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Abstract: The emergence of additive manufacturing, commonly referred to as 3D printing, has
led to a revolution in the field of biofabrication. Numerous types of 3D bioprinting, including
extrusion bioprinting, inkjet bioprinting, and lithography-based bioprinting, have been developed
and have played pivotal roles in driving a multitude of pioneering breakthroughs in the fields of
tissue engineering and regenerative medicine. Among all the 3D bioprinting methods, light-based
bioprinting utilizes light to crosslink or solidify photoreactive biomaterials, offering unprecedented
spatiotemporal control over biomaterials and enabling the creation of 3D structures with extremely
high resolution and precision. However, the lack of suitable photoactive biomaterials has hindered
the application of light-based bioprinting in tissue engineering. The development of photoactive
biomaterials has only recently been expanded. Therefore, this review summarizes the latest ad-
vancements in light-based 3D bioprinting technologies, including the development of light-based
bioprinting techniques, photo-initiators (PIs), and photoactive biomaterials and their corresponding
applications. Moreover, the challenges facing bioprinting are discussed, and future development
directions are proposed.

Keywords: light-based 3D bioprinting; photopolymerization; hydrogel; photoactive biomaterials;
biocompatibility; tissue engineering

1. Introduction

The incidence of vital human organ failure has significantly increased with the ex-
tended human lifespan. The emergence and development of tissue engineering provide a
promising solution to these challenges and are considered to have provided an effective
method for eventually achieving the regeneration of human tissues and organs in the
future [1–3]. Hydrogels are ideal materials for tissue engineering, as they can be tailored to
a variety of mechanical, chemical, and biological characteristics for cell adhesion, prolifera-
tion, and migration. The conventional tissue-engineering strategy entails seeding cells onto
a porous hydrogel scaffold first. With subsequent in vivo culturing, these cells undergo
proliferation and differentiation, ultimately leading to the construction of a biological sub-
stitute [4–6]. Dynamic reciprocity within a 3D microenvironment, which can simulate the
extracellular matrix (ECM), is crucial for cell growth [7]. Thus, it is very important to control
the biomaterials in 3D space precisely to fabricate scaffolds with adjustable mechanical,
physical, and rheological characteristics that perfectly mimic ECM. Traditional techniques
such as freeze-drying [8], electrospinning [9], and thermally induced phase separation [10]
make fabricating hydrogel scaffolds with precisely controlled microstructures difficult.
The advent of 3D bioprinting made it possible to construct complex organ and tissue-like
structures accurately (Figure 1A) [11–15]. Using computer-aided design (CAD), 3D printing
can build desired structures in a precise and reproducible way [16,17]. Three-dimensional
bioprinting based on traditional 3D printing can integrate cells, biomaterials, and bioac-
tive factors into user-set geometries, which makes it a powerful tool in the fabrication of

Materials 2023, 16, 7461. https://doi.org/10.3390/ma16237461 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16237461
https://doi.org/10.3390/ma16237461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma16237461
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16237461?type=check_update&version=2


Materials 2023, 16, 7461 2 of 35

complex biomimetic tissue [18,19], drug-testing models [20], disease models [21], surgical
implants [22], and smart sensors [23].

Within decades, a variety of 3D bioprinting techniques have been developed, including
extrusion bioprinting [24,25], inkjet bioprinting [26], stereolithography (SLA)-based bio-
printing [27], digital-light-processing-based (DLP-based) bioprinting [28], and computed-
axial-lithography-based (CAL-based) bioprinting [29]. Hydrogels employed in 3D printing
are crosslinked using various strategies, including chemical and physical crosslinking,
to achieve the required strength and stability for maintaining the fidelity and resolution
of the printed structures [30]. Additionally, the crosslinking of hydrogels can provide
adequate support for cell growth within the printed structures. Chemical crosslinking
methods, such as azide–alkyne cycloaddition, hydrazide–aldehyde coupling, thiol-ene
coupling, enzymatic crosslinking, and photocrosslinking, offer significant advantages in
3D bioprinting of tissues [30]. Covalent bonds formed through these methods tend to
provide greater tunability and higher stability for the printed structures, making them
ideal for creating bioprinted tissues. Physical crosslinking methods, including hydrogen
bonds, hydrophobic interactions, and ionic interactions, are also employed for crosslinking
bioprinted hydrogels [31]. However, hydrogels crosslinked through these non-covalent
bonds tend to be less stable, which makes them unsuitable for long-term in vitro cultiva-
tion. Currently, many of the 3D bioprinting methods employ light to crosslink or solidify
photoreactive bio-inks. Extrusion-based bioprinting can use light to crosslink bio-inks
before, after, or during extrusion, while lithography bioprinting can use light to directly
solidify bio-inks (Figure 1B). Using light in 3D bioprinting offers several advantages, in-
cluding rapid reaction rates, minimal heat production, and spatiotemporal control of the
reaction [32]. Light-based bioprinting can be realized through the photopolymerization
of photosensitive materials. In contrast to conventional bio-inks, the bio-inks utilized in
light-based 3D bioprinting need to be integrated with photoreactive moieties to enable fast
and selective photopolymerization of the bio-inks (Figure 1C) [33]. Normally, UV light and
visible light can both be used as light sources in photopolymerization. However, as UV
light may induce genetic mutations and even lead to cell death, visible light sources are
commonly employed in light-based bioprinting to ensure cell viability and avoid potential
harm to cells [34]. Photo-initiators (PIs) are a key component of photosensitive bio-inks.
When irradiated by light, PIs can be excited to generate active species and subsequently
initiate the polymerization of biomaterials. Within the last two decades, PIs and biomate-
rials with excellent biocompatibility, bioactivity, and biodegradability, which are suitable
to be used in light-based 3D bioprinting, have been developed [7]. Another advantage
of light-based bioprinting is that photopolymerization reactions can occur within aque-
ous solutions under physiological conditions, which can significantly reduce the use of
harsh and cytotoxic reagents. Thus, light-based bioprinting is exceptionally well-suited for
applications involving cells.

Since light-based bioprinting has shown magnificent potential for the fabrication of
complex human tissues and organs, this review summarizes the latest advancements
in light-based 3D bioprinting technologies, including specific light-based bioprinting
technologies, the development of PIs and biomaterials, and corresponding applications.
Moreover, the challenges facing bioprinting were discussed, and future development
directions were prospected.
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Figure 1. (A) 3D bioprinting structures for tissue engineering [12]. (B) Schematic illustration of light-
based bioprinting technology, including inkjet bioprinting, extrusion bioprinting, and lithography-
based bioprinting. i–iii: in primary configuration, structures are printed either dot by dot or line by 
line. iv–v: in secondary configuration, structures are printed layer by layer via DLP-based projection 
of patterns into a vat containing bio-ink. -In tertiary configuration, 3D structures are created volu-
metrically by projecting patterns into a rotating vat containing bio-inks [7]. (C) General mechanism 
of photopolymerization [35]. 
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Light-based bioprinting has advantages, such as high printing resolution, the capa-

bility to print various materials, a controllable microstructure, minimal damage to cells, 
strong controllability, and fast processing speed. Among various techniques, extrusion 
bioprinting, SLA, and DLP have reaped the greatest benefits from the practicality of pho-
toactivated biomaterials so far. The ultimate objective of tissue engineering and regenera-
tive medicine is to successfully construct human organs and tissues. However, the current 
state of technology falls short of fully achieving the regeneration of organ tissues. Light-
based bioprinting uses light as a source of energy for manufacturing, which allows the 
precise manipulation of photocurable materials, growth factors, and cells, in terms of both 
space and time, to create intricate structures. Researchers are harnessing bioprinting tech-
niques to emulate complex human tissues in controlled laboratory environments, thus of-
fering promising potential for organ and tissue regeneration. Presently, there is a wealth 
of research focused on employing light-based 3D bioprinting for the regeneration of di-
verse tissues, including bone [36], skin [37], liver [38], heart [38,39], blood vessels [40], and 
so on. In this section, light-based bioprinting methods, including extrusion-based bi-
oprinting, SLA, DLP, and computed axial lithography (CAL), will be introduced. 

2.1. Light-Based Inkjet 3D Bioprinting 
Inkjet bioprinting is derived from the commonly used 2D inkjet printing. Ink droplets 

are propelled out of a microscopic orifice via thermal or piezoelectric actuation and de-
posited drop by drop on the platform to fabricate 3D structures. The generated droplets 
are on the micrometer scale (10–50 µm in diameter) to ensure the printing resolution [41]. 
After being deposited on the printing platform, the droplet can be gelled simultaneously 
by physical and chemical (irradiation) processes, thus ensuring printing fidelity [42]. 
Inkjet bioprinting offers several advantages, including fast printing speed, high cell 

Figure 1. (A) 3D bioprinting structures for tissue engineering [12]. (B) Schematic illustration of light-
based bioprinting technology, including inkjet bioprinting, extrusion bioprinting, and lithography-
based bioprinting. i–iii: in primary configuration, structures are printed either dot by dot or line
by line. iv–v: in secondary configuration, structures are printed layer by layer via DLP-based
projection of patterns into a vat containing bio-ink. -In tertiary configuration, 3D structures are
created volumetrically by projecting patterns into a rotating vat containing bio-inks [7]. (C) General
mechanism of photopolymerization [35].

2. Light-Based 3D Bioprinting Methods and Applications

Light-based bioprinting has advantages, such as high printing resolution, the capabil-
ity to print various materials, a controllable microstructure, minimal damage to cells, strong
controllability, and fast processing speed. Among various techniques, extrusion bioprinting,
SLA, and DLP have reaped the greatest benefits from the practicality of photoactivated
biomaterials so far. The ultimate objective of tissue engineering and regenerative medicine
is to successfully construct human organs and tissues. However, the current state of technol-
ogy falls short of fully achieving the regeneration of organ tissues. Light-based bioprinting
uses light as a source of energy for manufacturing, which allows the precise manipulation
of photocurable materials, growth factors, and cells, in terms of both space and time, to
create intricate structures. Researchers are harnessing bioprinting techniques to emulate
complex human tissues in controlled laboratory environments, thus offering promising
potential for organ and tissue regeneration. Presently, there is a wealth of research focused
on employing light-based 3D bioprinting for the regeneration of diverse tissues, including
bone [36], skin [37], liver [38], heart [38,39], blood vessels [40], and so on. In this section,
light-based bioprinting methods, including extrusion-based bioprinting, SLA, DLP, and
computed axial lithography (CAL), will be introduced.

2.1. Light-Based Inkjet 3D Bioprinting

Inkjet bioprinting is derived from the commonly used 2D inkjet printing. Ink droplets
are propelled out of a microscopic orifice via thermal or piezoelectric actuation and de-
posited drop by drop on the platform to fabricate 3D structures. The generated droplets
are on the micrometer scale (10–50 µm in diameter) to ensure the printing resolution [41].
After being deposited on the printing platform, the droplet can be gelled simultaneously by
physical and chemical (irradiation) processes, thus ensuring printing fidelity [42]. Inkjet bio-
printing offers several advantages, including fast printing speed, high cell viability, and low
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cost. Additionally, the cell viability in the droplet remains high after printing. Furthermore,
by incorporating multiple inkjet heads, the fabrication of 3D multimaterial or multicolor
structures can be achieved, a feat that is quite challenging with SLA or DLP [43]. Therefore,
inkjet printing has gained widespread attention in the field of tissue engineering [26,44,45].
Mugnaini et al. [46] synthesized photocrosslinkable methacrylic pullulan. Aqueous dis-
persions of methacrylated pullulan were used as the bio-ink. Inkjet printing demonstrated
shorter printing times and higher flexibility in printable architectures. Nevertheless, inkjet
printing also presents some limitations. Its printing process is often accompanied by the
generation of satellite droplets, which negatively impacts the printing.

2.2. Light-Based Extrusion 3D Bioprinting

Due to its simplicity, versatility, reliable nature, and relatively cost-effectiveness, extru-
sion 3D printing stands as the most commonly used bioprinting technique for fabricating
cell-laden hydrogel networks [32,47,48]. The printing process selectively deposits bio-inks,
which are composed of cells, biomaterials, growth factors, and other components layer by
layer on the printing platform. It can be categorized into pneumatic, piston-driven, and
screw-driven dispensing (Figure 2A–C) [49]. Pneumatic dispensing uses air pressure to
extrude bio-inks, while piston and screw-driven dispensings use vertical and rotational
mechanical forces to extrude bio-inks, respectively. Bio-inks with viscosity ranging from
30 cP to 6 × 107 cP are suitable for extrusion 3D bioprinting. As the extrusion process
involves the extrusion of bio-inks from syringes with narrow nozzles or needles, bio-inks
possessing shear-thinning characteristics are more favored for the extrusion process [50–52].
Nonetheless, extrusion-based printing does have its limitations. The printing resolution of
extrusion-based printing is relatively low (>100 µm) when compared to other light-based
3D bioprinting [53]. Moreover, the shear forces produced during the extrusion process can
result in reduced cell viability, which becomes particularly evident when higher-density
cells are encapsulated.

Light-assisted extrusion bioprinting offers a way to address the shortcomings of con-
ventional extrusion-based 3D printing. Irradiation can be applied during the printing
process, after the completion of printing, or after the deposition of each extrusion layer
(Figure 1B) [49]. The timing of light exposure depends primarily on the nature of the
bio-ink and the stability of each layer. Ouyang et al. [54] utilized a photocurable HAMA
(methacrylated hyaluronic acid, structure is shown in Figure S1)-based bio-ink contain-
ing mouse embryonic fibroblasts (NIH/3T3) as raw material for 3D bioprinting. They
conducted pre-crosslinking (exposure before extrusion), post-crosslinking (exposure after
extrusion), and in situ crosslinking (exposure during extrusion) strategies (Figure 2D). The
results demonstrated that pre-crosslinked HAMA displayed reduced flowability through
the printing nozzle due to prior crosslinking, leading to decreased cell viability (approxi-
mately 47%) caused by cell compression. Although post-extrusion light exposure improved
cell viability, the low-viscosity HAMA bio-ink led to poor 3D structural formation. By
replacing the printing nozzle with a transparent capillary and introducing light exposure
during the extrusion process, the HAMA hydrogel can crosslink prior to deposition. The in
situ crosslinking method effectively enhances the formability of the bio-ink, reduces the
pressure exerted on cells during extrusion, and ultimately raises cell survival rates to above
95%. Wan et al. [55] fabricated a malleated sodium hyaluronate (MHA)/thiolated sodium
hyaluronate (SHHA) hydrogel by simultaneous extrusion deposition and thiol-acrylate
photopolymerization (Figure 2E). The obtained MHA/SHHA 3D structure showed good
structural stability and high resolution (Figure 2F).
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to deformation. However, as the shear stress increases, the support material becomes 
more fluid and exhibits reduced viscosity [56]. After the completion of printing, the sup-
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exhibited synchronized contraction, and the wall thickness of the ventricle showed a 14% 
increase in thickness during contraction. Moreover, the heart structure was capable of 
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tion with sacrifice ink within a photopolymerizable Pluronic F-127–diacrylate matrix to 

Figure 2. Schematic illustration of the three extrusion bioprinting methods: (A) pneumatic, (B) piston-
driven, and (C) screw-driven dispensing method [49]; (D) schematic of three different crosslinking
strategies for bioprinting HAMA inks, where crosslinking occurs before, after, or during extru-
sion [54]; (E) mechanism of the formation MHA/SHHA hydrogels [55]; (F) top: image of the printed
MHA/SHHA hydrogel network, down: microscopy image of the printed MHA/SHHA hydrogel [55].

2.3. Suspension Bioprinting

To address the issue of poor formability of bio-inks with low viscosity, Lee et al.
developed the freeform reversible embedding of suspended hydrogels (FRESH) technology
(Figure 3A) [55]. In this technique, bio-ink is extruded into a shear-thinning fluid bed,
which can provide adequate support for shaping the bio-ink. The support material is
solid at low shear stress and exhibits fluidity at high shear stress. Notably, at low levels
of shear stress, the support material maintains its solidity, displaying high viscosity and
resistance to deformation. However, as the shear stress increases, the support material
becomes more fluid and exhibits reduced viscosity [56]. After the completion of printing,
the support material is washed away. Complex structures such as heart valves and heart
structures with high precision were fabricated using FRESH (Figure 3B). The printed
ventricle exhibited synchronized contraction, and the wall thickness of the ventricle
showed a 14% increase in thickness during contraction. Moreover, the heart structure was
capable of electrical signal propagation. Wu et al. [57] employed omnidirectional freeform
fabrication with sacrifice ink within a photopolymerizable Pluronic F-127–diacrylate
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matrix to fabricate 3D biomimetic microvascular networks arbitrary designs (Figure 3C).
Bhattacharjee et al. [56] used a non-thixotropic granular Carbopol ETD 2020 polymer
soft granular gel as the support medium. The medium exhibited local shear thinning
and became fluidic near the extrusion nozzle without disturbing neighboring regions.
When the nozzle moved away, the gel rapidly solidified. This allows for the fabrication
of structures that were difficult to print before. Using this soft gel, the team was able
to create intricate large 3D structures (including thin closed shells and hierarchically
branched tubular networks) using a variety of materials such as silicones, hydrogels,
colloids, and living cells (Figure 3D–F). These printed structures exhibited high fidelity
and a high aspect ratio, demonstrating the potential of suspension bioprinting for tissue
fabrication, particularly vascular structure fabrication.
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Figure 3. (A) Time-lapse sequence of 3D bioprinting of the letters “CMU” using FRESH v2.0 [55];
(B) Left: MRI-derived 3D human heart scaled to neonatal size. Middle: organ-scale FRESH 3D
bioprinting of neonatal-scale human heart (middle image). Right: screw-driven dispensing method
(right image) [55]; (C) Left: schematic illustration of the printing of a vascular structure using
omnidirectional printing. Right: fluorescence photograph of the vascular structure printed using
omnidirectional printing within a photo-polymerizable Pluronic F-127–diacrylate matrix, scale bar:
10 mm [57]. (D,E) Structures resembling hollow vessels featuring a wide range of sizes in both
diameter and aspect ratio. Scale bar: 10 mm. Insets: Confocal cross-sections with a scale of 0.1 mm [56].
(F) An image depicting truncated vessels near a junction exhibited hollow tubes with slender walls,
and the diameter of the vessel is about 100 µm, with a scale bar of 2 mm [56].

2.4. Stereolithography, SLA

SLA, one of the earliest commercialized 3D printing technologies, made its debut
in bioprinting in 2004 when Boland’s team at Clemens University employed SLA to
craft cell-encapsulated poly(ethylene glycol) diacrylate (PEGDA, Figure S3) porous tissue-
engineering scaffolds [58]. This marked the inception of SLA’s application in the field
of bioprinting. Compared with extrusion printing, where bio-ink within ladened cells is
physically extruded on a printing platform, SLA uses a focused laser to selectively solidify
the bio-ink layer by layer. As a result, SLA offers advantages, including high spatial resolu-
tion (20~50 µm), multiscalability, rapid printing speed of complex structures (lattice and
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patterned structures), and higher cell viability. Presently, SLA has garnered widespread
attention for the fabrication of tissue-engineering scaffolds. Wang et al. [59] utilized an SLA
printer equipped with a 500~600 nm laser bioprinted fibroblast-laden GelMA (methacry-
lated gelatin, Figure S4) hydrogels featuring complex structures (Figure 4A–D). Eosin Y
was employed as the PI. The NIH-3T3 cell encapsulated within the hydrogel demonstrated
robust viability and proliferated well to form 3D intercellular networks (Figure 4E). The
results indicated that the Eosin Y/GelMA system was suitable for long-duration bioprinting
and tissue regeneration. Lam et al. [60] reported a swine-derived chondrocyte-laden pho-
topolymerized HAMA hydrogel network, which was bioprinted by SLA. After culturing
for 14 days, cartilage-specific collagen Type II was detected, and cartilage-like tissue was
formed. This demonstrated that bioprinted HAMA cartilage may find clinical application
in repairing cartilage defects.
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Figure 4. Maple-leaf pattern hydrogel networks fabricated by SLA: (A) top view of the hydrogel [59];
(B) magnified image of the printed hydrogel [59]; Images depicting the truncated cone structure from
a lateral perspective (C) and an overhead view (D) [59]; (E) bioprinted NIH-3T3 cell-laden hydrogel
sample cultured for 5 days, DAPI was used to stain nuclei (blue) and phalloidin 488 was used to
stain F-actin (green), scale bar: 2 mm [59]; (F) schematic illustration of the in vivo murine myocardial
infarction model and the placement of gel patch [61]; (G) image depicting the positioning of the patch
onto the outer surface of the heart (epicardium) [61]; (H) histological pictures illustrating the state of
each heart condition with different gel patches after 8 weeks [61].
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SLA is well-suited for fabricating microchannel structures, which is challenging to
accomplish with extrusion bioprinting. Microchannels play a crucial role in facilitating the
efficient transportation of oxygen and nutrients, therefore enhancing cell viability, migra-
tion, and proliferation [61]. Melhem et al. [61] utilized SLA to print a cardiac repair patch
incorporated microchannels of controlled diameters (500 and 1000 µm) (Figure 4F,G). A
bio-ink consisting of a PEGDA solution suspended with mesenchymal stem cells (MSCs)
was employed. Ladened with MSCs, the cardiac repair patch consistently released a variety
of therapeutic cytokines and exosomes, promoting the effective repair of injured cardiac
muscle. Additionally, using a patch with an optimized channel diameter proved to be effec-
tive in the reduction of MSC cell loss. In vivo, murine myocardial infarction models were
employed to evaluate the efficiency of MSC-laden gel patches containing microchannels.
After 8 weeks, untreated mice and those with patches lacking microchannels exhibited
left ventricular dilation and wall thinning. In contrast, mice hearts treated with a micro-
channeled patch loaded with a higher density of MSCs demonstrated minimal necrosis
at the injury site. These treated hearts experienced significantly reduced or negligible
ventricular dilation and wall thinning (Figure 4H).

2.5. Digital Light Processing, DLP

DLP is a 3D-printing method that employs a projector based on the digital micromirror
device (DMD) or liquid crystal display (LCD) to solidify photoactive bio-inks layer by layer
in a pre-designed form (Figure 1B) [32,62]. The fabrication principle endows DLP with
several advantages, including high printing speed, excellent accuracy, and improved cell
viability. Unlike SLA, DLP utilizes an area light source instead of a laser point, leading
to significantly faster printing speeds. Furthermore, DLP employs LED or LCD as a
cost-effective alternative to a laser light source. These features position DLP as a highly
competitive tissue fabrication method when compared to other printing methods [63–65].
Ma and coworkers [66] fabricated a hexagonal GelMA/MeHA hydrogel hepatic model
with a stiffness similar to the liver using DLP technology. The model incorporated human-
induced pluripotent stem cells (hiPSCs) in conjunction with support human umbilical
vein endothelial cells (HUVECs) and adipose-derived stem cells (ADSCs). After 7 days
of culture, a more pronounced development of spheroids was observed compared to the
model consisting solely of hiPSC-HPCs in the tri-culture 3D model (Figure 5B). In another
study, Ma et al. [67] utilized DLP technology to fabricate an in vitro liver model with
customizable mechanical properties, serving as a platform to investigate the growth and
invasion of hepatocellular carcinoma (HCC) (Figure 5A). The bio-ink, comprising GelMA
and liver dECM, employed LAP as the PI. By adjusting the irradiation time (10 s, 20 s, and
40 s), they successfully achieved hexagonal hydrogels with stiffness levels of approximately
0.5 kPa, 5 kPa, and 15 kPa, respectively. These stiffness levels corresponded to different
stages of liver cirrhosis (Figure 5C). After 7 days, an increased number of HepG2 cells were
observed in the rigid hexagonal scaffold, while fewer HepG2 cells with lower stiffness were
observed in the scaffolds (Figure 5C). These results demonstrated the significant potential
of the liver model platform for pathophysiological learning and drug screening.

2.6. Computed Axial Lithography (CAL)

Although DLP is known for its fast printing speed and high printing resolution, it
remains constrained by a two-dimensional accumulation process when constructing 3D
structures. This manufacturing approach highlights a constraint in enhancing the print-
ing speed of DLP. To address this issue, Taylor’s team drew inspiration from computed
tomography (CT) imaging and developed a layerless technique termed computed axial
lithography (CAL), or volumetric printing. This technique facilitates the single-step fab-
rication of complex 3D structures, as depicted in Figure 1B [32,68]. In this technique, a
pre-designed sequence of light patterns is projected onto a printing reservoir containing
bio-ink. The reservoir rotates around an axis. The light source simultaneously projects
various patterns into the bio-ink. The planar light beam selectively cures the photosen-
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sitive bio-ink in the printing reservoir. Consequently, through the accumulation of light
exposure, specific regions of the photosensitive bio-ink undergo solidification, enabling
volumetric fabrication of 3D objects. The CAL technique successfully addressed the con-
straints associated with SLA and DLP, particularly their inability to print certain types
of bio-inks, especially those characterized by high molecular weight and viscosity. CAL
is capable of printing bio-inks with viscosities as high as 9 × 104 cP, therefore effectively
broadening the spectrum of printable bio-inks in 3D bioprinting. Furthermore, CAL allows
for the volumetric printing of large-sized structures, offering the potential for a significant
improvement in printing speed.
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Moreover, in the conventional layer-by-layer printing process of traditional SLA and
DLP, hydrogel materials with lower moduli are prone to deformation or collapse, and
the prolonged printing time can result in cell death within the encapsulated constructs.
Furthermore, CAL can also avoid stress caused by layer accumulation, therefore enhancing
the viability of encapsulated cells. Thus, CAL demonstrated great potential in the rapid
fabrication of intricate hydrogel structures.

3. Biological Properties of 3D Bioprinting Hydrogels

In 3D bioprinting, bio-ink refers to a hydrogel-based formulation comprising either
a single type of biomaterials or a blend of various biomaterials, along with encapsulated
cells. The formulation undergoes further processing by automated biofabrication to form
a designed geometry [69–72]. As light-based bioprinting employs light to fabricate 3D
structures, photoreactive moieties must be incorporated into the bio-ink components. Upon
exposure to light, a photosensitive compound known as a PI absorbs energy, leading to the
generation of reactive species. These reactive species, in turn, trigger the photopolymeriza-
tion reaction, resulting in the formation of a covalently crosslinked hydrogel [33].

To formulate an ideal bio-ink for light-based 3D bioprinting, meeting the specific
mechanical, rheological, chemical, and biological criteria is crucial [7,69]: 1. It should
possess biodegradative traits that ensure effective tissue remodeling while preventing
any adverse byproducts; 2. When in the presence of cells, it should demonstrate both
biocompatibility and minimal immunogenicity; 3. The chosen biomaterial formulation
should have tunable mechanical properties to match with different tissues; 4. The printed
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structures should be able to maintain their structural stability; 5. There should be the
possibility of achieving significant production on a large scale while minimizing differences
between batches.

Based on these criteria, a growing number of new bio-inks are being developed. How-
ever, the scarcity of suitable biomaterials remains a major issue limiting the advancement of
tissue engineering. This part discusses the developments in PIs and biomaterials employed
for light-based 3D bioprinting.

3.1. Photo-Initiators (PIs)

To ensure the successful implementation of 3D bioprinting, the selection of PI is of
paramount importance. Given that biofabrication occurs in the presence of living cells,
the selected PI should exhibit properties including water solubility, low cytotoxicity, and
high extinction coefficient at visible-light wavelength. These characteristics are essential to
facilitate fast and high-quality 3D printing of desired structures.

So far, a lot of PIs or PI systems working under visible light have been developed for
light-based 3D bioprinting. According to the radical generation mechanism, free radical PIs
can be classified into Norrish Type I PI and Norrish Type II PI. Most Type I PIs are aromatic
carbonyl compounds, such as benzoin and its derivatives [73], acetophenones [74], phos-
phinoxides [75,76], and so on. By absorbing photons, they undergo homolytic cleavage and
generate two free radicals to initiate the photopolymerization of monomers (Figure 6A) [35].
The initiation of Type II PIs is based on a bimolecular reaction, as illustrated in Figure 6B [35].
The excited Type II PI, benzophenone, in this case, abstracts hydrogen from the hydro-
gen donor, leading to the generation of initiating radicals. Commonly used Type II PIs
include thioxanthone and its derivatives [77,78], camphorquinone (CQ) [79], and so on.
In addition, new PIs, including dyes and Ru2+ complexes, also have been used as PIs for
bio-ink formulations.
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3.1.1. Norrish Type I PIs

2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone (Irgacure 2959, Table 1)
is the first and most used commercial water-soluble PI, which has been widely used to fabricate
hydrogel networks using materials such as acrylated gelatin (GelMA) [80–82], methacrylated
chitosan (MeGC, Figure S5) [83,84], and PEGDA [85]. However, the low water solubility and
limited absorption in the visible light range of Irgacure 2959 have limited its applications.
Although another α-hydroxyketone PI—2-hydroxy-1-[3-(hydroxymethyl)-phenyl)]-2-methyl-
1-propanone (APi-180, Table 1)—exhibits enhanced water solubility, it still needs UV light as
light sources [86]. Therefore, visible-light PIs should be developed.
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In recent years, numerous commercial 3D printers have adopted 405 nm LED light
as their light source, making PIs with an absorption range that overlaps 405 nm highly
desirable. Monoacylphosphineoxide (MAPO) and bisacylphosphineoxide (BAPO) salts,
including LAP, Na-TPO, BAPO-OLi, and BAPO-Ona, are highly reactive and biocompatible
visible-light PIs with absorption rings from 380 nm to 450 nm. Significantly, these PIs also
boast excellent water solubility and much lower toxicity than Irgacure 2959 (Table 2) [86].
Lunwar et al. [87] developed a tough and compatible double network (DN) hydrogel using
DLP. The solution of alginate, dimethyl acrylamide (DMAAm, Figure S6), and methylene
bis-acrylamide (MBAAm, Figure S7) were used as monomers, while LAP was used as PI.
Results showed that LAP played an important role in the stretchability and stiffness of the
DN gel. By optimizing LAP concentration, they found that at a concentration of 0.33 wt.%
LAP, the double network (DN) hydrogel exhibited an ultimate stress of 65 ± 4 kPa and an
elastic modulus of approximately 50 kPa. Ghazali et al. [88] reported water-soluble TPO
nanoparticles with significant absorption in the range from 385 to 420 nm. Furthermore,
this TPO nanoparticle could also maintain the high molar excitation coefficient of TPO.
This approach to synthesizing PI-based nanoparticles holds promise for the extension to
other poorly water-soluble PIs.

Table 1. Technologies of light-based bioprinting.

Light-Based Printing
Techs Explanations Advantages Disadvantages Ref.

Inkjet-based bioprinting

Ink droplets are propelled out of
a microscopic orifice via thermal

or piezoelectric actuation and
deposited drop by drop on the

platform to fabricate
a 3D structure.

High printing resolution.
Able to print

multi-materials.

Difficult to print
large-scale structures.

Unable to print with bio-inks
of high viscosity.

Tend to generate satellite
droplets during printing.

Shear stress that may impact
cell viability.

[41–43]

Extrusion-based
bioprinting

Selectively deposit bio-inks
layer by layer on the

printing platform.

Wide range of
bio-ink viscosity.

Moderate printing time.
Able to print

multi-materials.

Shear stress that may impact
cell viability.

Limited printing resolution.
Limited complexity of the

printed structures.
Limited printing speed.

[32,53,54]

Suspension-based
bioprinting

Bio-ink is extruded into a gel
bath that is immiscible with the

printed ink layer by layer,
providing adequate support for
shaping the bio-ink. After the

completion of printing, the gel is
washed away.

Provide support for bio-ink
with poor mechanical

properties.
Provide biological

environment which
supports cell growth.

Able to print
omnidirectionally.

Able to print complex
structures with a high

aspect ratio.

Limited suspension
medium choices. [48,55,89,90]

SLA-based bioprinting
Focused laser is used to

selectively solidify the bio-ink
layer by layer.

High printing resolution.
Able to manufacture
complex structures.

Limited in manufacturing
scalable products.
Unable to print
multi-materials.

Only suitable for bio-ink with
low viscosity.

[58,59]

DLP-based bioprinting

A projector based on the digital
micromirror device (DMD) or
liquid crystal display (LCD) is

used to solidify photoactive
bio-inks with pre-designed form

layer by layer.

High printing resolution.
High printing speed.
Able to manufacture
complex structures.

Able to manufacture scalable
products.

Limited bio-ink choices.
Unable to print
multi-materials.

Only suitable for bio-ink with
low viscosity.

[63,64,66]
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Table 1. Cont.

Light-Based Printing
Techs Explanations Advantages Disadvantages Ref.

CAL-based bioprinting

A designed sequence of light
patterns is projected onto a
rotating printing reservoir

containing bio-ink. The bio-ink
can be solidified volumetrically.

Able to manufacture
complex structures.

Rapid printing speed for
large constructs.

Exceptional fidelity.
Smooth surface for the

printing structures.
Wide range of

bio-ink viscosity.

Limited bio-ink choices.
Only suitable for

transparent bio-inks.
Limited printing resolution.

[68,91]

Table 2. Commercial Type I PIs for 3D bioprinting.

PI Structure λmax/nm Solubility
g/L

Toxicity
LC50

[mmol/dm3]
Ref.

Irgacure 2959
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addition of an amine co-initiator makes these initiation systems widely applicable in dental
restorative materials due to its absorption in the 400–500 nm spectral region [93]. Kowsari
et al. [94] reported that an advanced visible-light 3D printing platform employed an organic
light-emitting diode (OLED) array with peak emission wavelength at 460, 525, and 625 nm
as a light source. Two photoinitiation systems, Irgacure 784 and a combination of CQ/ethyl
4-dimethylaminobenzoate (CQ/EDAB), were used as PIs. This platform enabled the
large-scale printing of PEGDA and other bioactive materials with complex structures and
high resolution. Furthermore, they successfully achieved multimaterial printing. The
results highlight the significant potential of integrating OLED technology and versatile
photoinitiation systems for complex, scalable, and multimaterial 3D printing. However,
the application of CQ in light-based 3D bioprinting is severely limited by its poor solubility
in water (Table 3) [95]. To increase its water solubility, carboxylated CQ with improved
solubility was synthesized without changing much of its spectroscopic properties [95,96].

In addition to conventional Type II PIs, dyes like Eosin Y [97,98], riboflavin [99], and
Rosa Bengal [100] have recently found applications for light-based 3D bioprinting [101].
When employed as PIs, the addition of an amine electron donor is essential to enhance
the photoinitiation efficiency. Eosin Y, a xanthene dye typically employed as a histolog-
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ical stain, exhibits excitation under green light when paired with triethanolamine (TEA)
(Tabel 2) [95,102,103]. Fouassier et al. [104] pioneered the innovative application of the
Eosin Y/amine photoinitiation system for the fabrication of polyethylene glycol (PEG) base
hydrogels. However, Eosin Y tends to suffer from oxygen inhibition, which may hinder
photopolymerization. To counter this problem, vinylpyrrolidone (NVP, Figure S8) has been
introduced as a comonomer to mitigate this issue and enhance the ultimate conversion
of double bonds [105,106]. Aguirre-Soto et al. [105] explored the role of NVP in the co-
polymerization with PEGDA in an aqueous environment, employing Eosin Y as the PI. The
results indicated that the inclusion of NVP led to reduced oxygen inhibition, increased
initial polymerization rate, and enhanced ultimate double-bond conversion. The formation
of a ground-state complex between NVP and Eosin may contribute to the reduction of
oxygen inhibition, slightly accelerating the speed of photoinduced electron transfer to TEA
and resulting in the consumption of two oxygen molecules throughout the process.

Riboflavin, commonly known as vitamin B, stands out as another Type II PI char-
acterized by excellent water solubility and biocompatibility (Table 2) [106,107]. The ri-
boflavin/TEA photoinitiation system displays significant absorption in the wavelength
range of 300 to 500 nm [108]. Rosa Bengal has also gained attention as a promising Type
II PI, manifesting absorption at 565 nm [109,110]. Ahn et al. [111] introduced a rapid,
visible-light tri-component photoinitiation system which was comprised of 5,7-diiodo-3-
butoxy-6-fluorone (H-Nu470), Rosa Bengal, and ZnTPP. By employing dimethyl acrylamide
and trimethylolpropane triacrylate as monomers alongside this PI system, a DLP 3D printer
equipped with exchangeable LEDs achieved rapid printing speeds ranging from 33 to
45 mm/h with low-intensity violet (405 nm), blue (460 nm), green (525 nm), and red
(615 nm) light exposure (∼2–3 mW/cm2).

Another noteworthy water-soluble visible-light PI is Tris(2,2′-bipyridyl)dichloro-
ruthenium(II), or Ru(bpy)3

2+. This metal complex-derived compound exhibits a pro-
nounced absorption peak at 452 nm, as shown in Table 2 [112]. Sodium persulfate (SPS) can
be used as its co-initiator. Upon exposure to visible-light, Ru2+ undergoes a transition to its
excited state and interacts with SPS through an electron transfer process to generate Ru3+

and sulfate radicals. These sulfate radicals subsequently initiate the photopolymerization
of monomers [113].

Table 3. Commercial Type II PIs for 3D bioprinting.

PI Structure λmax/nm Solubility in
Water Ref.

CQ
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Table 3. Cont.

PI Structure λmax/nm Solubility in
Water Ref.
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3.2. Biomaterials for Light-Based 3D Bioprinting

Natural biomaterials, often derived from the proteins and polysaccharides found
within living organisms, are favored for bio-inks due to their excellent biocompatibility.
Substances like gelatin, chitosan, and alginate, among others, exhibit impressive respon-
siveness and adhesiveness to living cells. They are also able to undergo degradation within
the body. Furthermore, these natural materials are cost-effective and renewable. However,
they come with certain drawbacks, including high degradation rates, intricate purification
processes, and lower mechanical performance. The most commonly used hydrogel biomate-
rials, including gelatin, chitosan, alginate, hyaluronic acid, and decellularized extracellular
matrix (dECM), will be discussed here.

3.2.1. Gelatin

Gelatin (Figure S9) is derived from denatured collagen and contains an arginine-
glycine-aspartic acid (RGD) peptide sequence, which allows for cell attachment and spread-
ing along the hydrogel matrix. Moreover, gelatin incorporates a matrix metalloproteinases
(MMPs) peptide, endowing it with the ability to degrade naturally. Importantly, gelatin
has already gained FDA approval as a biologically safe material [114]. To introduce pho-
toactivity to gelatin, Van de Bulcke et al. [115] first modified gelatin with methacrylic
anhydride (MAA) to obtain methyl acrylated gelatin, commonly known as GelMA. GelMA
contains methacrylate and methacrylamide groups, as both hydroxyl groups and amino
groups can react with MAA. This modification did not alter the RGD sequence and MMP
sequence of gelatin so that GelMA maintains its excellent biocompatibility and enzymatic
degradability. Consequently, GelMA has gained significant attention in the field of 3D
bioprinting [116,117]. Bertassoni et al. [118] employed direct writing to produce cell-laden
GelMA hydrogel constructs using solutions of GelMA with concentrations ranging from
5% to 15% (Figure 7A–C,E). Notably, the GelMA hydrogel with a concentration of 15%
exhibited an impressive elastic modulus of 60.3 ± 9.5 kPa. Furthermore, all the printed
scaffolds which encapsulated with HepG2 cells exhibited remarkably high cell viability
(Figure 7D).
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Figure 7. (A) Photographs of bioprinted GelMA hydrogel array encapsulated with HepG2 cells [118];
(B,C) pictures of bioprinted agarose hydrogel fibers imitating 3D branching patterns within GelMA
hydrogel blocks [118]; (D) fluorescence photo of cells-laden hollow GelMA hydrogel fibers [118];
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Although GelMA is an excellent material for tissue engineering and is frequently
employed in chain-growth photopolymerization, the resulting hydrogel network may
exhibit heterogeneity, which can be detrimental to the encapsulated cells. To address this
issue, by modifying gelatin with allyl glycidyl ether (AGE) under alkaline conditions at
a temperature of 65 ◦C, Bertlein et al. [119] synthesized a monomer called GelAGE that
is suitable for thiol-ene photopolymerization (the synthetic routine is shown in Figure
S10). In comparison between the photopolymerization product of the GelMA system
and the GelAGE/dithiothreitol (DTT) system, they found that under the same photo-
initiator concentration and light exposure, the mechanical properties of the GelAGE/DTT
system were superior to those of the GelMA system. Additionally, GelAGE exhibited shear
thinning, enabling the preparation of inks suitable for both digital light processing (DLP)
and extrusion-based bioprinting by adjusting the ratio of GelAGE and DTT.

3.2.2. Chitosan

Chitosan (Figure S11), derived from the deacetylation of chitin and primarily com-
posed of glucosamine units, serves as the primary structural component found in crustacean
exoskeletons and is an assembly constituent of glycosaminoglycan in ECM [12,22]. With
features such as biodegradability, biocompatibility, non-toxicity, antibacterial properties,
anticancer effects, lipid-lowering capabilities, and immune enhancement, it finds extensive
applications in fields like drug delivery [120,121], medical absorbable materials [122], tissue
engineering [123], and pharmaceutical development [124]. Its macromolecular chain con-
tains an abundant amount of amino groups, hydroxyl groups, and ether bonds, allowing
for modification reactions such as acylation, esterification, carboxylation, etherification, oxi-
dation, and Schiff base formation [125,126]. However, chitosan’s limited solubility in water
restricts its use as a bio-ink, as it can only dissolve in acidic solutions. Consequently, the
application of chitosan as a bio-ink has been limited [127]. To address this challenge, a water-
soluble chitosan derivative called glycol chitosan (GC, Figure S12) is synthesized by the
conjugation of ethylene glycol to chitosan [67]. To further impart GC with photoreactivity,
methacrylated GC (MeGC, Figure S13) was synthesized via the methacrylation of reactive
amine groups of GC. Upon irradiation, MeGC can undergo photopolymerization [128].
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3.2.3. Alginate

Alginate (Figure S14), a natural polysaccharide polymer extracted from brown sea-
weed, is characterized by its excellent water solubility, biodegradability, and biocom-
patibility. It consists of homopolymeric blocks of (1→4)-linked β-D-mannuronate (M)
and α-L-guluronate (G) residues covalently linked together in different sequences or
blocks [129,130]. As alginate molecules contain numerous carboxyl groups that are nega-
tively charged, hydrogels can be formed through ionic crosslinks with multivalent cations
(Ca2+, Ba2+, Fe3+, and so on) [131]. Similar to chitosan and gelation, alginate can also
be modified for photopolymerization. Photocrosslinkable methacrylated alginate (Alg-
MA, Figure S15) can be synthesized by treating the secondary hydroxyl groups with
MAA [132]. Carboxylic groups on the alginate molecular chain are also modification sites.
By modifying these carboxylic groups with aminoethyl methacrylates, photocrosslink-
able alginate can also be obtained. Jeon et al. [133] synthesized oxidized and methacry-
lated alginates (OMA, Figure S16), where first, mannuronate groups were oxidized by
NaIO4, and subsequently, carboxylic groups were activated by EDC/NHS (1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide) and methacrylate groups
were introduced using 2-aminoethyl methacrylate (AEMA). Then, a range of photocrosslink
biodegradable hydrogels, featuring adjustable swelling ratios, stiffness, and degradation
rates were prepared through the utilization of OMA. Results showed that the OMA hydro-
gel with a 14% oxidation ratio (OMA-14) degrades faster than the OMA with a 9% oxidation
ratio (OMA-9) (Figure 8A,B). Moreover, the OMA hydrogels exhibited improved human
bone marrow mesenchymal stem cell (hBMMSC) adhesion and spreading, as observed
in Figure 8C,D. This phenomenon can be attributed to the rich aldehyde groups with the
OMA hydrogels, which can interact with the amines present on cell surface proteins in the
extracellular matrix.
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Figure 8. The mass loss of OMA hydrogels (A) OMA-9 and (B) OMA-14 in DMEM within
30 days [133]; (C) the adherent cell number on OMA hydrogels with different oxidation ratio [133];
(D) fluorescence images of hBMMSCs cultured on the surface of OMA hydrogels in vitro after 7 days,
scale bar: 200 µm [133]. * p < 0.05 compared to 2 and 4 w/v %, # p < 0.05 compared to 2 w/v %,
& p < 0.05 compared to OMA-9 and OMA-14.
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Norbornene functionalized alginate (Alg-NB, Figure S17) and phenyl group function-
alized alginate (Alg-Ph, Figure S18) were also synthesized [134–136]. These monomers can
be used in photo-click reactions and photo-mediated redox crosslinking, respectively. Ooi
et al. [134] developed a bio-ink composed of Alg-Nb and thiol crosslinker CGGGRGDS
peptides (Figure S19). By adjusting thiol crosslinker content in the bio-ink, they successfully
fabricated alginate-based scaffolds using extrusion-based 3D bioprinting. The moduli
of the obtained hydrogels ranged from 0.05 to 30 kPa, indicating their potential to be
used as tissue-engineering scaffolds. After 7 days of culture in vitro, the viability of the
mouse fibroblast (L929 cells) encapsulated in the printed hydrogel was above 80%. They
further modified Alg-Norb with HS-RGD bioactive peptide through thiol-ene photo-click
reactions, enabling alginate-based hydrogel to modulate cellular behavior and induce cell
proliferation and differentiation.

3.2.4. Hyaluronic Acid

Hyaluronic acid (HA, Figure S20), also known as hyaluronan, stands as the predomi-
nant constituent in ECM of human epithelial, connective, and neural tissues [137]. It is a
non-sulfated glycosaminoglycan composed of disaccharide units consisting of N-acetyl-
D-glucosamine and β-D-glucuronic acid linked by β-1,3 and β-1,4 glycosidic bonds [138].
Due to its remarkable biocompatibility and biodegradability, HA has found applications in
orthopedics and plastic surgery [139]. Its natural biological functions, including binding to
the cell surface receptor CD44 [140,141] and susceptibility to degradation by mammalian
enzymes [142], made HA a promising material in the field of 3D biofabricaiton [143–146].
Photoactive groups such as methacrylate, vinyl, and cineole can be introduced to the HA
backbone through abundant hydroxyl groups via crosslinking, grafting, and esterification
reactions. The most common methods for modifying HA involve the methacrylation of its
primary hydroxyl groups through reactions with MAA or glycidyl methacrylate [147,148].
Fan et al. [149] developed a flexible HA hydrogel adhesive for effective hemostasis. They
first synthesized an HA derivative called dopamine-conjugated maleic hyaluronic acid
(DMHA, Figure S21). This derivative, enriched with acrylate groups and dopamine groups,
was achieved by modifying HA with dopamine and MAA. Subsequently, DMHA was
coated on rat liver and exposed to UV light. Due to the presence of thiol groups on rat
tissue, DMHA formed effective adhesion to the wounded liver. Impressively, DMHA
exhibited a short hemostasis time of merely 12.2 ± 1.9 s (Figure 9A–F). However, a high
double-bond grafting ratio is not always beneficial for photopolymerization. As the graft-
ing ratio increased, the double-bond conversion initially increased and then decreased.
The presence of unreacted double bonds could potentially have a negative impact on the
biocompatibility of HA derivatives. To address this issue, Loebel et al. [150] prepared
tyramine-functionalized hyaluronic acid (HA-Tyr, Figure S22) and utilized erythrosine Y
(EO) and Rosa Bengal (RB) as PIs for the 3D bioprinting of hydrogels encapsulated with
mesenchymal stem cells (MSCs). HA-Tyr could gel within only 30 s when the mass fractions
of EO and RB were 0.02%. Additionally, HA-Tyr demonstrated relatively low viscosity,
making it suitable for lithography-based bioprinting. The authors further printed scaffolds
with high precision using laser direct writing and two-photon polymerization, respectively.

3.2.5. Decellularized Extracellular Matrix (dECM)

The extracellular matrix (ECM) in the human body consists of fibrous proteins and
glycosaminoglycans (GAGs). It serves not only as a structural framework but also dynam-
ically influences cellular behavior, regulating cell activities, including cell proliferation,
cell differentiation, cell migration, and intercellular communication [151]. Moreover, the
components of the ECM of each tissue or organ differ in providing suitable microenviron-
ments for specific cell populations [152]. Designing biomaterials and structures with unique
properties that closely mimic the targeted tissue is crucial to enhancing the functionality,
phenotype, and maturation of encapsulated cells, therefore facilitating tissue regeneration.
However, it is quite challenging to fulfill the fabrication of a complex cellular environment,
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given the current state of biomaterials development and fabrication methods. To synthesize
a biomaterial that is completely identical to ECM is not feasible now.
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DMHA hydrogel for hemostasis (A–C), and the rat liver noncompressible hemorrhage model did not
use DMHA hydrogel (D–F). Statistical data represent mean ± SD, and ** p < 0.01, *** p < 0.001 [149].

In 1973, Elliott et al. [153] first reported the dECM technique, in which ECM was
extracted from porcine skin and utilized for wound dressing. Later, in 2008, Badylak [154]
reported a method for preparing hydrogels using ECM extracted from porcine bladder
tissue. When ECM components are extracted from tissues to form dECM, it not only
preserves the microenvironment required for cell growth but also demonstrates exceptional
biocompatibility. The unique mesh-like architecture of the ECM imparts distinct mechanical
properties to various tissues and organs, providing the necessary habitat for cell growth and
development. Moreover, the ECM itself does not contain genetic material components, ren-
dering it non-immunogenic and highly biocompatible. Evidence also showed that dECM,
when used as a scaffold, can provide responsive biological factors for cell proliferation
and differentiation even without adding exogenous growth factors [155,156]. DECM not
only exhibits excellent flowability and injectability but also demonstrates gelation ability
at 37 ◦C [157]. This allows dECM to be used as a minimally invasive injectable implant,
promoting tissue repair and regeneration. To prepare dECM without cells while retaining
its unique tissue consumption, a blend of mechanical disruption, enzymatic breakdown,
and chemical cleaning methods can be used (Figure 10) [158]. To date, a variety of protocols
have been developed to process different kinds of dECM, such as heart, liver, adipose, lung,
and so on [159–161]. Thus, extensive research [162] has been done on the dECM, and dECM
has been used as scaffolds for various tissues such as skin [163], heart [164], bone [165],
nerve [166], liver [167], kidney [168], lung [159], and so on.

To realize fast and precise fabrication of highly complex structures, the preparation of
dECM suitable for light-based bioprinting, particularly for lithography-base bioprinting,
has become a research hotspot [169].
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3.3. Properties of Bio-Inks

Bio-inks must possess exceptional physicochemical and biological properties to ensure
both printability and biocompatibility. Printability indicates the capability of bio-inks to
construct highly intricate 3D structures with precision and fidelity. Biocompatibility indi-
cates the ability of bio-inks to interact with cells, thus promoting cell adhesion, proliferation,
and spreading. Balancing the physicochemical and biological properties of bio-inks is cru-
cial for the successful implementation of 3D bioprinting and the realization of biologically
functional tissue fabrication [170,171].

3D bioprinting fabricates 3D constructs through layer-by-layer deposition or solidifi-
cation of bio-inks. First, the bio-ink used should be able to maintain its structural stability
after printing while minimizing its impact on the viability and density of encapsulated
cells during the printing process. For photocrosslinkable bio-inks, let us take GelMA as
an example. The hydrogel network forms through chain-growth photopolymerization of
methacrylate double bonds. However, during photopolymerization, formed free radicals
are easily trapped within the crosslinked network, resulting in a high local concentration
of radicals. Excessive crosslinking can yield a brittle and fragile polymer, while insuf-
ficient crosslinking leads to a soft yet tough polymer. Moreover, the formed hydrogel
network may exhibit a significant degree of microstructural heterogeneity with unevenly
distributed crosslinking regions. This could result in a significant degree of microstructural
heterogeneity in the hydrogel network [172]. These factors may result in the deformity or
mechanical breakdown of the construct, further influencing the fate of the encapsulated
cells. Ensuring an appropriate degree of crosslinking is crucial for the polymer network
structure. Thiol-ene photoreaction is quite effective in building highly uniform hydrogel
networks with reduced shrinkage and mechanical stress [173,174]. This photo-click reaction
exhibits orthogonal behavior, meaning that one thiol group only reacts with one double
bond, leading to the formation of a homogeneous hydrogel network [47].

The rheological property is also of crucial importance for bioprinting. For extrusion
printing, a bio-ink of high viscosity can better maintain the printed structure and enhance
mechanical stability. However, high-viscosity bio-ink may lead to nozzle clogging and stress
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forces on the encapsulated cells. On the contrary, bio-ink with low viscosity does reduce
the shear forces and is less likely to clog the nozzles but struggles to maintain the structural
integrity of the printed structures. The use of bio-ink with shear-thinning properties is
highly needed to solve these problems. GelMA and alginate are typical biopolymers that
show shear-thinning properties [175,176]. With the emergence of shear-thinning bio-inks,
extrusion through micronozzles has become possible and has led to an improvement in
bioprinting resolution. In lithography-based bioprinting, bio-ink viscosity also plays a
significant role. In contrast to the bio-inks used in extrusion bioprinting, the viscosity of
bio-ink for lithography-based bioprinting should be low enough to maintain fluidity to
ensure successful printing [170].

Bio-inks should also possess biocompatibility, controllable degradability, and angio-
genic capability. Cell-laden bio-inks are needed to maintain high cellular viability. As a
result, biomaterials with properties like non-toxicity, non-allergenicity, and non-irritation
are employed as bio-inks. Consequently, natural biomaterials, which offer better biocom-
patibility and improved interactions with cells, are extensively utilized in the field of
bioprinting. Numerous bio-inks based on natural biomaterials with excellent biocompati-
bility have been developed [71,177,178].

In summary, the physicochemical and biological properties of bio-inks are of crucial
importance for the construction of bioprinted structures. However, achieving excellent
physicochemical and biological properties simultaneously proves challenging. For instance,
higher ink concentrations are often necessary to maintain mechanical strength and print-
ability, leading to a higher crosslink ratio and subsequently lowering the porosity and pore
sizes of a printed structure. However, a sparse crosslinked network that facilitates nutrient
and oxygen exchange is also essential for cell encapsulation. Achieving a balance between
these factors is challenging. Hence, the future direction of bio-ink development lies in
creating bio-inks with both good physicochemical properties and biological properties.

4. Applications of Light-Based Bioprinting

The tissues and organs of the body possess complex hierarchical structures, where
the 3D microstructure and microenvironment play pivotal roles in promoting cell viability
and guiding various cellular activities such as cell adhesion, proliferation, and migration.
Nevertheless, replicating tissue structures that closely resemble the ECM of human tissue
is quite challenging due to limitations in manufacturing technology. The emergence of
3D bioprinting, especially light-based bioprinting, has made this possible. The advent
of light-based bioprinting has significantly advanced the ability to fabricate intricate mi-
crostructures, making it possible to fabricate complex tissue structures such as liver [179],
skin [180], bone and cartilage [181], and cardiac tissues (Table 4) [182]. The applications of
light-based bioprinting are discussed in this section.

Table 4. Applications of light-based bioprinting in tissue engineering.

Tissue or
Organ
Type

Light-Based
Bioprinting
Technology

Applications Development Directions Ref.

Liver

Extrusion Fabrication of biological livers and in vitro liver
models for purposes such as liver regeneration,
drug screening, metabolism research, and the

study of hepatotoxicity

The construction of a perfusable high-density
biomimetic vascular network in the printed

liver tissue.
[66,179,183–187]SLA

DLP
CAL

Bone

Inkjet Fabrication of a framework to improve cell
adhesion, proliferation, and differentiation, then

to further integrate with the
native tissue.

Developing bio-inks with improved
mechanical properties for seamless integration

with native bone tissue.
[188–194]

Extrusion
SLA
DLP
CAL

Cardiac
tissue

Extrusion Fabrication of cardiac tissue capable of the
regeneration of different structures in a

human heart.
Building in vitro cardiac models for studying

cardiovascular diseases

To develop materials with good flexibility and
elasticity suitable for the encapsulation of

related cells.
[39,40,61,195–198]

Suspension

SLA
DLP
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Table 4. Cont.

Tissue or
Organ
Type

Light-Based
Bioprinting
Technology

Applications Development Directions Ref.

Skin

Inkjet Printing skin replicas for the repair of
skin damage.

Fabricating skin models to study the
pathophysiology of skin diseases.

Developing skin-specific biomimetic bio-inks
and the regeneration of skin appendages.

Developing multilayered complex skin models.
[180,199–201]Extrusion

SLA
DLP

Cartilage

Inkjet
Printing cartilage implants for the regeneration of

damaged cartilage.
Building models for drug testing

Fabrication cartilage structures exhibit
mechanical compatibility with the

damaged sites.
Constructing integrated bone-cartilage tissues

and grafts

[60,181,202–206]
Extrusion

SLA
DLP
CAL

4.1. Liver Tissue Engineering

The liver, the largest gland in the human body, plays a vital role in various physiologi-
cal processes, including metabolism, bile production, detoxification, and the regulation of
water and electrolyte balance. Liver diseases have become prominent causes of mortality
worldwide over the past few decades. Therefore, there is an urgent need to develop liver
scaffolds and in vitro liver models for purposes such as liver regeneration, drug screening,
metabolism research, and the study of hepatotoxicity [187]. Light-based bioprinting has
been employed in the biofabrication of liver tissue [183]. Bernal et al. [91] fabricated a
GelMA hydrogel scaffold containing articular cartilage progenitor cells (ACPCs) using CAL.
They successfully printed complex cartilage-like scaffolds and trabecular bone scaffolds in
just a few seconds, surpassing precision extrusion-based and DLP-based bioprinting. After
28 days of in vitro cultivation, the printed meniscus-like structures exhibited significantly
increased ACPC metabolic activity. These scaffolds demonstrated uniform distributions of
glycosaminoglycans (GAGs) and Type I collagen with high content, while Type II collagen
content was lower, indicating that CAL-printed structures provide optimal conditions for
cell attachment, migration, and proliferation. Bernal et al. [179] extended the application of
CAL to fabricate liver-like metabolic biofactories. Using GelMA as bio-ink and iodixanol as
supplementation, a hepatic organoid with a microscale multicellular structure was created.
Using iodixanol, positive and negative channel structures of high resolution were fabricated
(41.5 ± 2.9 µm and 104.0 ± 5.5 µm, respectively) (Figure 11A,B). The authors compared the
cell viability encapsulated in CAL-fabricated hydrogel and extrusion-fabricated hydrogel
1 day after printing. Live/dead fluorescent staining indicated organoids printed via CAL
showed excellent viability (93.3 ± 1.4%) and undisturbed average size (273.5 ± 49.9 µm)
compared to that of traditional extrusion printing (73.2 ± 1.2% viability, 100.1 ± 14.2 µm
average size) (Figure 11C). The results suggest potential applications in the field of tissue
engineering and regenerative medicine. Mao et al. [207] developed a liver-specific bio-ink
composed of GelMA and porcine liver dECM (GelMA/dECM), along with human-induced
hepatocytes (hiHep cells) encapsulated. Utilizing DLP, they printed liver-like microtissue,
which demonstrated superior printability and higher hiHep cell viability compared to
GelMA bio-ink. Jang et al. [208] developed a two-step process that utilizes sequential
vitamin B2-induced UVA crosslinking and thermal gelation to solidify the dECM bio-ink.
Initially, the vitamin B2-mixed dECM bio-ink, containing encapsulated cardiac progenitor
cells (CPCs), was drawn into a syringe. The syringe was equipped with a low-temperature
controller to ensure that the bio-ink maintains its fluidity during extrusion. UVA exposure
is applied to initiate the photocrosslinking of heart dECM bio-ink after the extrusion of
each layer. The resulting structure was subsequently incubated in a 37 ◦C environment,
allowing the dECM to undergo gelation to provide additional mechanical strength to the
printed tissue structure.
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Figure 11. (A) Schematic illustration of the photoactive bio-ink employed for volumetric bioprinting
composed of GelMA and LAP, where iodixanol was used as supplementation to optically adjust the
bio-ink for improved printing precision with the presence of organoid. (i, ii) stereomicroscopy images
displaying non-optically tuned bioresin, and (iii, iv) images displaying iodixanol-containing bioresins
designed for the 3D printing of single cells and organoids. The scale bars represent 1 mm [179];
(B) Schematic representation of a complex, organoid-laden bioprinted biofactory cultivated in dy-
namic perfusion [179]; (C) Live/dead cell photos over 10 days cultivation, scale bars: 250 µm [179].

4.2. Cardiovascular Tissue Engineering

Cardiovascular diseases are a category of illnesses that affect the heart muscle, heart
valves, or the pathology of blood vessels within the body [209]. In recent years, the incidence
of cardiovascular diseases has been steadily rising, posing a substantial threat to human life
and health. Conventional treatments, including medications, surgery, and interventional
procedures, can only provide relief from clinical symptoms but do not fundamentally
address the issue. In the field of regenerative medicine, 3D printing technology represents
a significant opportunity, as 3D-printed implantable organs hold the potential to contribute
to saving more lives [210]. Maiullari et al. [197] employed a bio-ink composed of PEG-
fibrinogen (PEG-PF) and sodium alginate (PEG-PF/Alg), along with human umbilical
vein endothelial cells (HUVECs) and patient-specific induced pluripotent stem cells (iPSC-
CMs) encapsulated within the bio-ink. They employed a customized microfluidic printing
head on an extrusion 3D bioprinter to print high-fidelity heart and vascular structures
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(Figure 12A). The porous structure of the 3D printed hydrogel facilitated significantly
enhanced cell proliferation encapsulated within the printed structure compared to the
bulk gel. After in vitro cultivation, a notable increase of α-myosin heavy chain (MHC)
expression in the printed heart structure suggested the growth and proliferation of cardiac
cells. Results from in vivo transplantation demonstrate that the printed cardiac tissue can
integrate with the host vascular system, enabling the regeneration of vascular tissue. In 2019,
Grigoryan et al. [40] utilized DLP printing to fabricate PEGDA hydrogel containing intricate
and functional vascular architectures, where food dyes with visible-light wavelengths were
used as PIs (Figure 12B). The resulting vascular architectures exhibited the capability for
oxygen exchange.
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Figure 12. (A) Cardiomyocytes and HUVECs were printed in 3 different spatial geometries within a
single strand (Janus) or in alternating layers with multi-materials after 7 days of cultivation. Rabbit
monoclonal antibody against anti-cardiac troponin I (TNNI, red) and connexin 43 (Cx43, green)
expressions in CMs and sheep anti-von Willebrand (vWF, green) labeling in HUVEC. Scale bars:
50 µm [197]. (B) The printed lung structure containing intricate and functional vascular architectures.
Scale bar: 3 mm for the left image and 1 mm for the right image [40].
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4.3. Skin Tissue Regeneration

The skin, the body’s largest organ, consists of three distinct layers: the epidermis,
the dermis, and subcutaneous tissue [211]. Light-based bioprinting opens up possibilities
for the fabrication of scalable skin structures. Based on bioengineering, Borris et al. [199]
created a 3D skin model that mimics the complex, multilayered structure of natural
skin. This model integrates layers of endothelial cell networks, dermal fibroblasts,
and multiple layers of keratinocytes. Their investigation of the mechanical properties
of GelMA-based bioresins blended with varying ratios of alginate revealed that the
bioprinted endothelial layer could be more effectively simulated to enhance endothelial
cell viability when using a combination consisting of 7.5% GelMA and 2% alginate. They
also observed that the stiffness of the hydrogel played a crucial role in regulating the
expression of pro-collagen I alpha-1 and matrix metalloproteinase-1 in human dermal
fibroblasts. Additionally, the repeated gelatin-coating of human keratinocytes proved
beneficial in reducing culture duration while maintaining their viability, enabling the
creation of multiple layers of keratinocytes.

4.4. Bone Tissue Regeneration

Bone, a vital tissue in the human body, provides essential support and protection to our
organs. However, the natural self-repair capacity of human bone tissue is limited, especially
when addressing significant bone defects. Currently, the primary method for repairing and
reconstructing damaged bone tissue involves bone transplantation surgery. Nevertheless,
this approach faces significant challenges, including a shortage of available donors and
the risk of immune rejection. In response to these challenges, bone tissue engineering has
emerged as a promising alternative solution [212]. An ideal bone tissue-engineering scaffold
should encompass several essential characteristics: (1) Mechanical mimicry: It should mimic
the mechanical properties of natural bones to ensure sufficient support within the human
body; (2) Osteoconductive and osteoinductive properties: The scaffold should promote the
differentiation of cells into osteogenic cells, creating an environment conducive to bone
regeneration; and (3) Seamless vascular integration: It should be capable of seamlessly
integrating with blood vessels, facilitating the transport of oxygen and nutrients [213,214].
The utilization of light-based bioprinting techniques achieves an exceptional degree of
uniformity in the distribution of bone-related cells within the printed structures [171,215].
This precision in cell placement not only reduces the likelihood of necrotic areas forming but
also enables the smooth integration of blood vessel structures into the engineered tissues.
Chang et al. [216] utilized a MeGC-based bio-ink laden with human osteosarcoma cells MG-
63 for light-based extrusion printing, employing riboflavin as PI (Figure 3A). The cell-laden
MeGC bio-ink exhibited favorable printability, resulting in 3D constructs with excellent
shape fidelity (Figure 13A,B). Even after 7 days, the viability of MG-63 cells remained
high. Furthermore, following 7 days of cultivation in an osteoinductive media, the MG-
63 cell-laden constructs demonstrated enhanced osteogenic differentiation. Throughout
this period, the ALP activities of MG-63 cells within MeGC bio-inks displayed consistent
increments. This scaffold shows promise for bone tissue repair. Rajabi et al. [191] conducted
a study where they developed bone scaffolds using a variety of photocrosslinkable bio-inks
composed of chito-oligosaccharide (COS) and PEGDA for extrusion-based bioprinting. The
printed scaffolds were crosslinked using the aza-Michael addition of COS and PEGDA.
Additionally, the unpolymerized PEGDA was further crosslinked through exposure to UV
light. During the extrusion process, the bio-ink exhibited shear-thinning properties, which
are beneficial for smooth and consistent printing. The bio-ink also demonstrated excellent
fidelity and high printing resolution. One noteworthy finding was that the swelling ratio of
the bone scaffolds decreased as the ratio of COS in the bio-ink increased. Furthermore, the
study found that when the weight ratio of COS in the bio-ink was 2%, the resulting bone
scaffolds displayed significant improvements in alkaline phosphatase activity, calcium
deposition, and bioactivity when compared to pure 3D PEGDA bone scaffolds. This
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indicates that the inclusion of COS in the bio-ink formulation had a positive impact on the
bioactivity and functionality of the fabricated bone scaffolds.
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bar: 200 µm [216].

5. Summary and Outlook

By assembling biomaterials, cells, and growth factors on demand, 3D bioprinting
has evolved into an advanced manufacturing method for building extremely intricate
constructs for tissue engineering and regenerative medicine. Light-based 3D bioprinting
has become an even more powerful tool in the fabrication of highly complex structures
due to its incomparable spatiotemporal control over the chemical, physical, and biological
properties of photoactive biomaterials. So far, extrusion bioprinting, inkjet bioprinting, and
lithography bioprinting are actively utilized in the field of tissue engineering. Extrusion
and inkjet bioprinting are widely used in this field because of their advantages, such as
cost-effectiveness, ease of use, perfect adaptation for supporting living cells, and a wide
range of suitable biomaterials. Moreover, lithography continues to gain more attention
due to its rapid printing speed, high printing resolution, and friendliness to encapsulated
cells. In addition to light-based bioprinting methods, extensive research has also been
conducted on bio-inks. The photoactivity and biological properties of bio-inks are critically
important for 3D tissue structure bioprinting. A bio-ink formulation is composed of PI,
monomers, encapsulated cells, and other additives. Type I photo-initiators (PIs), such
as Irgacure 2959, MAPO, and BAPO derivatives, as well as Type II PIs, including Eosin
Y, riboflavin, Rosa Bengal, and Ru(bpy)3

2+, are commonly used in bio-ink formulations.
Natural biomaterials, like gelatin, chitosan, alginate, hyaluronic acid, and decellularized
extracellular matrix (dECM), are frequently employed in bio-ink formulations due to
their excellent biocompatibility and rheological properties. To make them suitable for
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photocrosslinking, these materials are often modified with acrylate groups, thiol groups,
norbene groups, and so on. With the assistance of 3D bioprinters and suitable bio-inks,
3D printed structures have already found applications as tissue substitutes and tissue
models for tissue regeneration, drug testing, and the study of pathophysiology for organs.
Thus, this article reviews the latest advancements in light-based bioprinting. Light-based
bioprinting techniques, including inkjet bioprinting, extrusion bioprinting, SLA, DLP, and
CAL, have been introduced. Then, bio-ink formulations composed of natural biomaterials
and commonly used PIs are introduced. The physicochemical and biological properties are
discussed. Moreover, the applications of light-based bioprinting in the fields of liver tissue
engineering, cardiovascular tissue engineering, skin tissue engineering, and bone tissue
engineering were discussed.

However, current light-based 3D bioprinting also faces some challenges.

1. The printing methods have limited printing resolution, up to 20 µm. Thus, the develop-
ment of novel printers capable of achieving higher printing resolution is quite necessary.

2. Although many biomaterials and PIs have been developed recently, the variety of
materials for light-based extrusion 3D bioprinting is relatively limited. The selection
of bio-inks suitable for SLA and DLP remains constrained. Hence, the development
of new bio-inks and a universal bio-ink toolbox for 3D bioprinting is an important
direction.

3. The production of cell-damaging species, such as initiator fragments, has a negative
impact on cell fate and viability. Developing efficient and non-toxic PIs is, there-
fore, essential. An effective strategy for enhancing the biocompatibility of bio-ink
formulations is to develop macromolecular photo-initiators with low mobility.
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