:Pr3+ powders
confirmed that regardless of chemical composition, the calcined powders created soft
agglomerates, which revealed the submicron grain sizes ranging. For a more accurate
characterization of the obtained powders, high-resolution HRTEM observations were used.
Measurements showed that powder agglomerates consist of chemically homogeneous
particles with regular isometric nanograins, with an average size of 10–20 nm, and a
similar tendency was observed for all investigated powders. Sample SEM and TEM images
obtained for the 9/65/35 PLZT:Pr3+0.5 powder are shown in Figure 5.

After sintering with the HUP method, high-quality compacts of ceramics were ob-
tained. Each sample exhibited hardness and high density, which influenced the benefit of
the studied material’s electrical and optical properties. Figure 6 shows SEM micrographs
on the fracture surface (magnification 5000×), recorded for the undoped (Figure 6a) and
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praseodymium-doped (Figure 6b–e) 9/65/35 PLZT. The microstructure of pure PLZT and
doped with 0.5 wt.% praseodymium ions exhibited well-shaped and well-crystallized,
angular grains with distinct grain boundaries and devoid of porosity. Interestingly, frac-
tures of the sample’s intercrystalline fracture mode were predominant in both cases.
Figure 6a shows that the average grain size of 9/65/35 PLZT ceramic was 2–4 mm. In the
9/35/65 PLZT:Pr3+0.5 (Figure 6d), the microstructure showed smaller grains on average,
ranging from submicron to 1–2 µm. The analysis of the other samples also revealed changes
in the fracture surface of obtained ceramics with 0.1, 0.3, and 1 wt.% of praseodymium. All
of them showed transcrystalline fracture (Figure 6b,c,e), and the microstructure was made
up of fine, well-formed grains and a small amount of closed micropores in a compact solid
manner. This behavior indicates high mechanical strength in the grain boundaries at the
expense of the interior of the grains.
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Results of the energy-dispersive spectroscopy (EDS) measurements confirmed the
qualitative and quantitative chemical compositions of sintered 9/65/35 PLZT:Pr3+ ceramics.
Each sample was characterized by high purity and homogeneity and the presence of only
expected elements and manifested by intensities of the respective peaks (Figure 7).

Materials 2023, 16, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 7. EDS spectra obtained for 9/65/35 PLZT:Pr3+ ceramic samples. 

The first part of Table 2 presents the values of the contents of the theoretically calcu-
lated elements in wt.% for each chemical composition of 9/65/35 PLZT:Pr3+. The second 
part of the table shows the average of the EDS analysis for the investigated sample on the 
five measurements in the randomly selected surface micro-areas (50 × 50 µm2). The differ-
ences between the obtained values and the theoretical stoichiometry are slight and are 
within the error limits of the method used. The EDS analysis showed no foreign elements, 
confirming the obtained materials’ high chemical quality. 

 

Table 2. Theoretical and determined chemical composition of 9/65/35 PLZT:Pr3+ ceramics. 

Compositions/Elements 
The Theoretical Content of Elements (wt.%) 

Pb La Zr Ti O Pr 
9PLZT 58.305 3.866 17.923 5.064 14.842 --- 

9PLZT:Pr3+0.1 58.247 3.862 17.905 5.059 14.827 0.099 
9PLZT:Pr3+0.3 58.131 3.854 17.869 5.049 14.797 0.299 
9PLZT:Pr3+0.5 58.015 3.847 17.834 5.039 14.768 0.497 
9PLZT:Pr3+1 57.728 3.821 17.746 5.014 14.695 0.996 

Compositions/Elements 
Measured Content of Elements (wt.%) 

Pb La Zr Ti O Pr 
9PLZT 59.006 3.780 17.292 5.087 14.835 --- 

9PLZT:Pr3+0.1 58.462 3.659 17.979 5.065 14.749 0.086 
9PLZT:Pr3+0.3 57.977 3.943 17.324 5.561 15.195 0.230 
9PLZT:Pr3+0.5 58.128 3.772 17.689 5.080 14.790 0.541 
9PLZT:Pr3+1 57.899 3.580 17.510 5.102 14.995 0.914 

3.3. X-ray Diffraction Analysis 
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The first part of Table 2 presents the values of the contents of the theoretically calculated
elements in wt.% for each chemical composition of 9/65/35 PLZT:Pr3+. The second part
of the table shows the average of the EDS analysis for the investigated sample on the five
measurements in the randomly selected surface micro-areas (50 × 50 µm2). The differences
between the obtained values and the theoretical stoichiometry are slight and are within the
error limits of the method used. The EDS analysis showed no foreign elements, confirming
the obtained materials’ high chemical quality.

Table 2. Theoretical and determined chemical composition of 9/65/35 PLZT:Pr3+ ceramics.

Compositions/Elements The Theoretical Content of Elements (wt.%)
Pb La Zr Ti O Pr

9PLZT 58.305 3.866 17.923 5.064 14.842 ---
9PLZT:Pr3+0.1 58.247 3.862 17.905 5.059 14.827 0.099
9PLZT:Pr3+0.3 58.131 3.854 17.869 5.049 14.797 0.299
9PLZT:Pr3+0.5 58.015 3.847 17.834 5.039 14.768 0.497
9PLZT:Pr3+1 57.728 3.821 17.746 5.014 14.695 0.996

Compositions/Elements Measured Content of Elements (wt.%)
Pb La Zr Ti O Pr

9PLZT 59.006 3.780 17.292 5.087 14.835 ---
9PLZT:Pr3+0.1 58.462 3.659 17.979 5.065 14.749 0.086
9PLZT:Pr3+0.3 57.977 3.943 17.324 5.561 15.195 0.230
9PLZT:Pr3+0.5 58.128 3.772 17.689 5.080 14.790 0.541
9PLZT:Pr3+1 57.899 3.580 17.510 5.102 14.995 0.914
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3.3. X-ray Diffraction Analysis

The Rietveld refinement method, fixed into the X’Pert High Score (Panalytical, B.V)
computer program, was used to calculate the elementary cell parameters. For the diffraction
pattern fitting, a structure model from the ICDD database was used (PDF standards, N◦

00-046-0336, 00-053-0785). The calculated values of the crystallographic parameters and
the reliability factors determining the goodness of refinement (Rp—reliability factor of the
weighted patterns, Rwp—reliability factor of the patterns, Rexp—expected weighted profile
factor) are summarized in Table 3. It is worth noting that the fitting parameters Rp and
Rwp are smaller than 9%, indicating that valid refinement results were obtained. Based on
the analysis, it was found that each of the HUP-sintered (Ts = 1100 ◦C) PLZT:Pr3+ bulk
ceramics sample exhibits a complete perovskite phase and shows good homogeneity, as
well as the formation of a single-phase compound with a pseudocubic structure with no
pyrochlore (A3B4O13) (Figure 8). Also, the praseodymium doping does not change the
symmetry of the perovskite lattice structure of 9/65/35 PLZT, regardless of the amount of
dopant. It means that the Pr3+ ions have diffused into the host lattice, and the emerging
lower symmetry may create conditions for ion off-centering and, thus, ferroelectricity of
materials.

Table 3. The lattice parameters of Rietveld fitting, obtained for 9/65/35 PLZT:Pr3+ ceramics: diffrac-
tion pattern fitting factors: Rp—primary, Rwp—weighed, Rexp—experimental; a0, b0, c0—parameters
of unit cell; V—unit cell volume; ρtheor—theoretical density.

Parameters/Samples 9/65/35 PLZT 9PLZT:Pr3+0.1 9PLZT:Pr3+0.3 9PLZT:Pr3+0.5 9PLZT:Pr3+1

a0 (nm) 4.074 4.041 4.052 4.063 4.079
b0 (nm) 4.074 4.041 4.052 4.063 4.079
c0 (nm) 4.074 4.041 4.052 4.063 4.079

V × 10−30 (nm) 67.62 65.99 66.53 67.07 67.53
Rp (%) 6.02 6.43 6.09 6.99 6.09

Rwp (%) 8.14 8.92 8.11 8.56 8.11
Rexp (%) 4.39 4.13 4.72 4.34 4.53

ρ × 10−3 (g/cm3) 7.66 7.21 7.18 7.52 7.38
ρ/ρtheor (%) 96 94 93 95 93
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Table 3 also summarizes the lattice cell parameters of PLZT:Pr3+, which are used to
determine the theoretical density of ceramic materials. This way, compared with the results
obtained by the Archimedes method, it was found that the actual density of the materials
obtained was 96–93% of the theoretical value.

3.4. 3D Fluorescence Maps, Excitation, and Emission Spectra

For all prepared samples, the luminescent spectra were measured to show how admix-
ture of Pr3+ ions can influence the luminescent properties of 9/65/35 PLZT.

The 3D fluorescence spectra or excitation–emission matrices (EEMs) (Figure 9) were
obtained from 250 to 600 nm in excitation at 5 nm intervals and from 250 to 800 nm
in emission at 5 nm intervals. For undoped ceramics, no spectra were observed; only
characteristics contour maps from the xenon lamp.
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Figure 9. 3D fluorescence spectra of 9/65/35 PLZT ceramics.

In the case of 9/65/35 PLZT:Pr3+, 3D fluorescence spectra display fluorescence in-
tensity in the contour “maps” formed in excitation–emission (Figure 10a–d), exhibiting
fluorescence emission in the orange region of the visible spectrum with a peak at 650 nm.

The excitation spectrum measured for the sintered samples is presented in Figure 11
and was recorded at λem = 650 nm. As mentioned above, the range was chosen based
on the center of the most intense emission band corresponding to the 3P0→3F2 transition.
One can see that the spectrum consists of three typical narrow bands associated with Pr3+

ions, which correspond to transitions originating from the 3H4 ground state to the 3P2. The
430 to 490 nm range is associated with the 3H4→3P2 (~450 nm), 3H4→3P1 (~476 nm), and
3H4→3P0 (~490 nm) transitions [52]. The bands are split because of the crystal-field effects.
In addition, it can be seen that increasing the doping of Pr3+ ions from 0.1 to 1 wt.% in the
9/65/35 PLZT ceramic matrix also increased the excitation intensity.

Figure 12 shows emission spectra for Pr3+ ions in 9/65/35 PLZT ceramics. Such
materials doped with praseodymium ions can excite red emission with UV and blue light
radiation. In this measurement, investigated ceramic samples were excited at λexc = 450 nm,
corresponding to the 3P2 level of Pr3+. This study obtained strong emission spectra consist-
ing of green and red spectral ranges. The samples showed typical 4f transitions of Pr3+ ions,
mainly from 3P0 and 1D2 excited states to 3F states. The low-intensity emission band in the
green spectral region (530–550 nm) is associated with 3P0→3H5 and 1I6→3H5 transitions of
Pr3+. The most intense emission lines are located in the red region.
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(d) 1 wt.% of dopants.
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Figure 12. Emission spectra for 9/65/35 PLZT:Pr3+ ceramics.

Interestingly, in the presence of lanthanum ions in ceramics, emission bands shift
towards the red, and doping with praseodymium ions resulted in a rich emission spectrum,
especially in the bright and dark red range. Red emission lines are due to 3P0→3F6 and
3P0→3F2. The strongest emission effect, obtained at a wavelength of 650 nm, can be
considered characteristic of the perovskite structure of PLZT:Pr3+ ceramics. For simple
titanates, e.g., BaTiO3, SrTiO3, (Ba,Sr)TiO3, this effect occurs for lower wavelengths between
600 and 620 nm [53,54], and the obtained results once again confirm that the red emission
dominates over blue emission similar to oxide host matrices. In general, the intensity of
the emission lines depends on the activator concentration and technological conditions,
as studied by the author in an earlier paper [40]. As already mentioned, the obtained
9/65/35 PLZT:Pr3+ samples showed a high level of ceramization due to the combination of
the applied method of nanopowder synthesis and high-temperature densification of the
samples using the HUP method. As a result, the nearest environment between optically
active ions becomes more ordered, leading to an increase in the intensity of emission lines,
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even when using small amounts of dopant-activator ranging from 0.1 to 1 wt.% Pr3+, as
demonstrated in this work.

We also studied the influence of the concentration of praseodymium dopant on the
luminescence intensity for obtained samples. It stated that the content of praseodymium
ions changes the shape of luminescence bands of optically active dopants. From this point
of view, the Commission Internationale de I’Eclairage (CIE) chromaticity coordinates are
calculated [55]. The diagram of CIE coordinates for 9/65/35 PLZT:Pr3+ ceramics is shown
in Figure 13. The posted emission spectrum corresponds to the emitted color with CIE
coordinates x = 0.496–0.529 and y = 0.445–0.446, i.e., the resulting PLZT:Pr3+ phosphor
emits orange light, as well as reddish-orange color (x = 0.699, y = 0.301). There is, of course,
the possibility of using filters and obtaining a red color.
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3.5. Dielectric and Ferroelectric Properties

Figure 14 shows the temperature-dependent variation of dielectric constant (ε) and
dielectric loss tangent (tanδ) for praseodymium-doped 9/65/35 PLZT:Pr3+ ceramics over
the temperature range of 300 K to 700 K, carried out at various frequencies of measurements
field (f = 500 Hz–1 MHz).

The 9/65/35 PLZT composition is known for its relaxor ferroelectric behavior [14], as
confirmed by the characteristic diffuse phase transition observed in the obtained material,
which also manifests as a broad maximum in the change of dielectric constant with temper-
ature (Figure 14a). A similar effect was observed in the ferroelectric–paraelectric transition
that occurred over a wide temperature range for all other PLZT:Pr3+ samples (Figure 14b–e).
In the same temperature range, frequency dispersion was also observed, manifested by
a shift of these broad peaks of dielectric permittivities ε(T) toward higher temperatures
as the frequency of the measurement field increases. This transition was characterized by
the fact that the temperature maximum of ε(T) reaches higher values, while its εmax value
decreases with the increasing frequency of the measuring field.

As for dielectric losses, the opposite behavior was observed (Figure 14a’–e’). Due to
space charge polarization, strong dielectric dispersion is observed below Tm, while the tanδ
value significantly increases with an increasing frequency above Tm.
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Figure 14. The dielectric constant (a–e) and the loss factor (a’–e’) versus temperature measured for a
heating process at frequencies from 0.5 kHz to 1 MHz for 9/65/35 PLZT:Pr3+ ceramics.

To better illustrate the existence of a high-frequency dispersion, the curves of the max-
imum value dispersion of the electric permittivity ∆εm and the corresponding temperature
∆Tm in the function of frequency are presented in Figure 15. Subsequently, to compare the
sizes of both dispersions, the value of degrees of dispersion was calculated as follows:

∆εm = εm500Hz − εm1MHz (5)

∆Tm = Tm1MHz − Tm500Hz (6)

Data analysis shows that a small admixture of praseodymium ions (0.01 wt.%) causes a
significant increase in ∆εmax and the reduction in ∆Tm. With the next increase in the content
of praseodymium ions to 1 wt.%, an increase in both parameters confirms the increasing
frequency dispersion. However, the values of ∆Tm differ significantly from those obtained
for classic relaxors, such as 8/65/35 PLZT, for which ∆Tm = 25 K [57]. The determined
values are summarized in Table 3.
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The low-frequency (1 kHz) temperature dependence on the dielectric constant mea-
sured for 9/65/35 PLZT:Pr3+ ceramics demonstrates how the used praseodymium dopants
influenced the dielectric behaviors of the PLZT ceramics matrix (Figure 16, Table 4).
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Table 4. Parameters of the 9/65/35 PLZT:Pr3+ ceramics (where RT—room temperature).

Parameters/Samples 9/65/35 PLZT 9PLZT:Pr3+0.1 9PLZT:Pr3+0.3 9PLZT:Pr3+0.5 9PLZT:Pr3+1

∆εm 1305.86 2445.0 504.93 403.95 609.5
∆Tm 8.92 4.66 7.22 14.91 16.01
εRT 4889.64 2156.19 2332.80 2139.15 2138.10
εm 8692.69 9860.78 8400.07 6974.50 5025.47

Tm (K) 358.51 418.48 414.01 394.93 374.76
T0 (K) 380.16 446.89 454.70 442.48 396.81
T’ (K) 487.09 509.09 516.12 510.55 497.63

k1 = εm/εRT 1.78 4.57 3.60 3.26 2.35
k2 = T’ − T0 (K) 106.93 63.09 58.42 68.07 100.02
k3 = T’ − Tm (K) 128.58 90.61 102.11 115.62 122.87

γ 2.08 1.84 1.95 2.00 2.02



Materials 2023, 16, 7498 17 of 25

The addition of praseodymium ions as an admixture (0.1 wt.%) initially caused a shift
toward higher temperatures, reaching the maximum dielectric permittivity (Tm). Further
increase in doping (0.3–1 wt.%) results, in turn, in a gradual decrease in the phase transition
temperature and significantly decreases the maximum permittivity value (εm). In [58], the
defect model has been proposed to explain the relationship between grain size and the
properties of ceramic materials. It was described that when the grain boundaries increase
as the grain size decreases, the lattice defects increase, contributing to a decrease in the
dielectric constant. Because the ferroelectric domain’s structure is formed close to the Curie
temperature, lattice distortion energy is released by the domain’s formation.

Additionally, it was observed that praseodymium influences the broadening of the
maximum dielectric permittivity, which is typical for ε(T) behavior of ferroelectric relaxor
materials (Figure 16a). The shape of these characteristics indicates the ability to apply
the modified Curie–Weiss law in a wide range of temperatures above the Tm temperature
(temp. Curie). For this reason, the temperature T’, at which the Curie–Weiss law is applied,
was determined based on the 1/ε(T) characteristic (Figure 16b). Tm, T0, and T’ values
strongly depend on praseodymium concentration, and the parameters k1, k2, and k3
(Table 3) calculated from them highlight how the degree of blurring of the occurring phase
transition changes. It indicates a change in the distribution of the ferroelectric microregion
within the material, wherein an increasing part transforms from the ferroelectric to the
paraelectric phase.

It was observed that 9/65/35 PLZT:Pr3+ samples have relatively low dielectric loss
factor values up to about ~580 ◦C (Figure 16c). At room temperature, the tanδ values are
below 0.08 and increase rapidly above 510 K, related to the increased electrical conductivity
of samples at higher temperatures. At the same time, the phase transition from ferroelectric
to paraelectric phase takes place at higher temperatures (although the Tm temperature gets
smaller), compared to undoped 9/65/35 PLZT.

Subsequently, after identifying a diffuse character of the phase transition of
9/65/35 PLZT:Pr3+ ferroelectric ceramics, the modified Curie–Weiss law was also used to
evaluate the degree of its diffusivity.

1
ε
− 1

εm
= C(T − Tm)

γ (7)

where ε is the dielectric permittivity constant, εm is the maximum value of a dielectric
permittivity constant, Tm is the temperature of the value dielectric permittivity maximum,
C represents Curie constant, and γ represents the parameters indicating the degree of blur
of the phase transition and ferroelectric relaxation behavior.

In this case, γ = 1 indicates normal Curie–Weiss behavior, while γ = 2 represents a
relaxor phase transition. The γ parameter can be calculated from the slope of the graph
plotted between ln(1/ε − 1/εmax) and ln (T − Tm) [37,59] (Figure 17), and all γ values less
than 1 kHz are given in Table 3.

In the case of the composition with 0.1 wt.% Pr3+, the calculated γ decreases compared
to the γ of undoped 9/65/35 PLZT ceramics. It reveals that the ferroelectric transition
becomes more ordered and slightly reduces the relaxor property. However, the obtained
data increased when the dopant content increased from 0.3 to 1 wt.%. It confirms the
influence of the admixture of praseodymium on increasing the degree of transformation
and thus strengthening the relaxor phase transition of the 9/65/35 PLZT:Pr3+ materials.
For the 1 wt.% of dopant, γ achieved similar values to its original value for pure PLZT
ceramic matrix.

The structural studies in Section 3.3 showed that the PLZT:Pr3+ materials we obtained
have a pseudocubic structure. It is well known that materials that exhibit the cubic phase
are generally non-ferroelectric, while ferroelectric materials typically have a non-cubic
crystal structure that gives rise to these properties. From a physical point of view, it
is difficult to explain that ferroelectricity can occur in cubic symmetry. However, this
occurs in lead-based and lead-free materials. In a study of BiFeO3-BaTiO3 ceramic systems,
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Wang et al. [60] suggested that local structures can contribute to the ferroelectric response.
The model proposed by the author implies that those local polar regions distort in the
direction of the applied field within multiple local symmetries (pseudosymmetry) without
long-range correlation. The nanodomain formation in the BF−BT system is associated
with Bi3+ ions off-centering [61], because bismuth has single-pair electrons that can lead to
asymmetric distortions and off-center shifts. Therefore, ferroelectric behavior in lead-free
materials is associated with realizing structure nanodomains by the off-center Bi ions [62].
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The PLZT ceramic materials have a cubic crystal structure at room temperature, and
the presence of Pb2+ ions can cause a non-centrosymmetric displacement of the Pb ion
from its ideal position within the perovskite unit cell. This off-centering causes a net
polarization and can lead to ferroelectric properties due to subtle distortions from perfect
cubic symmetry. Notably, the presence of a pseudocubic structure or off-centering of ions
on its own does not guarantee ferroelectricity. The structure and chemistry are crucial in
determining the material’s properties [63].

When dealing with relaxor materials, it is important to consider that their behavior
contrasts with traditional ferroelectric materials, where polarization is consistently aligned
throughout the crystal structure. Relaxors, such as PLZT ceramics, are distinguished
by the absence of long-range order in polarization. These materials comprise nanoscale
domains known as polar nanoregions (PNRs). Within these PNRs, local polarizations
are dynamic and contribute to the broadened phase transition and the material’s unique
dielectric response, which depends on frequency. The polarization in each nanoregion
is locally coherent but varies across different regions. Despite being only nanometers
in scale, these regions are pivotal to the behavior of relaxor ferroelectrics, primarily due
to the transient and variable alignment of local dipoles within these nanoregions [64].
It is commonly believed that the relaxor phenomenon originates from compositional
fluctuations in microregions of about 10 nm. Defects in the crystal lattice can disrupt the
local electric environment, affecting the alignment of dipoles and thus influencing the
ferroelectric characterization.

Subsequently, in the next step of investigations, the ferroelectric behavior of all sam-
ples was measured, and the basic parameters were determined. Figure 18 shows the room
temperature P-E hysteresis loops of the 9/65/35 PLZT:Pr3+ ceramics, examined at a fre-
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quency of n = 1 Hz, under various applied electric fields (0–3 kV/mm2). Several factors
influence the shape and parameters of the hysteresis loop, i.e., composition, microstructure,
crystallographic phase, domain structure and size, temperature, defects, vacancies, or
impurities. Understanding and optimizing these influencing factors are key aspects in the
development of advanced ferroelectric materials and devices.
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All investigated materials exhibit a typical slim-like hysteresis loop for relaxors. It was
observed that with the increase in the value of the electric field, the remnant polarization
(PR), saturation polarization (PS), and coercive field (EC) increase consequently. Regardless
of chemical composition, the hysteresis loops are well-saturated and fully developed, partly
confirming that the obtained materials have excellent properties.

Comparing the shape of the hysteresis loop obtained for pure 9/65/35 PLZT, the
introduction of 0.1 wt.% dopant causes a slight change, like the loop, to be more quadratic
by reducing the Ps and PR parameters. However, a further increase in praseodymium
doping from 0.3 to 1 wt.% results in additional changes, leading to an increase in PS and PR,
although at a relatively low electric field EC. At the same time, the slimmest loop among
the tested samples is characterized by ceramics with 0.5 wt.% doping of Pr3+ ions.

To better illustrate the influence of praseodymium dopant on the ferroelectric proper-
ties of 9/65/35 PLZT, Figure 19a summarizes the P(E) electric hysteresis loops at room tem-
perature and frequency of 1 Hz and a maximum of electric field E = 3 kV/mm. Figure 19b
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shows the evaluation of ferroelectric parameters, including saturated polarization, remnant
polarization, and coercive field, as a function of the amount of Pr3+ ions in the ceramic
matrix. Such a typical character indicates that the PLZT:Pr3+ ceramics are rather soft fer-
roelectric materials. Doping can also result in polarization and domain switching, which
causes induced strain in ferroelectric materials, and it is feasible to tailor the poling condi-
tion to obtain interesting piezoelectric properties [28]. The ferroelectric parameters PR, EC,
and PS are given in Table 5.
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Table 5. Ferroelectric parameters of 9/65/35 PLZT:Pr3+ ceramics.

Parameters/Samples 9/65/35 PLZT 9PLZT:Pr3+0.1 9PLZT:Pr3+0.3 9PLZT:Pr3+0.5 9PLZT:Pr3+1

Ps (mC/cm2) 29.09 18.07 22.15 26.59 28.30
PR (mC/cm2) 20.44 10.42 13.24 6.55 13.45
EC (kV/mm) 0.78 0.86 0.82 0.45 0.64

The spontaneous polarization (Ps) is a critical parameter in determining the suitability
and efficiency of ferroelectric materials for various applications, including memory devices,
sensors, actuators, and other electronic components. The configuration and size of domains
can impact the PS. It is worth noting that larger, well-aligned domains typically contribute
to higher spontaneous polarization value. Defects in the crystal lattice can disrupt the
local electric environment, affecting the alignment of dipoles and thus influencing the
spontaneous polarization. Depending on their nature and interaction with the crystal lattice,
certain dopants or defects can either enhance or reduce the spontaneous polarization [65].

The remanent polarization is another important characteristic in applying ferroelectric
materials in non-volatile memory devices, capacitors, and other electronic components,
where retaining polarization after removing an external field is crucial. Just like with
spontaneous polarization, the material’s chemical composition and crystal structure play
an important role in determining its value. Smaller grain sizes often lead to lower remanent
polarization due to the increased grain boundary area, which can impede domain wall
motion. Defects in the crystal lattice and impurities can pin domain walls, making it more
difficult for the material to switch polarization. This pinning can increase the remanent
polarization by preventing the domains from returning to their unpolarized state after
removing the external field. Larger, well-aligned domains usually contribute to a higher
remanent polarization. The ease with which domains can be reoriented in an electric field
also influences the PR [65].
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The coercive field in a dielectric hysteresis loop is an important parameter representing
the intensity of the electric field required to switch the material’s polarization from one
direction to another. In ferroelectric materials, domains are regions where the polarization
is uniformly aligned. In polycrystalline ferroelectrics, the grain size can influence the
coercive field. Smaller grains often lead to lower coercive fields because of the increased
grain boundary area, which can act as nucleation sites for domain switching. The size
and distribution of these domains can significantly affect the coercive field. Finer domain
structures can reduce the coercive field because smaller domains can be easier to switch [65].

The room temperature hysteresis loop of all examined samples is shown in Figure 19a.
One can see that the loop area of the PLZT:Pr3+ is smaller than that of 9/65/35 PLZT. The
loop gets slender for the higher doping concentration of praseodymium (0.5 wt.%). The
value of coercive field (Ec) and remanent polarization (PR) of the PLZT:Pr3+ compounds first
decreases with increasing dopant amount and then increases for higher doping (1.0 wt.%)
(Table 4). Several factors could be at play to explain this phenomenon. Firstly, the whole
behavior could be linked to subtle variations in the composition of 9/65/35 PLZT as the
amount of Pr3+ in the host lattice changes. Even minor changes in the composition can
significantly affect the material’s ferroelectric properties. The material’s microstructure,
including defects, can influence its dielectric and ferroelectric properties. As Pr increases,
the microstructure may undergo changes that impact ferroelectric behavior. Changes in
domain structure, including domain size, domain wall mobility, and domain pinning,
can affect the shape of P-E hysteresis loops and the ferroelectric response. Complex
interactions between ions (Pb, La, Zr, Ti) and the role of Pr doping or variations in their
local environments could contribute to the observed behavior.

4. Conclusions

The work here discusses a detailed study of the effect of doping with praseodymium
ions on the physical properties of ferroelectric 9/65/35 PLZT ceramics. The low-temperature
gel-combustion method synthesized lead-lanthanum zirconate titanate, modified with vari-
ous amounts of Pr3+ dopant (0–1 wt.%).

The prepared powders were investigated for the thermal stability and the microscopic
analysis to control morphology. TGA/DTA confirms that the crystal formation appears to
take place above 475 ◦C. SEM/TEM observations confirmed the high purity and quality
of obtained nanopowders, which tended to form soft agglomerates. All samples were
then consolidated by the hot uniaxial pressing method. As a result, homogeneous ceramic
materials in packing, grain sizes, and phase composition were obtained. This affected the
high quality of the obtained ceramic sinters because all samples were characterized by high
hardness, negligible closed porosity, and thus, high density. SEM tests confirmed that the
samples were characterized by a compact, fine-grained microstructure, regardless of the
chemical composition. EDS results showed high quantitative and qualitative composition
and material homogeneity, free of contamination and other foreign elements.

As XRD analysis has shown, both undoped and praseodymium-doped 9/65/35 PLZT
materials show a pseudocubic perovskite single-phase. In a pseudocubic structure, the
subtle distortions from a perfect cubic symmetry can allow the ions to occupy off-center
positions, giving rise to a permanent electric dipole moment, a prerequisite for ferroelec-
tricity. Also, the praseodymium doping in 0–1 wt.% does not change the symmetry of
the perovskite lattice structure of 9/65/35 PLZT ceramics. It means that the Pr3+ ions
have diffused into the host lattice. This behavior promotes a transformation of the ceramic
ferroelectric into a ceramic phosphor without losing its existing properties.

The luminescence activity of the obtained PLZT:Pr3+ samples has been visualized
using 3D fluorescence maps. Excitation and emission spectra of praseodymium ions in
9/65/35 PLZT ceramics were measured, and it was observed that intensities changed with
activator concentration. Several emission bands due to 3P0-3H4, 1D2-3H4, 3P0-3H4, and
3P0-3F2 transitions of praseodymium ions are observed under excitation at λexc = 450 nm.
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It was found that the most intense emission lines are located in the red region, which was
also calculated by I’Eclairage (CIE) chromaticity coordinates.

Praseodymium doping also affects the dielectric and ferroelectric characteristics of
9/65/35 PLZT ceramics. The addition of a small amount of 0.1 wt.% of admixture initially
causes a shift toward higher temperatures (Tm) of the maximum dielectric permittivity
compared to undoped composition. Further increase in doping (0.3–1 wt.%) results, in
turn, causes a gradual decrease in the phase transition temperature and significantly
decreases the maximum permittivity value (εm). Additionally, praseodymium influences
the broadening of the maximum dielectric permittivity, which is typical for the ferroelectric
relaxor materials’ behavior. The tanδ values at room temperature are below 0.1 and increase
rapidly above the Curie temperature Tm, related to the increased electrical conductivity of
samples at higher temperatures, regardless of composition.

The appearance of a hysteresis loop gives a reliable confirmation of the ferroelectric
properties of the material. The 9/65/35 PLZT:Pr3+ materials exhibit a typical relaxor slim-
like hysteresis loop. It was observed that with the increase in the value of the electricity, the
remnant polarization (PR), saturation polarization (PS), and coercive field (EC) increase con-
sequently for each composition. Regardless of chemical composition, the hysteresis loops
are well-saturated and fully developed, partly confirming that the obtained materials have
excellent relaxor-ferroelectric properties. Interestingly, introducing 0.1 wt.% dopant causes
a slight change, like the loop being more quadratic by reducing the Ps and PR parameters.
However, a further increase in dopant from 0.3 to 1 wt.% results in additional changes
in the values of PS and PR, although at a relatively low electric field EC. Among studied
materials, the slimmest loop has been exhibited by ceramics with 0.5 wt.% doping of Pr3+

ions. This ceramic composition shows well-shaped, small grain sizes of∼1.2 µm, with clear
and visible grain boundaries, uniformity in grain sizes, and low porosity, thereby showing
optimal electrical properties. Smaller grains often lead to lower coercive fields because of
the increased grain boundary area, which can act as nucleation sites for domain switching.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, inves-
tigation, resources, data curation, writing—original draft preparation, writing—review and editing,
visualization, supervision, M.P. Substantive support in the analysis of thermal analysis and optical
results data, J.P. All authors have read and agreed to the published version of the manuscript.

Funding: The present paper was financed in part by the Polish Ministry of Education and Science
within the statutory activity.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: SEM research was performed in the Laboratory of Scanning Electron Microscopy
and Microanalysis, Institute of Geological Sciences, Jagiellonian University in Cracow. Special thanks
to Ing, Anna Łatkiewicz, for her cooperation and help in the research of the microscopy analysis.
Optical measurements were carried out in the laboratory of the Faculty of Chemical Engineering and
Technology, Cracow University of Technology. In memory of Tomasz Świergosz, who helped the
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