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Abstract: Nanostructured transition metal nitrides (TMNs) have been considered as a promising
substitute for precious metal catalysts toward ORR due to their multi-electron orbitals, metallic
properties, and low cost. To design TMN catalysts with high catalytic activity toward ORR, the
intrinsic features of the influencing factor on the catalytic activity toward ORR of nanostructured
TMNs need to be investigated. In this paper, titanium nitride (TiN), zirconium nitride (ZrN), and
hafnium nitride (HfN) nanoparticles (NPs) are highly efficient and synthesized in one step by the
direct current arc plasma. TiN, ZrN, and HfN NPs with an oxidation layer are applied as the catalysts
of hybrid sodium–air batteries (HSABs). The effect of the composition and structural attributes
of TMNs on ORR catalysis is defined as follows: (i) composition effect. With the increase in the
oxygen content, the catalytic ORR capability of TMNs decreases progressively due to the reduction in
oxygen adsorption capacity; (ii) structure effect. The redistribution of the density of states (DOS) of
ZrN indicates higher ORR activity than TiN and HfN. HSABs with ZrN exhibit an excellent cyclic
stability up to 137 cycles (about 140 h), an outstanding rate performance, and a specific capacity of
2817 mAh·g−1 at 1.0 mA·cm−2.

Keywords: transition metal nitride; DC arc plasma; ORR; HSABs; intrinsic property

1. Introduction

Large-scale energy conversion and storage may be addressed by hybrid sodium–air
batteries (HSABs), which are advantageous due to their high energy density and plentiful
sodium supply [1]. During the operational process of HSABs, one of the active centers of
the electrochemical component in HSABs is the oxygen reduction reaction (ORR). However,
so far, because O2 adhesion on the surface of the electrode, O-O bond activation/cleavage,
and oxide elimination are challenging processes, ORR in HSABs has shown slow kinetics,
which greatly hinders the usefulness of HSABs [2,3]. Therefore, the successful development
of highly efficient electrocatalysts toward ORR will have a dramatic effect on realizing the
practical application of HSABs.
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Interestingly, nanostructured transition (TMNs) have become a hot topic because of
their high electrical and thermal conductivity, good physical and chemical stability, and
exceptional hardness and corrosion resistance [4]. Moreover, they have been considered as
a possible replacement for precious metal catalysts toward ORR due to their multi-electron
orbitals, metallic characteristics, and low cost, which are attributed to the fact that the
redistribution of the density of states (DOS) makes TMNs electron-supplying and produces
a catalytic activity similar to that of group VIII noble metals [5–7]. Nowadays, researchers
mainly focus on the following two aspects of TMNs as catalysts toward ORR. The surface
composition of TMN NPs plays a crucial role in the electrocatalytic activity toward ORR due
to their improved electrical properties [8–10]. Because they facilitate the mass transfer of
reactant gasses and ions and promote electrolyte access to the reacting sites, TMN catalysts
may provide additional advantages for catalyzing ORR [11–14]. To design TMN catalysts
with high activity toward ORR, it is necessary to simultaneously explore the intrinsic
features of these parameters controlling the catalytic activity toward ORR. The right choice
of catalyst materials depends on the activity of pure and nanostructured TMNs. However, to
improve their effectiveness, a quick and highly effective synthetic approach is also required.
TMN nanoparticles (NPs) have been prepared over the last few decades using a variety of
methods, including laser ablation [15], arc plasma [16], laser–plasma sputtering [17], direct
nitride of transition metals or transition metal oxides [18], ammonia pyrolysis of transition
metal chlorides [19], and thermal decomposition of polymer precursors [20]. Among them,
arc plasma synthesis has been proven to be a promising route to the efficient production of
TMN NPs, because arc plasma can considerably accelerate reaction rates and even motivate
reactions that are difficult to execute using conventional techniques.

Based on the research above, the nitrides of the same group of metals were synthesized
by the direct current (DC) arc plasma and were considered as the catalysts of HSABs to
investigate their ORR capability. Specifically, titanium nitride (TiN), zirconium nitride
(ZrN), and hafnium nitride (HfN) NPs were highly efficient and synthesized in one step
by a DC arc plasma. The as-synthesized TiN, ZrN, and HfN NPs were applied as HSABs
catalysts to evaluate their catalytic activity. Furthermore, the surface composition and defect
structure of TMNs played crucial roles in catalyzing ORR by contrasting the structural
features of three TMN catalysts.

2. Experimental Methods
2.1. Preparation of TMN NPs

The arc plasma equipment was introduced in detail in the published paper [21]. Both
the diameter and height of the cylindrically shaped DC arc plasma generator were 300 mm.
A tungsten rod (10 mm in diameter) of 99.99% purity (Runde Metal Materials Co., Ltd.,
Changzhou, China) was used as the cathode, and bulk Ti, Zr, and Hf of 99.99% purity
(Runde Metal Materials Co., Ltd., Changzhou, China) were used as anodes. Given that
the anode is continuously consumed during the discharge process, the tungsten rod was
positioned perpendicular to the anodic center and was able to travel toward it in order to
maintain two electrodes 5–10 mm apart. Prior to the injection of 50 kPa nitrogen with a
purity of 99.99% (Messe, Frankfurt, Germany) into the arc plasma apparatus, the chamber
pressure was reduced to less than 3 Pa. Initial nitrogen as a buffer gas with 60 kPa pressure
was employed to synthesize the TMN NPs, and the discharge current was maintained at
200 A. The inner-wall sediment was collected after discharging.

2.2. The Cyclic Voltammogram (CV) and Linear Sweep Voltammetry (LSV) Performance Test

A three-electrode system was used to measure rotating disk electrode (RDE) voltam-
metry (MSR, PINE, Pittsburgh, PA, USA), with Ag/AgCl and platinum flack serving as the
reference and counter electrodes, respectively, and the reversible hydrogen electrode (RHE)
receiving all potentials. A quantity of 5 mg of TMNs was ultrasonically mixed with 500 mL
ethyl alcohol, 450 mL deionized water, and 50 mL of 5 weight percent Nafion solution to
create the catalyst ink, which was then left to sit for 30 min. A glassy carbon disk with a
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diameter of 5.0 mm was polished, and 20 mL of suspension was dropped onto it. The disk
was then allowed to dry at an ambient temperature. Using a 0.1 M potassium hydroxide
(KOH) solution, all electrochemical experiments were carried out in RDE electrochemical
cells. Positive-going potential sweeps from −0.9 to 0.3 V were used to carry out CV at
10 mV·s–1. Positive-going potential sweeps from −0.8 to 0.2 V at 10 mV·s–1 were used to
investigate ORR activity.

2.3. Alkali Leaching Experiment

To test the ability of TiN, ZrN, and HfN NPs to resist alkali corrosion, 100 mg of each
sample was placed into 100 mL 0.5 M sodium hydroxide (NaOH) solution and kept at
room temperature for 24 h. Thereafter, the morphology and structure of the three kinds of
solutions were directly tested.

2.4. Preparation of Air Electrode

In HSABs, air electrodes (the cathode) consist of carbon papers and catalysts. Carbon
papers were pretreated to promote electrical conductivity: 10 mg carbon black (EBORY,
Guangzhou, China) was added into 10 mL polytetrafluoroethylene (PTFE, 5–10 wt%)
and then treated with ultrasound for 40–60 min. Pristine carbon papers (Toray, Tokyo,
Japan) were soaked in a homogeneous suspension for 20 min. After drying out at room
temperature, the treated carbon papers were insulated in the high-temperature fox furnace
at 450 ◦C for 1 h. A quantity of 15 mg TMN NPs mixed with 4 mg carbon black were poured
into a 2 mL conical test tube and next injected with ethanol and PTFE. The suspension was
dripped onto the surface of 7 pieces of pretreated carbon paper. Carbon papers decorated
with TMN NPs served as air electrodes to test the properties of the HSABs.

2.5. Assembly of HSABs

A 0.5 M NaOH solution was employed as an aqueous catholyte, while 1 M NaClO4 in
EC/DMC (1:1) with 1 vol% FEC (Mojiesi Energy Company, Beijing, China) was considered
as a nonaqueous anolyte. These two solutions were prevented from intermixing via a
separating membrane of a solid-state electrolyte Na3Zr2Si2PO12 (NASICON). The synthesis
process of NASICON was introduced in detail in our previous study [22]. HSABs were
built using the following components: metallic sodium, anolyte, NASICON, catholyte,
catalytic cathode [23].

2.6. Electrochemical Performance Test

A LAND battery tester (CT2001A; Wuhan LAND electronics, Wuhan, China) was
used to perform discharge/charge testing on HSABs at 30 ◦C. CV and LSV were achieved
by using a CHI 630 electrochemical analyzer combined with an RDE system (Princeton
Applied Research; Model 616).

2.7. Characterization

A transmission electron microscope (TEM, JEM-2100; JEOL, Tokyo, Japan), high-
resolution TEM (HRTEM), and selected area electron diffraction (SAED) with a 200 kV
accelerating voltage were used to examine the morphology of the TMNs. Using Cu-Kα
radiation and X-ray diffraction (XRD, Rigaku D/Max-2500; Rigaku, Tokyo, Japan) at
5 º·min–1, the crystalline structure was characterized in the 2θ range of 20 to 80◦. The
chemical bonding state was examined using an X-ray photoelectron spectroscopy (XPS;
Kratos Axis Ultra DLD, Hadano, Japan) equipped with an Al Kα line (hv = 1486.6 eV). A
surface area analyzer (V-Sorb X800; Gold APP Instruments, Beijing, China) was used to
measure the N2 absorption/desorption isotherms of TMNs. The Brunauer–Emmett–Teller
(BET) method was employed to determine the samples’ specific surface area (SSA).
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3. Results and Discussion

The XRD patterns of TiN, ZrN, and HfN synthesized by a DC arc plasma are shown
in Figure 1. The sample consists of a cubic TiO phase (JCPDS card No. TiO 08-0117) and
cubic TiN phase (JCPDS card No. TiN 38-1420), as can be seen from Figure 1a, and these
XRD peaks are attributed to (111), (200), (220), and (311) of TiN [24]. In particular, as shown
in Figure S1, the peak belonging to TiO is the shoulder peak near the distinctive peak of
TiN. As seen in Figure 1b, the sample contains a cubic ZrN phase (JCPDS Card No. ZrN
74-1217), the monoclinic ZrO2 phase (JCPDS card no. ZrO2 37-1484), and the Zr7O8N4
phase (JCPDS Card No. Zr7O8N4 38-1420). The appearance of the ZrO2 phase and the
Zr7O8N4 phase is attributed to the reaction between ZrN and air, and these XRD peaks are
attributed to (111), (200), (220), and (311) of ZrN [25]. Remarkably, the sample comprises
a cubic HfN phase (JCPDS card No. HfN 33-0592), cubic HfO2 phase (JCPDS card No.
HfO2 34-0104), and Hf2ON2 phase (JCPDS card No. Hf2ON2 50-1171) in Figure 1c. HfO2
and Hf2ON2 are derived from the reaction between HfN and air. Similar to TiN and ZrN,
these XRD peaks are attributed to (111), (200), (220), and (311) of HfN [26]. Ultimately,
the formation of oxygen and zirconium vacancies in the monoclinic ZrO2 phase leads to
significant decreases in the lattice parameter of ZrN, which possesses higher ORR activity
than the cubic TiO and HfO2 phases [27].
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Figure 1. XRD patterns of the samples synthesized by a DC arc plasma with (a) Ti, (b) Zr, and (c) Hf
bulk as anodes.

Figure 2a shows TEM images of TiN, demonstrating that all TiN NPs show a regular
cubic structure, good dispersion, and uniform particle size. Based on the HRTEM image in
Figure 2b, the reaction between TiN and air produces an initial oxide layer on the surface of
the as-synthesized TiN NPs that has a thickness of 0.6 nm. Figure 2c shows the interplanar
distance of cubic TiN NPs, indicating that the as-synthesized TiN has good crystallinity
and a 0.21 nm lattice spacing, consistent with the cubic TiN (200) crystal plane [28]. The
SAED pattern implies that the as-obtained TiN is highly crystalline, and these XRD peaks
are attributed to (111), (200), (220), and (311) of TiN [29]. Figure 2d exhibits a TEM image of
ZrN, suggesting that ZrN NPs have a near-spherical morphology with few intergrowths
and good dispersion. As inferred from the HRTEM image of ZrN NPs in Figure 2e, ZrN NPs
with a thickness of 1.2 nm are generated by the reaction between ZrN and air. It is found
that ZrN NPs have good crystallinity and a 0.26 nm lattice spacing, corresponding to the
ZrN crystal plane (111) [30]. According to the SAED analysis of ZrN, these XRD peaks are
attributed to (111), (200), (220), and (311), as shown in the inset of Figure 2f [31]. Figure 2g
shows a TEM image of HfN, in which HfN NPs have a near-spherical morphology with
few intergrowths and good dispersion. The HRTEM image of HfN in Figure 2h displays an
oxidation layer with a thickness of 1.5 nm from the reaction between HfN and air. Moreover,
HfN NPs have excellent crystallinity, and their lattice spacing is 0.26 nm, corresponding to
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the (111) crystal plane [32]. According to the SAED of HfN, these XRD peaks are attributed
to (111), (200), (220), and (311), as shown in the inset of Figure 2i [33]. TEM analysis of
over 200 particles is used to study the size distribution of TiN, ZrN, and HfN NPs. The
TiN’s size range in Figure 2j is 40–100 nm, and the average size is 81.6 nm. It can be seen
from the size distribution in Figure 2k that the size range of the as-synthesized ZrN NPs is
5–20 nm, and the average size is 10.1 nm. The size range of HfN NPs is 5–20 nm, with an
average size of 10.5 nm, as illustrated in Figure 2l. TiN NPs have larger crystal sizes than
ZrN and HfN NPs, suggesting that TiN electrodes may suffer from the less exposed active
sites toward ORR [34].

Materials 2023, 16, x FOR PEER REVIEW 5 of 13 
 

 

HfN in Figure 2h displays an oxidation layer with a thickness of 1.5 nm from the reaction 

between HfN and air. Moreover, HfN NPs have excellent crystallinity, and their lattice 

spacing is 0.26 nm, corresponding to the (111) crystal plane [32]. According to the SAED 

of HfN, these XRD peaks are attributed to (111), (200), (220), and (311), as shown in the 

inset of Figure 2i [33]. TEM analysis of over 200 particles is used to study the size distri-

bution of TiN, ZrN, and HfN NPs. The TiN’s size range in Figure 2j is 40–100 nm, and the 

average size is 81.6 nm. It can be seen from the size distribution in Figure 2k that the size 

range of the as-synthesized ZrN NPs is 5–20 nm, and the average size is 10.1 nm. The size 

range of HfN NPs is 5–20 nm, with an average size of 10.5 nm, as illustrated in Figure 2l. 

TiN NPs have larger crystal sizes than ZrN and HfN NPs, suggesting that TiN electrodes 

may suffer from the less exposed active sites toward ORR [34]. 

 

Figure 2. The TiN’s (a) TEM image, (b,c) HRTEM images, with inset SAED image; the ZrN’s (d) 

TEM image, (e) and (f) HRTEM images, with inset SAED image; the HfN’s (g) TEM image, (h,i) 

HRTEM images, with inset SAED image. The images of (j) TiN, (k) ZrN, and (l) the HfN size distri-

butions. 

The deconvolution of Ti 2p XPS is used to analyze the surface composition of TiN, as 

illustrated in Figure 3b. This is demonstrated by the Ti 2p XPS spectrum at 455.0 eV and 

461.1 eV for Ti-N, 456.8 eV and 458.4 eV for Ti-O, and 455.8 eV and 463.8 eV for Ti-O-N, 

respectively. The O 1s (Figure 3a) and N 1s (Figure 3c) XPS spectra of TiN provide addi-

tional support for this conclusion. The O 1s peaks at 530.1 eV and 532.2 eV are attributed 

to Ti-O and Ti-N-O, respectively, as displayed in Figure 3a. As can be seen in Figure 3c, 

Ti-N is responsible for the N 1s peak at 395.8 eV, while Ti-O-N and Ti-N-O are responsible 

Figure 2. The TiN’s (a) TEM image, (b,c) HRTEM images, with inset SAED image; the ZrN’s (d) TEM
image, (e,f) HRTEM images, with inset SAED image; the HfN’s (g) TEM image, (h,i) HRTEM images,
with inset SAED image. The images of (j) TiN, (k) ZrN, and (l) the HfN size distributions.

The deconvolution of Ti 2p XPS is used to analyze the surface composition of TiN, as
illustrated in Figure 3b. This is demonstrated by the Ti 2p XPS spectrum at 455.0 eV and
461.1 eV for Ti-N, 456.8 eV and 458.4 eV for Ti-O, and 455.8 eV and 463.8 eV for Ti-O-N,
respectively. The O 1s (Figure 3a) and N 1s (Figure 3c) XPS spectra of TiN provide additional
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support for this conclusion. The O 1s peaks at 530.1 eV and 532.2 eV are attributed to Ti-O
and Ti-N-O, respectively, as displayed in Figure 3a. As can be seen in Figure 3c, Ti-N is
responsible for the N 1s peak at 395.8 eV, while Ti-O-N and Ti-N-O are responsible for the
other two peaks at 397.8 eV and 398.5 eV, respectively [35–37]. The surface composition
in Figure 3f of ZrN is analyzed using the deconvolution of the Zr 3d XPS spectrum. Peak
fitting is evidenced by the Zr 3d XPS spectra at 177.8 eV related to Zr-O-N, at 179.9 eV
related to Zr-N, and at 182.2 eV related to Zr-O, respectively. This is further affirmed by the
N 1s and O 1s XPS spectra of ZrN. Detailed information about the O 1s and N 1s core levels
is discussed in Figure 3d,e, in which Zr-N-O is tested at 393.2 eV and 532.2 eV, and Zr-N is
confirmed by the peak at 397.4 eV, while Zr-O is evidenced by the peak at 532.2 eV [38–40].
The peaks at 13.2 eV, 14.6 eV, and 16.2 eV in Figure 3i could be attributed to Hf bonded with
N or O, and the existing formations of Hf are Hf-O, Hf-N, and Hf-O-N under the Hf 4f XPS
spectrum, which is further evidenced by the N 1s and O 1s XPS spectra of HfN. The 529.7 eV
and 532.1 eV peaks are assigned to the O 1s peak (Figure 3g) of the Hf-O and Hf-O-N
species, respectively. The N1s peak (Figure 3h) can be decomposed into three components:
393.3 eV for Hf-O-N, 394.8 eV for Hf-N-O, and 397.2 eV for Hf-N, respectively [41–44].
According to the TEM results, oxygen-containing functional groups of three samples arise
from the oxidation layer at the edge of TMNs. The XRD, XPS, and TEM results suggest
that TiN, ZrN, and HfN NPs with an oxidized structure can be deemed to have a structural
defect, which has definite catalytic activity toward ORR [45]. Furthermore, the degree
of oxidation correlates with the oxygen’s interaction with the catalyst surface, while the
catalytic activity toward ORR decreases when the oxygen content is above 8% [46,47]. As
illustrated in Figure S2, the oxygen content of the HfN sample is far higher than that of the
other two TMNs, suggesting that the HfN NPs catalyst has poorer ORR performance. The
oxide thickness of three TMNs confirms the oxygen content, i.e., 1.5 nm for HfN, 1.2 nm for
ZrN, and 0.6 nm for TiN.
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BET analysis is achieved by detecting the SSA of TiN, ZrN, and HfN NPs through
their N2 adsorption/desorption isotherms. As shown in Figure S3, all isotherms show
close to IV-type patterns based on IUPAC classification [48]. The SSA of TiN, ZrN, and
HfN NPs is 34.2 m2·g−1, 69.6 m2·g−1, and 62.3 m2·g−1, respectively. The phenomenon is
put down to the particle size of TiN, ZrN, and HfN NPs, which is confirmed by their size
distribution in Figure 3. Additionally, the IV-type isotherm at 0.2–1.0 P/Po exhibits a steep
rise in adsorption and a minor hysteresis between the adsorption/desorption branches,
indicating the presence of numerous mesopores and macropores with uniform porosity
distribution [49,50].

TMNs easily react with a hydroxyl ion (i.e., MN + 3OH−→ NH3 + MO3−
3 , M = Ti, Zr,

and Hf), suggesting that TMNs cannot be used as a catalyst of HSABs with an alkaline
solution electrolyte. However, TiN, ZrN, and HfN NPs synthesized by a DC arc plasma
are coated with an oxidation layer. To investigate the stability of the resistance to alkaline
solutions, as shown in Figure 4, TiN, ZrN, and HfN NPs are corroded in 0.5 M NaOH
solution for 24 h. It can be obviously noted that the morphology and structure of TiN, ZrN,
and HfN NPs have not changed. To further illustrate morphologies, the size distribution
of TiN, ZrN, and HfN NPs was studied. It can be seen from the size distribution of TiN,
ZrN, and HfN in Figure 4d–f that the average size of the as-synthesized TiN, ZrN, and HfN
NPs is 79.7 nm, 9.9 nm, and 10.4 nm, respectively. The unaltered structure and morphology
signify that TiN, ZrN, and HfN NPs are able to resist corrosion in the alkaline solution due
to the presence of the oxidation layer. Therefore, the three TMNs as mentioned earlier can
be used as stable catalysts for HSABs with an alkaline solution electrolyte.
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Figure 4. (a–c) TEM images and (d–f) size distribution images of TiN, ZrN, and HfN treated with
0.5 M NaOH solution.

To examine ORR performance, the CV curves of TiN, ZrN, and HfN NP catalysts in
an O2-saturated 0.1 M KOH solution were measured with the same amount of the active
material. These ORR peaks can be found easily in an O2-saturated solution at a voltage
between 0 and 1.0 V, indicating a pronounced electrocatalytic activity in TiN, ZrN, and HfN
catalysts toward ORR. As shown in Figure 5a, the peaks at 0.64, 0.71, and 0.67 V vs. the
RHE for TiN, ZrN, and HfN NP catalysts correspond to the reversible redox reaction. It can
be seen that ZrN NPs have better catalytic performance than TiN and HfN NPs catalysts.
To further explore the oxygen reduction ability of the three substances, ORR polarization
curves of TiN, ZrN, and HfN as catalysts were measured in 0.1 M KOH solution by LSV at
various rotation velocities, as shown in Figure S4a–c. As illustrated in Figure 5b and Table
S1, the onset potential and half-wave potential of TiN, ZrN, and HfN catalysts are 0.78 and
0.62 V, 0.82 and 0.7 V, and 0.8 and 0.67 V, respectively, at a rotating speed of 1600 rpm.



Materials 2023, 16, 7469 8 of 13

By fitting the K–L point diagram of JL-1 to ω–1/2 under different voltages, the number
of electrons transferred is computed by following the straight line’s slope. As shown in
Figure S4d–f, the transferred electron number range of the TiN, ZrN, and HfN catalysts is
1.62–2.01, 2.67–2.78, and 2.35–2.74, respectively, indicating that the main product of ORR
is H2O2 [51]. Based on the previous report, all lattices are perfectly symmetrical in cubic
microstructure, leading to the same oxygen adsorption capacity [7]. However, given the
synergistic effect between surface oxide species and Zr sites, and a higher SSA than TiN
and HfN, ZrN outperforms other TMN catalysts in terms of the electrochemical properties
of HSABs.
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Figure 5. (a) CV curves of TiN, ZrN, and HfN NP catalysts in an O2-saturated 0.1 M KOH solution;
(b) ORR polarization curves of TiN, ZrN, and HfN NP catalysts at 1600 rmp at a scan rate of
10 mV s−1.

HSABs are assembled using carbon paper with loaded TMN NP catalysts to investigate
the electrochemical performance. A typical structure of TiN, ZrN, and HfN NPs used as
catalysts in HSABs is depicted in Figure 6a. Metallic Na loses electrons during the discharge
process to become Na+ (4Na – 4e→ 4Na+), which travels to the cathode via the anolyte and
NASICON. Meanwhile, Na+ combines with the electron and OH− that is obtained from
the ORR to form sodium hydroxide at the cathode (O2 + 2H2O + 4e→ 4OH−). During
the charge process, metallic Na is plated at the anode and O2 is evolved at the cathode [1].
The electrochemical properties of HSABs with TiN, ZrN, and HfN catalysts using 0.5 M
NaOH as electrolytes was investigated. Figure 6b exhibits the discharge and charge curves
of TiN, ZrN, and HfN as catalysts of HSABs at 0.1 mA·cm–2. The voltage gap of 0.75 V
ZrN and 0.79 V HfN catalysts is smaller than that of 0.88V TiN catalysts, which is mainly
reflected in the catalytic performance toward ORR. The discharge and charge profiles of
HSABs with TiN, ZrN, and HfN catalysts at various current densities are displayed in
Figure 6c. At current densities of 0.1, 0.2, 0.5, and 1.0 mA·cm−2, the discharge end voltages
of HSABs with a ZrN catalyst are 2.46, 2.38, 2.18, and 1.86 V, respectively. In addition, the
discharge terminal voltage can be restored to 2.48 V once the density of current returns
to 0.1 mA·cm−2, showing an excellent rate performance, which may be due to the ideal
electrochemical environment and catalytic activity of ZrN NPs. As shown in Figure 6d,
ZrN NP catalyst-equipped HSABs have a higher specific capacity of 2817 mAh·g−1 at
1.0 mA·cm−2 than TiN (2659 mAh·g−1) and HfN (2785 mAh·g−1). Figure 6e shows the
discharge and charge profiles of ZrN NPs. The stability of HSABs with ZrN NP catalysts
is examined by performing constant current discharge and charge with up to 137 cycles
(about 140 h). The validation of the cathodic potential for real-world uses of rechargeable
batteries is largely dependent on this procedure. In the case of continuous discharge and
charge of the battery, no significant potential drop was observed.
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Figure 6. (a) Schematic illustration of HSABs with TiN, ZrN, and HfN NPs as catalysts, electrochemi-
cal performances of the proposed HSABs; (b) discharge and charge curves with different catalysts at
0.1 mA·cm−2; (c) profiles of charge and discharge at various current densities; (d) discharge capacities
curves at 1.0 mA·cm−2; and (e) the cycling performance of HSABs with ZrN NPs as catalysts at
0.1 mA·cm−2.

Figure 7 shows the intrinsic properties affecting the catalytic activity toward ORR of
TiN, ZrN, and HfN NPs as catalysts of HSABs. Nanostructured TMNs could provide an
extra advantage for the electrolyte to enter the reaction site, improving the O2 and ion-
conducting mass transfer in the catalyst layer [5]. Combined with the preceding analysis,
the mechanism of TMN catalysts toward ORR could be explained as follows: (i) Compo-
sition effect. This contributed to the synergistic effect between surface oxide species and
metal sites; TMNs demonstrate excellent ORR performance because incorporated oxygen
compensates for the charge imbalance caused by nitrogen atoms [48]. However, the maxi-
mal ORR activity is achieved through the minimization of the bulk oxygen content in cubic
TMNs due to a strong driving force for the oxygen adsorption, signifying that the ORR
catalytic performance of TMNs decreases gradually with increasing oxygen content when
the oxygen content is above 8% [47]. The ORR catalytic performances of TMNs decrease
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progressively with increasing oxygen content due to diminishing of the oxygen adsorption
capacity. ZrN, with much lower oxygen content than HfN, suggests that a ZrN catalyst
exhibits a better ORR performance; (ii) Structure effect. The monoclinic ZrO2 phase with
oxygen and zirconium vacancies results in a significant decrease in the lattice parameter of
ZrN, signifying that the redistribution of DOS enhances ORR catalysis ability. In this case,
the defect form of TMNs plays a crucial role in ORR catalytic performance.
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4. Conclusions

In conclusion, TiN, ZrN, and HfN NPs are highly efficient and synthesized in one
step by a DC arc plasma. Specifically, the average size and SSA of TiN NPs, with regular
cubic structure, are 81.6 nm and 34.2 m2·g−1, respectively. The average size and SSA of
ZrN NPs with a near-spherical structure are 10.1 nm and 69.6 m2·g−1, respectively. The
average size and SSA of HfN NPs with a near-spherical morphology are 10.5 nm and
62.3 m2·g−1, respectively. Due to the presence of the oxidation layer, TiN, ZrN, and HfN
NPs can resist corrosion in an alkaline solution, suggesting that these TMNs can be used
as a catalyst for HSABs with an alkaline solution electrolyte. Indeed, HSABs with a ZrN
catalyst exhibit a voltage gap of 0.75 V, excellent rate performance, and a specific capacity
of 2817 mAh·g−1 at 1.0 mA·cm−2, which is superior to HSABs with TiN and HfN catalysts.
The affecting factors of TMNs catalysis toward ORR, such as lower oxygen content leading
to strong oxygen adsorption capacity and the redistribution of DOS from defects boosting
ORR catalytic ability, are finally validated. This work expands the utilization of a DC arc
plasma in synthesizing TMN NPs, and may also provide feasible strategies to help design
advanced TMN electrocatalysts toward ORR.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16237469/s1, Figure S1: XRD pattern of TiN synthesized by
DC arc discharge; Figure S2: XPS spectra of the as-synthesized TiN, ZrN, and HfN NPs; Figure S3:
N2 adsorption/desorption isotherms curves of TiN, ZrN, and HfN NPs; Figure S4: In 0.1 M KOH
solution at different rotating rates with a current density of 10 mV·s−1, (a) ORR po-larization curve
of TiN and (d) K-L point plot calculating the number of transferred electrons, (b) ORR polarization
curve of ZrN and (e) The number of transferred electrons, and (c) ORR polarization curve of ZrN and
(f) The number of transferred electrons; Table S1: Onset potentials and half-wave potentials of TiN,
ZrN, and HfN as catalysts toward ORR.
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