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Abstract: The microstructure evolution of 2196 Al-Li alloy during aging was investigated by micro-
hardness test, transmission electron microscope (TEM) analysis and in situ resistivity measurement.
The results showed that the resistivity of the 2196 Al-Li alloy during aging rapidly decreased dur-
ing the first few hours, and then gradually increased after reaching the minimum value, which is
temperature−dependent. The microstructure of the alloy was dominated by the δ′ phase after aging
at 160 ◦C for 2 h while the T1 phase could hardly be seen until it had been aged for 16 h. As the aging
time went on, significant ripening appeared for the δ′ phase while typical growth could be observed
for the T1 phase. The increase in the resistivity of the 2196 Al-Li alloy during aging was attributed to
the stronger electron scattering capacity of the T1 precipitation and the coupling effect between the
T1 and δ′ phases.
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1. Introduction

Developments in the aerospace industry have put forward higher requirements for struc-
tural parts with lightweight and comprehensive performance. The third aluminum−lithium
alloy has drawn wide attention for its low density, high specific strength and modulus, and
good mechanical properties [1–3]. The 2196 Al-Li alloy with a high Li/Cu ratio shows a
higher Young’s modulus allowing extra weight reduction in addition to lower density. The
2196−T8511 extrusions are particularly suited to stiffening the damage−tolerant fuselage
and lower wing skin. It is also used in buckling applications and recommended for inner
structural parts such as floor beams and seat tracks. To date, it has been widely used in
aircraft components such as A380 aircraft cockpit beams and C919 long trusses, floor beams,
pillars and seat rails, etc., [4,5]. Unlike the Al−Cu−Li alloys with a lower Li/Cu ratio
which can be considered as having T1 as the dominant phase and not forming any δ′ phase,
the 2196 alloy has a mixed T1/δ′ microstructure in the peak−aged state [6].

Electrical resistivity is a microstructure−sensitive parameter because electron scatter-
ing can be significantly influenced by the decomposition of supersaturation solid solutions
and the quantity, volume fraction, morphology and distribution of precipitates [7–12].
Therefore, the microstructure evolution of an alloy during aging can be reflected by the
electrical−resistivity variation. This has been fully confirmed by the electrical conductivity
studies on 6xxx Al−Mg−Si alloys [13–18]. For instance, Esmaeili et al. [15] studied the
resistivity change in AA6111 aluminum alloy during artificial aging. The results showed
that the higher the aging temperature, the faster the resistivity of the alloy decreased.
Khangholi et al. [17] investigated the effect of Mg/Si ratio and aging treatment on the
electrical conductivity of an Al−Mg−Si 6201 alloy. It was found that Si solutes are the main
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factor for the conductivity. Another work by Khangholi et al. [18] quantitatively studied
the effect of β’ phase on the resistivity of the AA6201 alloy. It was shown that the larger
number density and the smaller size of the β’ phase contribute more significantly.

For the 2196 Al-Li alloy, comparable amounts of spherical δ′ phase and plate−like T1
phase exist in the peak−aged state [19–21], giving the alloy a complex aging precipitation
with two precipitation sequences as a function of the aging time. In addition, the coupling
effect on the scattering of electrons by the coexistence of aging precipitates with different
morphologies has rarely been considered. In this paper, to further clarify the microstructure
evolution of the 2196 alloy during aging, a novel in situ resistivity measurement which
can monitor the resistivity response continuously during aging was employed. This
self−designed setup has been verified in other works [22,23]. The microstructure evolution
was characterized by transmission electron microscopy (TEM). Finally, the mechanism of
coexistence of the δ′ and T1 phases on the resistivity response was further discussed. Last
but not least, since the corrosion resistance of an alloy is closely related to the electrical
conductivity, the continuous resistivity measurement in this work can also be used as a
reference for corrosion−resistance evaluation. It should be noted that the result in the
present work was consistent with the corrosion characteristic of the Al−Cu−Li alloy that
displays maximum resistance to IGC/IGSCC in peak−aged condition, with enhanced
susceptibility in under−aged and over−aged conditions [24].

2. Experiment and Methods

The alloy used in this study is the extrusion profile of 2196 Al-Li alloy, which has the
nominal composition indicated in Table 1. Initially, the samples were solution treated at
540 ◦C for 60 min and water quenched. The aging treatment was conducted at 160 ◦C,
180 ◦C and 200 ◦C, respectively.

Table 1. Nominal composition of 2196 alloy (wt.%).

Cu Li Ag Mg Zr Ti Zn Mn

2.5–3.3 1.4–2.1 0.25–0.6 0.25–0.8 0.04–0.18 0.03 0.04 0.35

A 310HVS−5 Vickers microhardness tester (Laizhou Huayin Test Instrument Co.,
Ltd., Laizhou, Shandong, China) was used to measure the hardness and each sample was
measured five times to obtain the average value. The resistivity of the alloy after aging
was measured off−line using a Sigma2008 eddy current digital conductivity tester (Xiamen
Tianyan instrument Co., Ltd., Xiamen, Fujian, China). Each sample was measured 10 times
and the average value was taken.

To monitor the continuous change in the resistivity of the alloy during aging, the
deliberately designed in situ measurement setup was employed, the schematic of which
is shown in Figure 1. From Figure 1, it can be seen that the in situ measurement setup
consisted of three modules. In the heating, freezing and cooling module, one tube furnace
was used to control the heating and dwelling process. In the signal acquisition module, the
Agilent E3632A direct current power supply (Beijing Jinlong Yiyang Science&Technology
Co., Ltd., Beijing, China.) was used to provide current for the loop and a test current of
100 mA, and the KEITHLEY nanovoltmeter (Tektronix (China) Inc., Shanghai, China) was
used to collect the voltage signal every 3 s. In the data acquisition and processing module,
converting the signal and exporting the in situ resistivity values was carried out through
the software. Each aging condition was tested at least three times to obtain the average
value, and the uncertainty was 2%.
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in first few hours, a very steep increase happened. When the aging temperature was 160 
°C, the hardness curve reached the maximum value at 155.1 HV after 60 h. When the aging 
temperature was 180 °C, the hardness curve of the alloy reached 158.2 HV after 48 h and 
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Figure 1. Schematic diagram of the in situ resistivity measuring system.

To verify the reliability of the in situ measurement device, a comparative analysis was
conducted on the continuous in situ and off−line resistivity measurement of the alloy aged
under 160 ◦C, as shown in Figure 2. From Figure 2, it can be seen that the continuous in
situ measurement results were highly consistent with those of the off−line measurements.
It is worth noting that the higher measured value of the continuous measurements was
attributed to the fact that the in situ measurement was conducted at elevated temperature.
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Figure 2. Resistivity of 2196 aluminum alloy aged at 160 ◦C.

Samples for TEM observations were prepared by electropolishing in a twin−jet ap-
paratus using a 20% nitric acid and methanol solution. Conventional TEM observation
was conducted on a Tecnai G2 20 microscope (FEI Company, Hillsboro, OR, USA) and a
convergent−beam electron diffraction (CBED) method was used to measure the thickness
of the TEM samples. The size, number density and volume fraction of precipitates were
statistically analyzed using Image J 1.53 software and 15 fields of view were selected for
each sample.

3. Results and Discussion
3.1. Resistivity Response during Aging

Figure 3 shows the hardness evolution and in situ resistivity response of 2196 Al-Li
alloy during aging at different temperatures. From the hardness curves, it can be seen that
in first few hours, a very steep increase happened. When the aging temperature was 160 ◦C,
the hardness curve reached the maximum value at 155.1 HV after 60 h. When the aging
temperature was 180 ◦C, the hardness curve of the alloy reached 158.2 HV after 48 h and
then decreased slightly. When the aging temperature was 200 ◦C, the hardness of the alloy
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rapidly reached the peak value of 144.0 HV after 8 h and then significant over−aging could
be observed.
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Figure 3. Hardness and in situ resistivity curves of 2196 alloy aged at different temperatures.

From the in situ resistivity response curves, it can be seen that when aging at 160 ◦C,
the resistivity of the alloy first decreased quickly, and then increased slowly after reaching
the minimum value at 17.60 h. When aging at 180 ◦C, the resistivity of the alloy reached the
minimum value at 2.30 h and then increased rapidly. When aging at 200 ◦C, the resistivity
of the alloy reached the minimum value only at 1.01 h and then rose rapidly, and finally
tended to be stable.

3.2. Microstructure Evolution

Figure 4 shows the TEM images of the 2196 Al-Li alloy aged for 2 h at three different
temperatures. The zone axis for Figure 4a–c is <112>Al while that for Figure 4d–f is <110>Al.
From Figure 4a,d, it can be seen that the δ′ phase dominated the microstructure when the
alloy had been aged for 2 h at 160 ◦C. It should be noted that both the bright−field TEM
image and selected area electron diffraction (SAED) in Figure 4a,d showed no signal of T1
precipitation. When aged for 2 h at 180 ◦C, as can be seen from Figure 4b,e, the number
density decreased and the size of the δ′ phase increased, accompanied by the appearance
of the T1 phase, which can be observed from Figure 4b along the <112>Al zone axis. When
aged for 2 h at 200 ◦C, a large amount of T1 phase could be found while the δ′ phase showed
significant ripening with decreased number density.

After aging for 2 h at 160 ◦C, no T1 phase appeared in the alloy, and the resistivity did
not reach the minimum value at this time. After aging for 2 h at 180 ◦C, a small amount of
T1 phase could be observed in the alloy, and the resistivity dropped to near the minimum
value at this time. After aging for 2 h at 200 ◦C, certain amounts of T1 phase appeared in
the alloy, and the resistivity had already reached the minimum value and started to rise. In
general, the precipitation of the T1 phase halted the decrease in the resistivity of 2196 alloy
as the aging further progressed.
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Figure 5 shows the TEM images of 2196 alloy aged at 160 ◦C for 2–60 h. The zone axis
for Figure 5a,c,e,g was <112>Al while that for Figure 5b,d,f,h was <110>Al. As mentioned
above, when the alloy aged at 160 ◦C for 2 h, a large amount of δ′ phase dispersed in
the alloy but the T1 phase did not appear. This means that the aging precipitation at this
time is only composed of δ′ phase. When the alloy had aged for 16 h, as can be seen from
Figure 5c,d, the distribution of T1 phase could occasionally be found in the matrix while
the diameter of the δ′ phase significantly increased. This means that the aging precipitation
in the alloy at this time was composed of a few T1 phase and a large number of grown−up
δ′ phase. At the same time, it should be noted that the resistivity of the alloy dropped
to near the minimum value. When the alloy aged for 48 h and 60 h, as can be seen from
Figure 5e–h, in addition to a larger number of T1 phase being found in the matrix, obvious
coarsening with reduced number density and increased diameter had taken place for the
δ′ phase.
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When the δ′ phase precipitated, the solute contents decreased due to the decomposition
of Li atoms, and the scattering effect of solute atoms on electrons weakened. Therefore,
in the initial stages of aging, the resistivity of the alloy rapidly decreased. When a small
amount of T1 phase appears in the alloy, the resistivity tends to increase with the further
precipitation of the T1 phase. This can be explained by the T1 phase having a greater ability
to scatter electrons than the δ′ phase. With the progress of aging, the solute content in the
matrix decreases, and hence the driving force for aging precipitation decreases. Therefore,
the slope of the resistivity curve gradually decreased in the later stage of aging.

3.3. Relationship between Resistivity Response and Aging Precipitation

In order to better illustrate the relationship between the aging precipitation and the
resistivity response of the 2196 alloy, the Matthiessen law is introduced; that is, the total
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resistivity of an alloy is the sum of contributions from many microstructure features to
electron scattering [18], as expressed by Equation (1):

ρtotal = ρPURE + ρDISLO + ρGB + ρPREC + ρSOL (1)

where ρPURE is the intrinsic resistivity of pure aluminum at room temperature, 2.79× 10−8 Ω·m.
ρDISLO, ρGB, ρPREC and ρSOL are the resistivity from dislocation, grain boundary, precipitate
and solute atom, respectively.

Raeisinia et al. [25] proposed a modified Matthiessen law considering the electron
scattering from aging precipitation, as shown by Equation (2):

ρtotal = ρpure + Ldislo∆ρdislo + Sgb∆ρgb +
∆ρprec

(Lprec)1/2 + ∑ Csol
i ∆ρsol

i (2)

where ρpure and ρPURE are equivalence; ∆ρdislo, ∆ρgb, ∆ρprec and ∆ρsol
i represent the resis-

tivity constant of dislocation, grain boundary, precipitate and solutes, respectively; Ldislo

is dislocation density, Sgb= 6/dgb, dgb is average grain size; Lprec =
(

2π×100
fA

)1/2
·d2 is the

spacing of precipitate, fA is volume fraction, d is diameter of precipitate; Csol
i is solute

concentration in the matrix.
According to the literature [17,18,25,26], the values of ∆ρdislo, ∆ρgb and ∆ρprec are

2.7 × 10−25 Ω·m3, 2.6 × 10−16 Ω·m2 and 12 Ω·(nm)3/2, respectively. Table 2 shows the
∆ρsol

i of Cu and Li solute atoms. During aging, the contribution from grain boundary and
dislocation to the resistivity can be ignored [18]. According to the expression of Lprec, an
increase in the volume fraction and a decrease in the diameter of precipitates will lead to
a decrease in the spacing between precipitates, thereby enhance the electron scattering.
According to the literature [25], when the spacing of precipitates is in the order of 10 nm,
the contribution to the resistivity from the precipitates reaches 15–25%. When the spacing
is in the range of 10–100 nm, it accounts for 10–15%. Only when the spacing reaches the
order of 1 µm, the contribution of the precipitates drops to less than 5%. In summary, the
resistivity of alloys during aging depends on solutes and precipitates.

Table 2. Effect of solute atoms Cu and Li on the resistivity of pure aluminum [27].

Element
Maximum Solubility

in Al (wt.%)
Resistivity Increment of Al per wt.%(µΩ·cm)

In Solution Out of Solution

Cu 5.65 0.344 0.030
Li 4.0 3.31 0.68

The alloy was solution treated at 540 ◦C for 60 min and then aged at 160 ◦C. The
aged precipitations are mainly composed of δ′ and T1 phase. Table 3 shows the statistical
analysis of the δ′ and T1 phase in 2196 Al-Li alloy aged for 2–60 h at 160 ◦C, where λδ′ and
λT1 represent the diameter of δ′ phase and the length of T1 phase, respectively.

Table 3. Statistical analysis of δ′ phase and T1 phase aged for different times.

Condition
δ′ T1

λδ′ [nm] Nv [m−3] fδ′ [%] λT1 [nm] Nv [m−3] f T1 [%]

160 ◦C/2 h 6.12 3.66 × 1023 4.39 0 0 0
160 ◦C/16 h 9.5 1.02 × 1023 4.59 50.36 2.84 × 1021 1.17
160 ◦C/48 h 11.08 0.68 × 1023 4.84 63.21 1.48 × 1021 1.82
160 ◦C/60 h 12.14 0.53 × 1023 4.92 70.36 1.39 × 1021 2.11



Materials 2023, 16, 7492 8 of 13

The number density (Nv) of δ′ and T1 can be calculated by Equation (3) [28].

Nv =
N

A(t + λ)
(3)

where N is the number of precipitates; A is the area of the matrix containing the precipi-
tates; t is the thickness of TEM foil which can be obtained by CBED method and has 3%
uncertainty [29]; λ is the average size of precipitates.

The volume fraction of δ′ phase and T1 phase can be calculated by Equations (4) and
(5) [30–33]:

fδ′ = Nv·
4π

(
λδ′
2

)3

3
(4)

fT1= 2·
π(λT1)

2

4 ·Tavg

Vsample
(5)

where fδ′ and fT1 are the volume fraction of the δ′ and T1 phases, Tavg is the average
thickness of T1 phase, Vsample is the volume of TEM foil being observed.

During aging, the precipitation of the δ′ phase leads to the decomposition of Li solute
while that of the T1 phase leads to the simultaneous decomposition of Li and Cu solutes.
Therefore, the precipitation of the δ′ phase and T1 phase have two effects on resistivity. On
the one hand, the decomposition of solute atoms leads to the decrease in resistivity. On the
other hand, the precipitates of the δ′ phase and T1 phase lead to the increase in resistivity.
Relative to solid solution state, the increase in the resistivity of the alloy due to the aging
precipitates and the decrease in the resistivity of the alloy due to the decomposition of
solute atoms were calculated based on the volume fraction of the δ′ and T1 phases, as
shown in Figure 6. Figure 6a,b show the resistivity change due to the precipitation of
the δ′ and T1 phases, respectively, where ρPREC and ρSOL represent the effect of aging
precipitation and solutes on the resistivity, respectively. It can be seen from Figure 6a that
as the aging progressed, the magnitude of the increase in resistivity due to the precipitation
of the δ′ phase gradually decreased while that of the decrease in resistivity caused by the
decomposition of Li solutes gradually increased. This is mainly attributed to the coarsening
of the δ′ phase and the precipitation of the T1 phase causing some δ′ phases to redissolve.
It can be seen from Figure 6b that the T1 phase had not yet precipitated after aging for 2 h.
As the aging progressed, the contribution of T1 precipitation to the resistivity increased and
the Cu and Li solutes decomposition to the resistivity decrease both gradually increased.
In summary, the decrease in the resistivity of the alloy due to the decomposition of solute
atoms is more significant than the increase in the resistivity of the alloy due to the aging
precipitates. Therefore, the precipitation of the δ′ phase and T1 phase will generally reduce
the resistivity of the alloy, as shown in Figure 6c. As the aging time increases, the level of
decrease in resistivity caused by the precipitation of the δ′ phase increases slightly, while
that caused by the precipitation of the T1 phase increases significantly. Therefore, the
level of decrease in the resistivity caused by the precipitation of the δ′ phase and T1 phase
becomes larger and larger.

Figure 7 shows the absolute resistivity of the 2196 Al-Li alloy obtained by in situ
measurement and theoretical calculation during aging at 160 ◦C for 0−60 h. From the
calculated results, it can be seen that the effect of aging precipitation on the resistivity is
less than that of the solutes; therefore, the resistivity of the alloy during aging gradually
decreases. This is inconsistent with the in situ measurement results of this work. This gap
can be attributed to the coexistence of spherical δ′ phase and plate−like T1 phase, which
will be discussed next.
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The decomposition of a supersaturated solid solution during aging will reduce the
resistivity of the Al alloy. This is generally because the effect of precipitation on electron
scattering is smaller than that of solid solution atoms [25]. However, the resistivity change
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during the decomposition of an alloy also depends on the size, spacing and shape of the
precipitates. For instance, in the study of Jiang et al. [33], it was observed that the alloy with
a high volume fraction of β′′ phase showed lower electrical conductivity. It was considered
to be the increase in electron scattering caused by the smaller precipitate spacing (~20 nm).
Chen et al. [34] investigated the effect of re−solution and aging on the resistivity of an
Al−Cu−Li alloy; the resistivity also appeared to increase during the aging process, which
was attributed to the effect of GP zones and nanoprecipitate; in other words, it could be
considered that at this time the effect of aging precipitation is greater than that of solutes.

For the 2196 alloy, the evolution of spherical δ′ phase and plate−like T1 phase takes
place simultaneously during aging, so the corresponding resistivity response is more
complicated. On the one hand, compared with the rod−like or needle−like β′′ phase
in Al−Mg−Si alloy, under the same electron incident angle i and incident cross−section
area, the scattering effect of the plate−shaped T1 phase on electrons is more significant, as
shown in Figure 8a,b, the arrow represents the direction of electron motion. However, the
Matthiessen law has not considered the shape factor in precipitates. On the other hand,
the coupling effect when multiple precipitates coexist was not taken into account in the
calculation process [8]. That is, when precipitates coexist, the precipitate spacing between
them is much smaller than when a precipitate phase exists alone, thus causing the resistivity
to increase.
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To further describe the coupling effect of the T1 and δ′ phase, the schematic diagram
of the effects of single and coexisting δ′ and T1 phase on the electron scattering is shown in
Figure 9, the arrow represents the direction of electron motion. Figure 9a,b illustrate the
effect of single δ′ and T1 on electron scattering, respectively. Comparing Figure 9a with
Figure 9b, it was found that the electron scattering from plate−like T1 phase was more
significant than that of the spherical−like δ′ phase, which is consistent with the work of
Gan et al. [35], who studied the effect of plate−like eutectic Si and fibrous−like eutectic Si
on electron scattering. The effect of δ′ and T1 coexisting in electron scattering is shown in
Figure 9c, from which it can be seen that the synthetic effect of δ′ and T1 coexisting is far
beyond the simple superposition of the single δ′ and T1 contributions.

Combining Figures 5 and 7, it can be concluded that only the δ′ phase could be
observed when the 2196 Al-Li alloy was aged at 160 ◦C for 2 h. At this time, the deviation
between the calculated and measured resistivity is only 1.89%. When the alloy was aged for
16 h, a small amount of T1 phase appeared and coexisted with the δ′ phase. The synthetic
effect of δ′ and T1 made the deviation between the calculated and measured values increase
to 3.28%. As the aging further progressed, the number density and size of T1 phase further
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increased. Therefore, the synthetic effect between T1 and δ′ phase also increased, causing a
further increase in the deviation between the calculated and measured values.
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4. Conclusions

(1) During the aging process, the electrical resistivity of the 2196 alloy decreased rapidly
during the first few hours, then increased gradually. The time to minimum value was
temperature−dependent; that is, the higher the aging temperature, the shorter the
time to reach the minimum value (17.6 h for 160 ◦C, 2.3 h for 180 ◦C, 1.01 h for 200 ◦C).

(2) In the declining stage of resistivity during the aging process, the δ′ phase precipitates
were the main ones in the matrix. However, in the rising stage, the T1 phase began to
appear and was accompanied by the coarsening of the δ′ phase.

(3) The resistivity change during the aging process of the 2196 Al-Li alloy depends on the
coupling effects of the T1 and δ′ precipitations. Different from the δ′ phase, the aging
precipitation of the plate−like T1 phase contributes negatively to the conductivity.
When T1 and δ′ phases coexist, there is a coupling effect on the electron scattering.
As the number density and size of the T1 phase increase, the coupling effect becomes
more significant within 60 h.
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