
Citation: Wei, Z.; Zhou, C.; Zhang, F.;

Zhou, C. Reliability Optimization of

the Honeycomb Sandwich Structure

Based on A Neural Network

Surrogate Model. Materials 2023, 16,

7465. https://doi.org/10.3390/

ma16237465

Academic Editor: Alessandro

Pegoretti

Received: 11 September 2023

Revised: 29 October 2023

Accepted: 31 October 2023

Published: 30 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Reliability Optimization of the Honeycomb Sandwich
Structure Based on A Neural Network Surrogate Model
Zheng Wei 1, Chunping Zhou 1, Feng Zhang 2,* and Changcong Zhou 2

1 Key Laboratory for Airborne Hi-Performance Electro-Magnetic Window, RISAC, Ji’nan 250000, China;
danielwei1994@163.com (Z.W.); zcp99241@126.com (C.Z.)

2 Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710072, China;
changcongzhou@nwpu.edu.cn

* Correspondence: nwpuwindy@nwpu.edu.cn

Abstract: Composite radomes are usually located in the nose of aircraft and are important structural
components that protect radar antenna. The finite element model of a radome structure is developed
and analyzed in this article. Single-objective deterministic and reliability optimization models based
on the minimum total mass of the radome structure were established, and the layer thickness of
each part of the honeycomb sandwich radome structure was considered a design variable. A multi-
objective deterministic and reliability optimization model for a radome structure with a minimum
total mass and maximum buckling critical load was established, and a particle swarm optimization
algorithm was used to solve the problem. Our optimized results satisfied the constraints and
utilization rate of materials, and structural safety was improved.

Keywords: composite structure; neural network; surrogate model; multi-objective optimization;
reliability optimization

1. Introduction

In recent years, because of their high specific stiffness, specific strength, and des-
ignability, composite structures have been widely used in various fields [1–3]. Radome
structures can provide protection for aircraft radar antenna systems in harsh environments
and prevent radar system failure owing to lightning strikes, hail, and other environments,
as well as serious flight accidents [4,5]. The structural optimization design of composite
radome structures, especially the introduction of lightweight and safe designs, has become
increasingly important for improving the utilization rate of materials and safety of radome
structures with the extensive application of radome structures in aviation, aerospace, and
automobile manufacturing [6].

Research on the structural optimization of composite materials, especially composite
radomes, is ongoing. The aiming error of radome structures was considered the optimiza-
tion objective, and the simulated annealing algorithm was adopted by Hsu et al. [7] to
optimize radome layup thickness. Optimization results comprehensively improved the
structural performance of the radome. A method that combined a genetic algorithm and
ray tracing technology was proposed by Meng et al. [8]. The thickness of the radome struc-
ture skin and honeycomb was taken as design variables, and the aiming error and power
transmission coefficient of the structure were both taken as multi-objectives to optimize the
radome structure. The immune cloning algorithm and ray tracing surface integral method
were used by Cheng et al. [9] to perform the multi-objective optimization of the aiming error
and power transmission coefficient of a radome. Optimization results not only reduced the
aiming error but also improved power transmittance. The analytical regularization method
was used by Vladimir et al. [10] to perform the numerical optimization of a cylindrical
reflector in a radome structure. Xu et al. [11] optimized the aperture error and transmission
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loss of an airborne radome using a multi-objective particle swarm optimization (PSO) algo-
rithm combined with a three-dimensional (3D) ray tracing method. In this study, a finite
element model of the honeycomb sandwich composite radome structure was developed
using FORTRAN v95 software, and the parameterization of the finite element model was
achieved using a co-simulation of MATLAB v2012b and FORTRAN 95. A back-propagation
(BP) neural network surrogate model was established, and a single-target deterministic
and reliability optimization model was established with the minimum total mass of the
radome structure. Multi-objective deterministic and reliability optimization models were
established with minimum total mass and a maximum buckling critical factor of the radome
structure. Optimization results were solved using the PSO algorithm, and utilization rates
of materials and structural safety were both improved while constraints were satisfied.

2. Construction of Radome and Surrogate Models
2.1. A Finite Element Model of Radome

As an important component of radar systems, radome performance directly affects
their function [12]. The honeycomb sandwich radome structure investigated in this study
has a strong specific strength, specific stiffness, and a good electromagnetic (EM) wave
transmission performance [13], as shown in Figure 1. A schematic diagram of the layer is
shown in Figure 2.
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The structure consists of three materials divided into two honeycomb sandwich
materials (materials 2 and 3) and a laminate composite material (material 1). The structure
is divided into three parts: Parts I, II, and III. Specifications for each part are as follows:
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(1) Part I consists of three layers, the first and third layers are made of material 1 with a
thickness of 8 × 10−4, and the second layer is made of material 2 with a thickness of
6 × 10−3. The angles of the three layers are zero, as shown in the blue part of Figure 3.

(2) Part II consists of three layers: the first and third layers are composed of material 1
with a thickness of 8 × 10−4, and the second layer is composed of material 3 with a
thickness of 6 × 10−3. The angles of the three layers are zero, as shown in the red part
of Figure 3.

(3) Part III consists of two layers, both of which are made of material 1 with a thickness
of 3 × 10−3 and an angle of 0◦, as shown in the green part of Figure 3.
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Figure 3. Partition diagram of a radome model.

The model includes 36 variables and 15 intensity variables. Random variable specifi-
cations are shown in Table 1.

Table 1. Random variable information.

Number Variable Name Variable Mean Standard
Deviation

Distribution
Pattern

1 Mat1E11 The modulus in 11 direction of material 1 1.55 × 1010 Pa 1.55 × 109 Pa Normal
2 Mat1E22 The modulus in 22 direction of material 1 1.55 × 1010 Pa 1.55 × 109 Pa Normal
3 Mat1G12 The modulus in 12 direction of material 1 7.3 × 109 Pa 7.3 × 108 Pa Normal
4 Mat1G13 The modulus in 13 direction of material 1 3.6 × 109 Pa 3.6 × 108 Pa Normal
5 Mat1G23 The modulus in 23 direction of material 1 3.6 × 109 Pa 3.6 × 108 Pa Normal
6 Mat1Ro Density of material 1 1828 kg/m3 182.8 kg/m3 Normal
7 Mat2E11 The modulus in 11 direction of material 2 4.5 × 104 Pa 4.5 × 103 Pa Normal
8 Mat2E22 The modulus in 22 direction of material 2 4.5 × 104 Pa 4.5 × 103 Pa Normal
9 Mat2G12 The modulus in 12 direction of material 2 2.1 × 104 Pa 2.1 × 103 Pa Normal
10 Mat2G13 The modulus in 13 direction of material 2 3.83 × 107 Pa 3.83 × 106 Pa Normal
11 Mat2G23 The modulus in 23 direction of material 2 1.87 × 107 Pa 1.87 × 106 Pa Normal
12 Mat2Ro Density of material 2 65 kg/m3 6.5 kg/m3 Normal
13 Mat3E11 The modulus in 11 direction of material 3 4.5 × 106 Pa 4.5 × 105 Pa Normal
14 Mat3E22 The modulus in 22 direction of material 3 4.5 × 106 Pa 4.5 × 105 Pa Normal
15 Mat3G12 The modulus in 12 direction of material 3 4.5 × 106 Pa 4.5 × 105 Pa Normal
16 Mat3G13 The modulus in 13 direction of material 3 1.5 × 107 Pa 1.5 × 106 Pa Normal
17 Mat3G23 The modulus in 23 direction of material 3 2.53 × 107 Pa 2.53 × 106 Pa Normal
18 Mat3Rou Density of material 3 65 kg/m3 6.5 kg/m3 Normal
19 M1 Skin thickness 1 8 × 10−4 m 8 × 10−5 m Normal
20 M2 Thickness of honeycomb sandwich 6 × 10−3 m 6 × 10−4 m Normal
21 M3 Skin thickness 2 3 × 10−3 m 3 × 10−4 m Normal
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2.2. Finite Element Analysis

The radome developed in this study had a dome structure which was modeled using
shell elements, where the type of element was S4R and number of elements was 980. The
load on the radome is illustrated in Figure 4. The maximum stress, maximum displace-
ment, and total strain energy of the radome structure were calculated and are shown in
Figures 5–7.
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The maximum displacement is 4.08 mm and the maximum response is 10 MPa. The
maximum displacement and maximum response occur at the root of the radome. The
maximum strain energy is 0.499 J which is located at the root of the radome.

Subfiles in finite element analysis were developed secondarily, and model parameteri-
zation was achieved by writing a MATLAB program, which provided data support for the
construction of the surrogate model in the following optimization processes.
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3. Neural Network Surrogate Model
3.1. BP Neural Network

The finite element model should be repeatedly calculated during the optimization
process of the radome structure. Machine-learning methods, such as neural
networks [14,15], support vector machines [16], and Kriging [17], are often used to es-
tablish a surrogate model [18,19] of the finite element model to reduce calculation costs. A
BP neural network is a multilayer feed-forward neural network, and its main characteristics
are forward signal transmission and backward error propagation [20,21]. The topological
structure of a BP neural network is illustrated in Figure 8.

In Figure 8, X1, X2, . . . , Xn represent the input values of BP neural networks, Y1, Y2, . . . ,
Ym represent the predicted values of BP neural networks, and Wij and Wjk represent the
weighted values of BP neural networks. As shown in Figure 8, the BP neural network can
be regarded as a nonlinear function. When the number of input nodes is n and the number
of output nodes is m, a BP neural network expresses a functional mapping relationship
between n independent variables and m dependent variables.
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3.2. Training Process of the BP Neural Network

The construction of the surrogate model shown in Figure 9 is based on a BP neural
network, as follows:

Step 1: Network initialization. The number of nodes in the input, hidden, and output
layers of the network are determined according to the input–output sequence (X, Y) of
the system. Connection weights among neurons in the input, hidden, and output layers
are initialized, the hidden layer threshold value a and output layer threshold value b are
initialized, and the learning rate and neuron excitation function are given.

Step 2: Calculation of the hidden layer output. The hidden layer output h is calculated
according to the input variable x, average connection weights of the input and hidden
layers, and the hidden layer threshold value a.

Hj =
∫ ( n

∑
i=1

wij − αj

)
j = 1, 2, . . . , l (1)

Here l is the number of hidden layer nodes and f is the hidden layer excitation function.
This function has many forms of expression which we selected in this study

f (x) =
1

1 + e−x (2)

Step 3: Output layer output calculation. The connection weight ωjk, threshold b, and
predicted output O of the BP neural network are calculated according to the hidden layer
output H.

Ok =
l

∑
j=1

Hjwjk − bk k = 1, 2, . . . , m (3)

Step 4: Error calculation. The network prediction error e is calculated according to the
predicted output O and expected output y of the network.

ek = Yk −Ok k = 1, 2, . . . , m (4)

Step 5: Update the weights. The network connection weight values ωij and ωjk are
updated according to the network prediction error.

ωij = ωij + ηHj(1− Hj)x(i)
m

∑
k=1

ωjk − ek i = 1, 2, . . . , n; j = 1, 2, . . . , l (5)

ωjk = ωjk + ηHjek j = 1, 2, . . . , l; k = 1, 2, . . . , m (6)
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Here η is the learning rate.
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Step 6: Threshold update. The network node thresholds a and b are updated according
to the network prediction error e.

aj = aj + ηHj(1− Hj)
m

∑
k=1

ωjk − ek j = 1, 2, . . . , l (7)

bk = bk + ek k = 1, 2, . . . , m (8)

Step 7: We determine whether the algorithm iteration is complete. If not, we return to
Step 2.

The index for evaluating the training effect of the neural network is the goodness-of-fit
R, which is expressed as.

R = 1−

n
∑

i=1
(yi −

∧
yi)

2

n
∑

i=1
(yi −

_
yi)

2
(9)

If the goodness-of-fit requirement does not meet R > 0.95, we return to Step 1 to reset
all parameters.

3.3. Construction and Accuracy of the BP Neural Network

Three surrogate models were developed in this study, focusing on typical radome
structure outputs, such as maximum stress, maximum displacement and total strain energy,
and the total mass and buckling critical factor of the structure. Neural network surrogate
models were based on the maximum stress, maximum displacement, and total strain energy,
named Sur-I, and the neural network surrogate model of the total structural mass, named
Sur-II. Sur-III is a neural network surrogate model based on the critical factor of structural
buckling. Five hundred sets of input variables were extracted, and 500 sets of output data
were calculated using a parameterized finite element model to construct three surrogate
models. The 500 samples were divided into three groups, namely, training, verification,
and test sets, which accounted for 70%, 15%, and 15%, respectively.

The neural network of the buckling eigenvalue was constructed, where the number
of input layer nodes was 21, representing 21 input variables, the number of hidden layer
nodes was 5, and the number of output layer nodes was 1, representing the buckling
eigenvalue. After 63 steps of iterative training, the iterative training process of network
convergence was terminated when the neural network reached the set error value 10−4.
The neural network error curve of samples is shown in Figure 10, where the goodness-of-fit
of the test set is 0.99813 and neural network accuracy meets requirements.

The training information for surrogate models Sur-II and Sur-III is shown in Table 2,
and their respective accuracies satisfy requirements.

Table 2. Training information of surrogate models.

Surrogate Models n p m Error Iteration R

Total mass 5 5 1 1 × 10−4 108 0.99946
Critical factor of buckling 5 9 1 1 × 10−4 44 0.99706
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4. Optimization Method for the Honeycomb Sandwich Structure
4.1. Single-Objective Particle Swarm Optimization

PSO was proposed by Eberhart et al. in 1995 [22] and is a swarm intelligence algorithm
derived from simulations of bird foraging behaviors [23]. After years of continuous devel-
opment, PSO has become a representative intelligent algorithm [24]. The advantages of
PSO are that its algorithms are simple and easy to implement and its optimization ability is
strong. The algorithm is widely used in scientific research and engineering applications [25].
PSO algorithms use individuals in a population to collaborate and exchange information.
Each individual can be inspired by the experience of its neighbors to determine the search
individuals’ speed and direction and ultimately guide the population to the global best. In
PSO, each particle in space is assigned an initial random velocity and position. Historical
and global optimal particle positions in space are obtained through the mutual exchange
of information between particles such that the position of each particle is updated. After
multiple particle iterations, particles become clustered around one or more of the best
points. The velocity of each particle is expressed by vi. The updated formula is as follows:

vd+1
i = w× vd

i + c1 × r1(pbest− xd
i ) + c2 × r2(gbest− xd

i ) (10)

xd+1
i = xd

i + vd+1
i (11)

where d represents the number of iterations; w is the inertia weight, which is generally set
as a decimal value between 0 and 1; c1 is the individual learning factor; and c2 is the group
learning factor. Generally, c1 is equal to c2, which ranges from 0 to 4. r1 and r1 are random
numbers between 0 and 1, and they are used to increase the randomness of the search.
pbest is the historical optimal position of the particle at iteration d, and gbest is the global
optimal position of the particle at iteration d. A PSO flow diagram is shown in Figure 11.



Materials 2023, 16, 7465 10 of 19

Materials 2023, 16, 7465 10 of 21 
 

 

group learning factor. Generally, 1c  is equal to 2c , which ranges from 0 to 4. 1r  and 1r  
are random numbers between 0 and 1, and they are used to increase the randomness of 
the search. pbest   is the historical optimal position of the particle at iteration d, and 
gbest  is the global optimal position of the particle at iteration d. A PSO flow diagram is 

shown in Figure 11. 

 
Figure 11. PSO flow diagram. 

4.2. Multi-Objective Particle Swarm Optimization Algorithm 
4.2.1. Definition of a Multi-Objective Problem 

Multi-objective optimization problems involve optimizing multiple objectives simul-
taneously [26]. Various goals often interact with each other, and these interactions can be 
classified as conflicts and harmony [27]. Conflicting relationships mean that as a goal im-
proves, the other worsens, and harmony means that as a goal improves, the other also 
improves. In multi-objective optimization, the solution to the problem is not unique. In 
contrast to single-objective optimization, a conflict relationship usually exists between 
each objective, and it is rare for all objectives to reach the optimal situation simultaneously. 

Figure 11. PSO flow diagram.

4.2. Multi-Objective Particle Swarm Optimization Algorithm
4.2.1. Definition of a Multi-Objective Problem

Multi-objective optimization problems involve optimizing multiple objectives simul-
taneously [26]. Various goals often interact with each other, and these interactions can
be classified as conflicts and harmony [27]. Conflicting relationships mean that as a goal
improves, the other worsens, and harmony means that as a goal improves, the other also
improves. In multi-objective optimization, the solution to the problem is not unique. In
contrast to single-objective optimization, a conflict relationship usually exists between
each objective, and it is rare for all objectives to reach the optimal situation simultaneously.
Therefore, when solving such problems, we must comprehensively consider all goals and
find a solution with a good trade-off between them.

A multi-objective optimization model with m objectives can be defined as follows:

MinF(x) = ( f1(x), . . . , fm(x))

s.t.


x ∈ Ω
gi(x) ≤ 0, i = 1, . . . , p
hj(x) ≤ 0, j = 1, . . . , q

(12)

where x = (x1, . . . , xd) ∈ Ω is a solution composed of d-dimensional decision variables,
Ω ⊆ R is the decision space, F : Ω→ Rm consists of m targets, gi(x) represents the ith
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inequality constraint, and hj(x) represents the jth equality constraint. p and q represent the
numbers of inequality and equality constraints, respectively.

4.2.2. Definition of Pareto Optimal Solution Set

Pareto optimality is the ideal state for resource allocation. The Pareto optimal state
refers to a state in which there can be no further Pareto improvement; that is, there is no
way of improving some goals without damaging others. At this point, a solution set is
required to store a solution that balances the objective function. This is called the Pareto
solution set and is known as a non-inferior solution set [28].

The global minimum of the objective function can be defined as

∀x ∈ Ω : f (x∗) ≤ f (x) (13)

In this case, f (x∗) is the global minimum. Pareto domination is defined as follows:

∀i, j ∈ {1, 2, 3, . . . , k}, f (xi) ≤ f
(

xj
)
∧ ∃i, j ∈ {1, 2, 3, . . . , k}, f (x) < f (14)

The optimal solution is defined as

¬∃x ∈ Ω, x ≺ x∗ (15)

The optimal solution set is defined as

P = {x∗ ∈ Ω|¬∃ ∈ Ω : F(x) ≺ F(x∗)} (16)

The Pareto frontier solution set is defined as

PF = {u = F(x)|x ∈ P} (17)

where ≺ represents the dominant relationship. For the two solutions xi and xj and the
objective function F(x) of multi-objective optimization, if each objective function value
F(xi) of solution xi is longer than each objective function value F(xj) of the solution xj, it is
called xi ≺ xj. This can be observed from Figure 12a, where A ≺ B, A ≺ C, and A ≺ D. A
group of Pareto frontier solutions for the two object spaces is presented in Figure 12b.
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4.2.3. Multi-Objective PSO Algorithm

The PSO algorithm, which solves multi-objective optimization problems (MOPSO),
was first applied by Coello et al. in 2002. This algorithm has quickly become the main
research direction for multi-objective optimization, and has the advantages of being simple,
efficient, and a high convergence speed. The update of the particle velocity in the MOPSO
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optimization problem is improved by updating the particle velocity in PSO. The velocity of
the ith particle vd

i in iteration d is defined as follows:

vd+1
i = w× vd

i + c1 × r1(pbest− xd
i ) + c2 × r2(gbest− xd

i ) (18)

The above equation indicates that the update of vd
i in MOPSO is similar to that of

single-objective PSO, but the difference lies in the selection of the global optimal solution.
In PSO, a globally optimal non-inferior solution x∗PSO(i) is generated in each iteration, and
a non-inferior solution x∗PSO(i+1) is obtained when the algorithm is iterated to the next
iteration. The globally optimal non-inferior solution in the next iteration is determined
by assessing the non-inferior solution obtained in two iterations. However, in MOPSO,
the non-inferior solution x∗MOPSO(i) generated each time and the non-inferior solution
x∗MOPSO(i+1) obtained in the next iteration may not be superior to each other. Therefore,
selecting a globally optimal non-inferior solution is impossible in the next iteration based on
a simple assessment. Therefore, an external storage, the archive solution set, is required to
ensure that the globally optimal non-inferior solution in MOPSO can be found. An archived
solution set comprises solutions that cannot be dominated by each other. Figure 13 shows
the basic flow of the MOPSO algorithm.

Materials 2023, 16, 7465 13 of 21 
 

 

 
Figure 13. Basic flow of the MOPSO algorithm. 

5. Optimization Model of the Radome Structure 
5.1. Design Variables and Constraints 

In the optimization of the radome structure, design variables are set as five thickness 

variables, namely, the thicknesses of Part Ⅰ Ply1 and Part Ⅱ Ply1 as denoted by 1x . The 

thickness of Part Ⅰ Ply2 and Part Ⅱ Ply2 is denoted by 2x ; the thickness of Part Ⅰ Ply3 and 

Figure 13. Basic flow of the MOPSO algorithm.



Materials 2023, 16, 7465 13 of 19

5. Optimization Model of the Radome Structure
5.1. Design Variables and Constraints

In the optimization of the radome structure, design variables are set as five thickness
variables, namely, the thicknesses of Part I Ply1 and Part II Ply1 as denoted by x1. The
thickness of Part I Ply2 and Part II Ply2 is denoted by x2; the thickness of Part I Ply3 and Part
II Ply3 is denoted by x3; the thickness of Part III ply1 is denoted by x4; and the thickness
of Part III Ply2 is denoted by x5. The maximum stress σ, maximum displacement U, and
total strain energy E of the radome structure are considered constraints. [σ], [U], and [E]
represent thresholds of σ, U and E. Design variables and constraints are listed in Table 3.

Table 3. Design variables and constraint information.

Design Variables/m Constraints

x1 x2 x3 x4 x5 [σ]/Pa [U]/m [E]/J

Lower
limit 0.0001 0.001 0.0001 0.0005 0.0005

32,000,000 0.007 20
Upper
limit 0.0015 0.01 0.0015 0.006 0.006

5.2. Deterministic Optimization Model

The purpose of the optimal design of an engineering structure is to reduce costs and
optimize the performance as much as possible under conditions where the structure meets
constraints.

The traditional mathematical model of the deterministic optimal design problem can
be expressed as

Min f (x)

s.t.


hi(x) ≤ 0, i = 1, 2, . . . , m
gj(x) ≤ 0, j = 1, 2, . . . , n
xL ≤ x ≤ xU , x ∈ Rn

(19)

where f (x) represents the objective function; hi(x) and gj(x) represent the inequality and
equality constraints, respectively; m and n represent the number of constraints; x represents
the design variable; and xL and xU represent the upper and lower limits of the range of the
design variable, respectively.

The optimization model for the minimum total mass of the radome structure was
established by considering the constraints. The mathematical expression is as follows:

MinF = f (x1, x2, x3, x4, x5)

s.t.


σmax(x)− [σ] ≤ 0
Umax(x)− [U] ≤ 0
E(x)− [E] ≤ 0

(20)

where f (x1, x2, x3, x4, x5) represents the total mass of the radome structure, and
f (x1, x2, x3, x4, x5) represents the five thickness parameters of the radome structure.

The radome structure is directly exposed to external conditions; therefore, its safety
must be ensured during operation. The maximum critical buckling load was considered
to optimize the structural design and improve radome structure safety. Design variables
and constraints in the optimization targeting the maximum critical buckling load were the
same as those in the optimization model targeting the minimum total mass of the structure.
The mathematical expression for establishing a deterministic multi-objective optimization
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model with the minimum total mass and maximum critical buckling load of the radome
structure is as follows:

MinF = ( f1(x), f2(x))

s.t.


σmax(x)− [σ] ≤ 0
Umax(x)− [U] ≤ 0
E(x)− [E] ≤ 0
xL ≤ x ≤ xU , i = 1, 2, 3, 4, 5

(21)

where f1(x) represents the total mass of the radome structure and f2(x) represents the
negative value of the buckling critical load.

5.3. Reliability Optimization

The load environment, structural parameters, failure models, design requirements,
objective functions, constraints, and design variables are considered deterministic in con-
ventional structural optimization, which simplifies the structural design and calculation
process and reduces calculation costs. However, because uncertainty is not considered, the
optimization result may not satisfy the constraint conditions when the input variable has
a certain fluctuation. Uncertain optimal designs have been proposed to compensate for
deficiencies in deterministic optimal designs.

Reliability requirements are incorporated into the constraints of the optimization prob-
lem in typical reliability optimization design models, and structural parameters are adjusted
to minimize the weight or cost of the structure to satisfy certain reliability requirements of
the structural system. The mathematical model is expressed as follows:

Min f (x)

s.t.


Pr{gi(X, x) ≤ 0} ≤ P∗f1

i = 1, 2, . . . , m
hj(x) ≤ 0 (j = 1, 2, . . . , n)
gk(x) ≤ 0 (k = 1, 2, . . . , p)
xL ≤ x ≤ xU , x ∈ Rn

(22)

where Pr{·} is the probability operator, which represents the reliability constraint; x rep-
resents the design variable; gi(X, x) represents the ith function; and P∗f1

represents the ith
reliability objective constraint.

When manufacturing a radome structure, the layup thickness of each part is uncer-
tain owing to technical defects. This paper describes the uncertainty of the five thick-
ness variables using a normal distribution, that is, the design variable xi ∼ N(µi, σ2

i )
(i = 1, 2, 3, 4, 5). The maximum stress, maximum displacement, and total strain energy
of the radome structure are all reliability constraints that take the minimum mass of the
radome structure as the objective function. The mathematical expression for optimization
model reliability is as follows:

Min f (x)

s.t.


Pr{σmax(x)− [σ] ≤ 0} ≤ P∗f1

Pr{Umax(x)− [U] ≤ 0} ≤ P∗f2

Pr{E(x)− [E] ≤ 0} ≤ P∗f3

xL ≤ x ≤ xU , x ∈ Rn

(23)

where P∗f1
= P∗f2

= P∗f3
= 0.95.
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The mathematical expression of the reliability optimization model for the total mass
and critical buckling load of the radome structure is as follows:

MinF = ( f1(x), f2(x))

s.t.


Pr{σmax(x)− [σ] ≤ 0} ≤ P∗f1

Pr{Umax(x)− [U] ≤ 0} ≤ P∗f2

Pr{E(x)− [E] ≤ 0} ≤ P∗f3

xL ≤ x ≤ xU , x ∈ Rn

(24)

where P∗f1
= P∗f2

= P∗f3
= 0.95.

6. Results and Discussion
6.1. Deterministic and Reliability Optimization in Single-Objective Optimization Results

A single-objective objective PSO algorithm was used to optimize the total mass of the
radome structure. The initial population size was 300. The maximum number of iterations
was 100, the inertia weight was set to 0.8, and both self-learning and group learning factors
were set to 0.5. Deterministic and reliability results obtained after optimization are listed in
Table 4. The PSO convergence process is shown in Figures 14 and 15.

Table 4. Single-objective optimization results.

Process of
Optimization

Mode of
Optimization

Design Variables Objective Function

x1 x2 x3 x4 x5 f(x)

Initial value 0.0008 0.006 0.0008 0.003 0.003 12.62

After optimization Deterministic 0.0001 0.0001 0.00028 0.001 0.00233 5.27
Reliability 0.0001 0.001 0.0004 0.001 0.00234 6.40
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From our optimization results, the five design variables relative to initial values
decreased to varying degrees after deterministic and reliability optimization. The total
structure mass in deterministic optimization was 5.27, which was reduced by 58.24%. The
total structural mass in reliability optimization was 6.40, which was reduced by 49.29%.
Reliability optimization results are more conservative than those for deterministic op-
timization owing to the addition of reliability constraints. The convergence process of
optimization indicates that the convergence speed of deterministic optimization is faster,
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and fitness remains unchanged after approximately the 50th iteration. However, the con-
vergence speed of reliability optimization is relatively slow, and fitness remains unchanged
after approximately the 60th iteration. The difference in convergence speed between the
two is mainly because the reliability calculation reduces the convergence speed of the
reliability optimization.
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6.2. Deterministic and Reliability Optimization in Multi-Objective Optimization Results

A multi-objective PSO algorithm was used to optimize the total mass and buckling
critical load of the radome structure with an initial population of 200. The maximum
number of iterations was set to 100, and the upper limit for external storage (archive)
disaggregation was set to 100. The inertia weight was 0.5, the individual learning factor and
the population learning factor were set to 1 and 2, respectively, and 100 groups of feasible
solutions were obtained after optimization. Of these, 10 groups of data were randomly
selected, as shown in Table 5. The Pareto frontier solution set obtained by multi-objective
optimization is shown in Figures 16 and 17.
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Table 5. Multi-objective optimization results.

Process of
Optimization

Mode of
Optimization

Design Variables Objective Function

x1 x2 x3 x4 x5 f1(x) f2(x)

Initial value 0.0008 0.006 0.0008 0.003 0.003 −4.9794 12.62

After
optimization

Deterministic

0.00048 0.00998 0.00043 0.006 0.00567 −7.41818 11.44283
0.00054 0.00999 0.00038 0.006 0.00525 −7.20989 10.61179
0.00052 0.00999 0.00043 0.006 0.00368 −7.03305 9.566278
0.00056 0.00998 0.00046 0.006 0.00150 −6.77129 7.775304
0.00054 0.00999 0.0004 0.006 0.00510 −7.26849 10.6594
0.00049 0.00998 0.0005 0.006 0.00188 −6.81962 8.368969
0.00055 0.01 0.0004 0.006 0.00332 −6.97217 9.131097
0.00050 0.01 0.00016 0.006 0.0005 −4.95449 3.8081
0.00061 0.00999 0.00021 0.006 0.0005 −5.50226 4.44527
0.00066 0.00998 0.00042 0.006 0.0005 −6.55072 6.44738

Reliability

0.00074 0.01 0.00018 0.006 0.0005 −5.4336 4.349
0.00047 0.01 0.00039 0.006 0.00193 −6.4769 7.42226
0.00056 0.01 0.00036 0.006 0.00124 −6.3889 6.55908
0.00048 0.01 0.00036 0.006 0.00568 −7.1381 10.8395
0.0005 0.01 0.00038 0.006 0.00225 −6.5596 7.67189
0.0005 0.01 0.00036 0.006 0.0035 −6.6648 8.69748

0.00067 0.01 0.0001 0.006 0.0005 −4.6055 3.48521
0.00046 0.01 0.00039 0.006 0.0044 −6.9086 9.82462
0.00046 0.01 0.00037 0.006 0.00589 −7.202 11.1023
0.00063 0.01 0.00029 0.006 0.0005 −6.0303 5.25114
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Figure 17. Pareto frontier of reliability optimization.

According to multi-objective optimization results, the critical buckling load of the
structure increases and the weight of the structure decreases after deterministic and re-
liability optimization. When selecting the most satisfactory solution in the non-inferior
solution set, response weights can be set for each objective function according to designer
preferences. Subsequently, multi-objective optimization can be weighted and transformed
into a single-objective problem that directly compares the size for processing. A comparison
of Pareto frontiers obtained via deterministic and reliability optimization indicates that the
critical load and total mass obtained via reliability optimization are more conservative than
those obtained via deterministic optimization, indicating that some material properties are
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sacrificed. However, the safety of the structure can be improved when the uncertainty of
the layer thickness of each part is considered during the radome structure design process.

7. Conclusions

(1) A finite element model of the radome structure was established, and finite element
analysis performed based on maximum stress, maximum displacement, and to-
tal strain energy. The model was parameterized using MATLAB and FORTRAN
co-simulations.

(2) In deterministic optimization, the total mass of the radome structure decreased,
and the material utilization rate increased, whereas optimization results satisfied
constraints. The critical buckling force of the radome increased, and the safety of the
radome structure was improved.

(3) The uncertainty of parameters was considered in the reliability optimization. The total
mass of the radome structure decreased, and the material utilization rate increased,
whereas optimization results satisfied reliability constraints. In addition, structural
safety was improved with an increase in critical buckling force.

(4) The research results of this paper can be applied to the optimal design of aircraft
radome structures considering uncertainty, but the uncertainty generated by prod-
uct manufacturing processes is not considered in this paper, and the influence of
manufacturing parameter uncertainty on structural strength should be focused on in
future research.
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