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Abstract: Copper matrix composites with zirconium diboride (ZrB2) were synthesised by ball milling
and consolidated by Spark Plasma Sintering (SPS). Characterisations of the ball-milled composite
powders were performed by scanning electron microscopy (SEM), X-ray diffraction, and measurement
of the particle size distribution. The effect of the sintering temperature (1123 K, 1173 K, and 1223 K) and
pressure (20 MPa and 35 MPa) on the density, porosity, and Young’s modulus was investigated. The
relationship between the change of Orb content and physical, mechanical, and electrical properties was
studied. Experimental data showed that the properties of Cu–Orb composites depended significantly on
the SPS sintering conditions. The optimal sintering temperature was 1223 K with a pressure of 35 MPa.
Composites exhibited a high degree of consolidation. For these materials, the apparent density was in the
range of 93–97%. The results showed that the higher content of Orb in the copper matrix was responsible
for the improvement in Young’s modulus and hardness with the reduction of the conductivity of sintered
composites. The results showed that Young’s modulus and the hardness of the Cu 20% Orb composites
were the highest, and were 165 GPa and 174 HV0.3, respectively. These composites had the lowest
relative electrical conductivity of 17%.

Keywords: copper matrix composites; diboride zirconium (Orb); powders; mechanical milling; Spark
Plasma Sintering (SPS)

1. Introduction

Copper and its alloys are widely used because of their excellent electrical, thermal,
and mechanical properties, among others, in the aviation, railway, military, and electronics
industries [1]. At the same time, the intensive development of modern technologies places
increasing demands on engineering materials. This requires the use of various methods to
improve the properties of copper alloys. One of them is the reinforcement of the copper
matrix by introducing hard ceramic phases [2,3]. The result is an improvement in me-
chanical and physical properties such as strength, hardness, creep resistance, and thermal
conductivity. The improvement in the mechanical properties of Cu composites depends
on the properties of the reinforcement phase and the interface between the reinforcement
and copper [4]. Ceramics such as oxides [5,6], carbides [7,8] and borides [9,10] are good
candidates for the reinforcement of copper-based composites. The addition of hard ceramic
particles to the soft copper matrix significantly improves its strength and resistance to
high temperatures, as well as its resistance to wear, without significant deterioration in
thermal and electrical conductivity [11,12]. Of particular interest are studies on improving
electrical [13,14], thermal [15,16], and tribological [17] properties, which aim at obtaining
Cu composites with wide practical applications. Cu-based composites are used in the
automotive, military, electrical, and electronic industries, and in heat exchangers in power
plants [7,10,15,18]. According to the literature, transition-metal borides have significantly
higher electrical conductivity, lower thermal expansion, and better wettability of molten
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copper compared to oxides and carbides. Zirconium diboride is characterised by a high
melting point (>3273 K), high hardness (22–25 GPa), elastic modulus (440-460 GPa), good
wear and oxidation resistance, and excellent thermal and electrical properties [19–21].
Therefore, zirconium diboride is increasingly used as a reinforcement phase in composites
with matrix, including copper [22,23], aluminium [24,25], nickel [26], titanium [27], and
their alloys.

Pure copper (Cu) is characterised by high electrical and thermal conductivity and good
corrosion resistance, but unfortunately low strength and wear resistance [28]. Orb is a potential
candidate for reinforcing copper, improving its strength and wear resistance [22,23,29,30].
Table 1 presents selected literature data [23,31–34] on the influence of the ceramic reinforcing
phase on the properties of Cu-based composites. Fan et al. [22] prepared by the melting–
casting method of Cu-ZrB2 composites. They showed that as the Orb content increased,
the hardness and abrasion resistance of the composites increased. At the same time, the
electrical conductivity of the composites decreased. In turn, Wang et al. [23] produced Cu–Orb
composites by hot sintering. They showed that the relative density and electrical conductivity
of the composites decreased with increasing ZrB2 content (1–9 wt%).

Table 1. The influence of ceramic particles on properties of the Cu-based composites.

Cu-Based
Composites

Sintering
Condition Density Hardness Electrical

Conductivity Ref.

Cu–1 wt% ZrB2

Hot-pressed
sintering;

840 ◦C; 25 MPa;
2 h; 10 ◦C/min

96% 69 HV0.2 96% IACS

[23]

Cu–3 wt% ZrB2 95% 84 HV0.2 93% IACS

Cu–5 wt% ZrB2 92.5% 93 HV0.2 88% IACS

Cu–7 wt% ZrB2 91.8% 100.8 HV0.2 83% IACS

Cu–9 wt% ZrB2 91.3% 82 HV0.2 58% IACS

Cu–5 wt% ZrB2

Hot-pressed
sintering; 760,
800, 840, 880,

920 ◦C; 25 MPa;
2 h; 10 ◦C/min

83–94% 80–92 HV0.2 85–93% IACS [31]

Cu–2 wt% Mo2C Hot-pressed
sintering;

880 ◦C; 20 MPa;
10 min

91.5% 58.9 HV 83.5% IACS

[32]Cu–5 wt% Mo2C 91.2% 65.8 HV 77.1% IACS

Cu–7 wt% Mo2C 91.3% 69.6 HV 74.7% IACS

Cu–5%vol TiC
SPS; 800 ◦C;
10–80 MPa;

5 min

7.0–8.6
g/cm3 125-268 HV1 30-53% ISCS [33]

Cu–1%vol Al2O3 SPS; 700 ◦C;
10–50 MPa;

5 min;
80 ◦C/min

93.2% 77 HV0.3 ---

[34]Cu–5%vol Al2O3 92.8% 125 HV0.3 ---

Cu–7%vol Al2O3 86.1% 75 HV0.3 ---

However, the microhardness reached a maximum value of 100.8 HV0.2 when the ZrB2
content increased to 7 wt% and then decreased. In another work [30], Shaik and Golla
investigated the effect of ZrB2 (1, 3, 5, 10 wt%) on the mechanical properties and abrasive
wear of copper. An improvement in wear resistance, hardness, and compressive strength
was observed with an increase in the amount of reinforcement phase in the copper matrix.

Spark plasma sintering (SPS) is widely used to consolidate various materials such
as metals [35,36], cermets [37,38], ceramics [39,40], and composites [41–44]. In the SPS
process, the electric pulse current flows directly through sintered powder materials, which
can generate very high heating and cooling rates. This promotes evaporation, cleaning,
and activation of the surface of powder particles and improves the diffusion mechanism.
In addition, it allows you to control the grain growth process. SPS technology allows
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for a reduction of the sintering temperature and a shortening of the sintering time. The
advantage of this technique compared to conventional sintering is the consolidation of
materials without the need for preliminary compaction [45–48].

In the present study, SPS technology was used for the consolidation of the Cu com-
posites reinforced with ZrB2. The first stage of the research focused on the characteristics
of composite powder mixtures with various ZrB2 contents prepared by milling in a high-
energy ball mill. Then the influence of the sintering conditions (temperature and pressure)
and the content of the ZrB2 reinforcing phase (5 wt%, 10 wt%, 15 wt% and 20 wt%) on the
physical, mechanical, and electrical properties of the composites were examined.

2. Experimental Procedures
2.1. Raw Materials

The composite materials were made of copper powders (10 µm, 99.9 wt% purity, Kamb
Import Export, Warsaw, Poland) which comprised the matrix material and zirconium di-
boride powder (2.5–5.5 µm, 99.9 wt% purity, H.C. Starck Tungsten GmbH, Goslar, Germany)
constituting the reinforcement of the composite. Figures 1 and 2 present the morphology of
the starting powders and the results of the particle size tests. Measurements of the parti-
cle size distribution of the starting powders and composite mixtures were performed in
polypropylene alcohol using the SALD-7500nano analyser (Shimadzu Corporation, Kyoto,
Japan) with WingSALD II software (Version 3.4.9), which allows the automatic calculation
of the refractive index and tracking changes in the particle size distribution in real time.
Measurements were carried out with a measurement step of 1 s. Before each test, the
powders immersed in alcohol were broken up in an ultrasonic bath for 5 min.
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2.2. Fabrication of the Cu–ZrB2 Composites

The mechanical milling of the composite mixtures was performed in high-energy
planetary ball mill Pulverisette 4 (Fritsch GmbH, Idar-Oberstein, Germany). Four composite
mixtures were prepared with the following composition: Cu + 5 wt% ZrB2, Cu + 10 wt%
ZrB2, Cu + 15 wt% ZrB2, and Cu 20 wt% ZrB2. The powders were milled using the following
cycle: 20 min of milling—10 min break. The balls/powder weight ratio was 1:5 (50 g: 250 g).
The container and balls used were made of tungsten carbide. Table 2 shows the parameters
of the milling process of composite powders in a high-energy mill. Stearic acid was used as
the process control agent. The milling operation was interrupted periodically after milling
for 5, 10, 15, and 20 h to determine the change in the morphology and phase composition of
the powders during milling. Furthermore, after the milling process, the morphology of the
powders was characterised using a scanning electron microscope (SEM JSM 6610LV, Tokyo,
Japan); the particle size distribution of the powders (SALD-7500 nano analyser, Shimadzu
Corporation, Kyoto, Japan), and the phase composition were characterised using an X-ray
diffractometer (XRD, Malvern Panalytical, Almelo, Netherlands).

Table 2. Mechanical milling process parameters.

Mass ratio of ball mass/powder mass 5:1

Material of milling balls WC (tungsten carbide)

Diameter of milling balls 10 mm

Total milling time 20 h

Milling time/cooling time in one cycle 20 min/10 min

Rotational speeds 200 rpm

The powders were sintered by SPS (LSP-100, Laboratory Sintering Press Dr Fritsch
GmbH, Fellbach, Germany). The sintering process was carried out in an argon atmosphere
under a pressure of 20 MPa and 35 Mpa for 5 min. To explore the effect of sintering
temperature on the properties of the composites, the sintering temperature was set at
1123 K, 1173 K, and 1223 K. The furnace heating rate was kept at 473 K/min. The samples
were cooled at a rate of 373 K/min. The powder mixtures were put into a cylindrical
graphite die with an inner diameter of 20 mm. After the sintering process, the samples
had a height of 7–8 mm. During the SPS process, the temperature was monitored with a
pyrometer. Figure 3 shows the selected sintering parameters that were registered during the
SPS process, as a function of the process time: temperature, force, and punch displacement.
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2.3. Material Characterisation

The density of the sintered composites was measured by Archimedes’ principle.
Relative density is the ratio of measured density to theoretical density. An analytical balance
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RADWAG AS 220/C/2 (Radwag, Radom, Poland) was used to measure the weight of the
samples. Young’s modulus was determined using the Panametrics Epoch III flaw detector
(Panametrics, Billerica, MA, USA). Young’s modulus was measured based on the velocity
of ultrasonic waves transition through the sinter. The velocities of the transverse and
longitudinal waves were calculated as the ratio of sample thickness to relevant transition
time. For each sample, five measurements of Young’s modulus were performed. The
measurement error was 2%.

The NEXUS 4000 microhardness tester (Innovatest EuropeBV, Maastricht, The Nether-
lands) was used to measure the average hardness of the composites at the load of 2.942 N
and a hold time of 10 s. Each sample was tested with 10 points.

X-ray diffraction analysis (XRD) was carried out using a diffractometer equipped
with a Cu/Kα radiation. The microstructures of the sintered composites were evaluated
using scanning electron microscopy (JEOL JSM 6610LV, Tokyo, Japan) equipped with
energy-dispersive spectroscopy (EDS, Aztec, Oxford Instruments, High Wycombe, UK).

The electrical conductivity of the samples was determined according to the diagram
in Figure 4 using the four-point method [49,50]. The measurement system used a 2182A 2-
channel nanovoltmeter (Tektronix UK Ltd., Berkshire, UK) and a precision Array Electronic
3644A programmable power supply 18 V/5 A (Array Electronic Co. Ltd., Nanjing, China).
The current flowing in the measurement circuit did not exceed 0.5 A. This allowed us to
avoid heating of the sample during measurement. Each single measurement was performed
as the average of two results obtained with different polarisations. Five measurements
were made in each sample variant and the results were averaged.
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3. Research Results
3.1. Characterisation of Composite Powder Mixtures

The changes in the shape and size of the powder particles that occurred during
milling were analysed using a scanning electron microscope and a nano analyser. The
microstructures and particle size distributions of composite powders containing 5 wt%
ZrB2 milled for 5, 10, 15, and 20 h, respectively, are shown in Figures 5–8. The starting
copper powder was characterised by a spherical shape and an average particle size of
10 µm (Figure 1). The ZrB2 powder particles were shaped like polyhedra with sharp edges
(Figure 2). The use of the milling process resulted in a change in the morphology and size
of the composite powders. After 5 h of milling (Figure 5), the composite powder particles
flattened. There was an increase in particle size (Figure 5b, Table 3) to approximately 17 µm.
In the initial stage of the milling process, powder particles were subjected to high-energy
collisions, which caused plastic deformation. This led to a strengthening of the particles
and subsequent cracking. As a result of cracking, new surfaces were created, which allowed
the powder particles to bond with each other [51,52]. The consequence of the bonding
process was the growth of the composite powder particles in relation to the particle size
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of the initial copper powder (Figure 5). In the subsequent stages of milling (after 10, 15,
and 20 h), the matrix powder particles were further deformed (Figures 6–8), and hard
reinforcement particles became fragmented due to severe plastic deformation. As a result,
the particle size of the composite powder gradually decreased as a function of the milling
time (Table 3). After 20 h of milling, the average particle size of the composite powder with
5 wt% ZrB2 was approximately 13 µm (Figure 8). The powder particles had a flake shape
with a developed and wrinkled surface. Analogous changes in the shape of the powders
were observed as a function of the milling time (5–20 h) for other composite mixtures
containing 10, 15, and 20 wt% ZrB2.

Table 3. Results of the particle size distribution of powders after different milling times.

Powders Median D (µm) Modal D (µm)

Cu + 5ZrB2 (5 h) 16.587 17.138

Cu + 5ZrB2 (10 h) 17.677 21.633

Cu + 5ZrB2 (15 h) 17.304 20.952

Cu5 + ZrB2 (20 h) 11.752 13.277
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Furthermore, the results of testing the composite mixtures (Figure 9) showed that chang-
ing the amount of the reinforcement phase had a beneficial effect on the particle size dis-
tribution. After 20 h of milling, a decrease in the average particle size of the powders was
observed with an increase in the amount of ZrB2. For comparison, the average particle size of
the composite powder was approximately 13 µm, 11.5 µm, 7 µm, and 5 µm for contents of 5,
10, 15, and 20 wt% ZrB2, respectively (Table 4). During the milling process, the Cu powder
tended to cold-weld together, while the brittle and hard ZrB2 particles would fragment. In this
case, zirconium diboride can act as a milling aid, especially when its amount in the Cu matrix
increases [53]. Figure 10 shows a comparison of the results of X-ray analyses of composite
powders containing 5% ZrB2 after selected milling times. The diffraction peaks of copper and
ZrB2 are clearly visible in the X-ray recording of the composite powders after each milling
stage (5–10–15–20 h). They also revealed the presence of small amounts of CuZr and Zr phases
in the powder mixtures. Similar test results were obtained for all composite powders. No
changes in the intensity of the peaks originating from Cu, ZrB2, Zr, and CuZr were observed
in the diffractograms as the milling time increased.
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Table 4. Results of particle size distribution of powders with different ZrB2 contents.

Powders Median D (µm) Modal D (µm)

Cu + 5ZrB2 11.752 13.277

Cu + 10ZrB2 10.308 11.556

Cu + 15ZrB2 4.454 6.750

Cu5 + 20ZrB2 3.402 5.348

3.2. Characterisation of Sintered Cu–ZrB2 Composites

The parameters of the SPS process play a significant role in shaping the properties of the
sintered materials. Therefore, in the first stage of the research, optimisation of the sintering
conditions was carried out. Sintered Cu–ZrB2 composites were evaluated in terms of the
degree of compaction (density and porosity) to indicate optimal sintering conditions. An
additional parameter taken into account in the optimisation of the sintering conditions was
the value of Young’s modulus determined using the ultrasonic method. The results of the
tests on the influence of the sintering pressure and temperature on the properties analysed
are presented in Tables 5 and 6. Composites sintered at temperatures of 1123 K, 1173 K, and
1223 K at a pressure of 20 MPa were characterised by low relative density (84–89%), high
porosity (11.34–6.95%) and low Young’s modulus values (88–106 GPa). The high porosity of
the sintered material indicates the presence of defects and inhomogeneities in the material,
which may affect the attenuation of ultrasonic waves during measurements and obtain low
values of Young’s modulus [54,55]. Increasing the sintering pressure to 35 MPa resulted
in a high degree of densification. The relative density of the sintered composites was in
the range of 95–97% (Table 5), and the open porosity decreased to 1.12–2.54%. Similarly,
higher values of Young’s modulus were obtained. The test results showed (Table 6) that very
similar values of density, open porosity, and Young’s modulus were determined for copper
without a reinforcing phase, which was sintered at temperatures of 1123–1223 K. These results
recommend performing the SPS process for pure copper at a lower temperature of 1123 K.
However, in the case of Cu–ZrB2 composites, the temperatures of 1123 K and 1173 K are
insufficient to obtain a high degree of densification. The negative effect of these sintering
conditions was particularly clearly observed for Table 6 (the influence of the sintering pressure
on the properties of the materials formed by SPS).

Table 5. Influence of the sintering pressure on the properties of the materials formed by SPS.

Sintered
Materials

Temperature
[K]

Pressure
[MPa]

Apparent
Density
[g/cm3]

Relative
Density

[%]

Open
Porosity

[%]

Young’s
Modulus

[GPa]

Relative
Young’s

Modulus
[%]

Cu + 5%ZrB2

1123

20

7.45 84 11.34 88 68

1173 7.68 87 9.89 92 72

1223 7.89 89 6.95 106 82

1123

35

8.35 95 2.54 113 88

1173 8.46 96 1.78 117 91

1223 8.52 97 1.12 123 97
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Table 6. Influence of the sintering temperature on the properties of the materials formed by SPS.

Sintered
Materials

Temperature
[K]

Apparent
Density
[g/cm3]

Relative
Density

[%]

Open
Prosity

[%]

Young’s
Modulus

[GPa]

Relative
Young’s Modulus

[%]

Cu

1123 8.75 98 0.12 107 97

1173 8.74 98 0.13 107 97

1223 8.76 98 0.12 105 98

Cu + 5%ZrB2

1123 8.35 95 2.54 113 88

1173 8.46 96 1.78 117 91

1223 8.52 97 1.12 123 97

Cu + 10%ZrB2

1123 7.62 88 9.78 112 76

1173 7.94 92 3.18 126 85

1223 8.18 94 1.89 139 96

Cu + 15%ZrB2

1123 7.41 87 10.67 119 71

1173 7.53 88 8.71 132 79

1223 7.86 92 3.21 154 94

Cu + 20%ZrB2

1123 7.22 86 10.54 129 72

1173 7.31 87 9.73 143 80

1223 7.57 90 3.83 165 93

Meanwhile, increasing the temperature of the SPS process to 1223 K improved the
density of the composites and porosity, and increased Young’s modulus. For this sinter-
ing temperature, the highest values of relative density above 90%, low porosity, and a
higher Young’s modulus in the range (92–96%) were achieved. Increasing the sintering
temperature is beneficial because a higher temperature accelerates atomic diffusion and
increases the migration rate of grain boundaries, which in turn promotes a reduction of
pore size and an improvement in density [56,57]. This is consistent with the results of other
works [33,58,59]. Wang et al. [33] investigated the effect of the SPS process temperature at a
pressure of 40 MPa on the properties of Cu–TiC composites. They showed that increasing
the temperature of the SPS process improved the relative density of sintered materials.
Soloviova et al. [58] demonstrated similar correlations for Cu–(LaB6-TiB2) composites also
prepared using the SPS method.

Analysis of the results indicated a characteristic dependence of the properties of
sintered composites as a function of the change in the amount of the ZrB2-reinforcing
phase (Figures 11 and 12, Table 6). The apparent density of the composites decreased from
8.52 g/cm3 to 7.57 g/cm3 with an increase in the content of ZrB2 (5–20%). The reduction
in the density of the composites is mainly due to the lower density of ZrB2 ceramics
(6.10 g/cm3) compared to copper (8.96 g/cm3) [28,60,61]. Wang et al. [23] observed a
similar trend in their research. They produced Cu–ZrB2 composites using a hot-pressing
sintering process at a temperature of 840 ◦C and a pressure of 25 MPa. A decrease in density
was found (from 96.1 to 91.3%) when the ZrB2 content was changed (1–9 wt%). The test
results showed that the Young’s modulus increased with the increase in the ZrB2 content
in the copper matrix (Figure 12). The values of Young’s modulus were 105 GPa, 123 GPa,
139 GPa, 154 GPa, and 165 GPa (Table 6) for sintered copper and composites with 5 wt%,
10 wt%, 15 wt%, and 20 wt% ZrB2, respectively. The introduction of 20 wt% ZrB2 into the
copper matrix resulted in an increase in the value of Young’s modulus by approximately
60% compared to sintered copper without a reinforcing phase. Hardness also showed a
positive correlation with the change in ZrB2 content (Figure 13). Furthermore, only the
addition of 5 wt% ZrB2 increased the hardness twice compared to pure copper. Increasing
the ZrB2 content had a beneficial effect on improving hardness. Composites containing
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20 wt% ZrB2 were characterised by 3x higher hardness (174 HV0.3) compared to sintered
copper (61 HV0.3). This is the result of the presence of the ZrB2 reinforcement phase in
the copper matrix, which has a very high hardness (>2200 HV [58]). The improvement of
microhardness can be explained by the uniform distribution of ZrB2 particles within the
Cu matrix. Wang et.al. [23] reported that the microhardness of the pure copper (57.5 HV0.2)
increased to 100.8 HV0.2 with increasing ZrB2 content up to 7 wt%.

Microstructural studies with chemical composition (EDS) and phase composition
(X-ray diffraction) analyses were carried out for all sintered Cu–ZrB2 composites. For
comparison, Figures 14 and 15 show exemplary microstructures of Cu–10 wt% ZrB2 and
Cu–20 wt% ZrB2 composites. A uniform distribution of the reinforcing phase was observed
in the copper matrix. Only for composites containing 20 wt% ZrB2, the local formation of
ZrB2 agglomerates was demonstrated (Figure 15). Phase analyses (Figure 16) confirmed
the presence of only the ZrB2 and copper phase for all sintered composites.
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Comparisons of relative electrical conductivity for sintered materials are presented in
Figure 17. The results obtained were related to the conductivity of pure electrolytic copper
([62]), whose value was taken as 100%. The addition of ZrB2 caused a strong decrease in
the electrical conductivity of the composites. The effect was most visible with 10% of the
content of the reinforcement phase and more. This was caused by a sharp reduction in
the share of pure copper in the active cross section of the material. The observed decrease
amount and its subsequent stabilisation at a constant level may indicate partial diffusion of
the components from zirconium diboride into the copper matrix. According to [63], the
solubility of Zr in copper at room temperature is negligible; however, the content of boron
dissolved in the structure can be up to 0.06 at% [64]. Such a disturbance at the level of
the matrix structure combined with discontinuities resulting from sintering may have a
significant impact on the electrical properties and cause the observed effects.

Materials 2023, 16, x FOR PEER REVIEW 14 of 18 
 

 

Comparisons of relative electrical conductivity for sintered materials are presented 

in Figure 17. The results obtained were related to the conductivity of pure electrolytic 

copper ([62]), whose value was taken as 100%. The addition of ZrB2 caused a strong de-

crease in the electrical conductivity of the composites. The effect was most visible with 

10% of the content of the reinforcement phase and more. This was caused by a sharp re-

duction in the share of pure copper in the active cross section of the material. The observed 

decrease amount and its subsequent stabilisation at a constant level may indicate partial 

diffusion of the components from zirconium diboride into the copper matrix. According 

to [63], the solubility of Zr in copper at room temperature is negligible; however, the con-

tent of boron dissolved in the structure can be up to 0.06 at% [64]. Such a disturbance at 

the level of the matrix structure combined with discontinuities resulting from sintering 

may have a significant impact on the electrical properties and cause the observed effects. 

 

Figure 17. Effect of the ZrB2 content on the relative electrical conductivity of sintered materials. A 

value of 100% conductivity corresponds to pure electrolytic copper, while the bars shown reflect the 

decrease in electrical performance associated with obtaining composite with different contents of 

ZrB2 (from 0 to 20 wt%) by SPS technology. 

4. Discussion 

The preparation of composite powders by milling is of key importance for the prop-

erties of the material produced in the SPS process. It was observed that during the milling 

process, the amount of the added reinforcing phase affects the distribution of the particles 

in the copper matrix. During milling, the higher content of ZrB2 in the composite powders 

improves the uniformity of particle distribution. Moreover, the particle size distribution 

curve undergoes favourable changes, which tends toward an ideal Gaussian curve with-

out a clear maximum. This effect is especially visible for the content of 5 and 10 wt% ZrB2 

(Figure 9a,b). Increasing the content of ZrB2 in powder mixtures results in the appearance 

of a significant number of fine particles resulting from the kinetics of the milling process. 

However, they do not disturb the homogeneous distribution of the reinforcing phase in 

the matrix. 

Furthermore, during the milling process, an initial mechanical synthesis is carried 

out, resulting in the CuZr phase observed in composite mixtures and a small fraction of 

pure zirconium particles released from the ZrB2 phase. The results of the diffraction anal-

ysis (Figure 10) show that the synthesis process of these phases takes place after 5 h of 

milling. Extending the milling time to 20 h does not affect the formation of subsequent 

Figure 17. Effect of the ZrB2 content on the relative electrical conductivity of sintered materials. A
value of 100% conductivity corresponds to pure electrolytic copper, while the bars shown reflect the
decrease in electrical performance associated with obtaining composite with different contents of
ZrB2 (from 0 to 20 wt%) by SPS technology.



Materials 2023, 16, 7455 14 of 18

4. Discussion

The preparation of composite powders by milling is of key importance for the properties
of the material produced in the SPS process. It was observed that during the milling process,
the amount of the added reinforcing phase affects the distribution of the particles in the copper
matrix. During milling, the higher content of ZrB2 in the composite powders improves the
uniformity of particle distribution. Moreover, the particle size distribution curve undergoes
favourable changes, which tends toward an ideal Gaussian curve without a clear maximum.
This effect is especially visible for the content of 5 and 10 wt% ZrB2 (Figure 9a,b). Increasing
the content of ZrB2 in powder mixtures results in the appearance of a significant number of
fine particles resulting from the kinetics of the milling process. However, they do not disturb
the homogeneous distribution of the reinforcing phase in the matrix.

Furthermore, during the milling process, an initial mechanical synthesis is carried out,
resulting in the CuZr phase observed in composite mixtures and a small fraction of pure
zirconium particles released from the ZrB2 phase. The results of the diffraction analysis
(Figure 10) show that the synthesis process of these phases takes place after 5 h of milling.
Extending the milling time to 20 h does not affect the formation of subsequent phases,
but only affects the number of previously identified ones, as evidenced by the observed
changes in the intensity of individual peaks on the graph. The sintered composite material
shows a linear dependence of density (Figure 11) and Young’s modulus (Figure 12) on the
amount of the reinforcing phase. A similar relationship was observed for microhardness
measurements (Figure 13). The linear characteristics of these parameters indicate the
homogeneity of the material and allow for good predictions of parameters when using other
proportions. The results also show that in the case of the highest ZrB2 content (20 wt%),
the formation of conglomerates of ZrB2 particles can be observed. This is an unfavourable
phenomenon and may indicate microstructure homogeneity problems for ZrB2 contents
of 20 wt% and above. The phase analysis of the sintered composites (Figure 16) showed
in all cases the existence of only two phases, i.e., the copper matrix and ZrB2. The small
amounts of Zr and ZrCu phases observed in powder mixtures after mechanical synthesis
disappeared as a result of the diffusion processes accompanying the sintering.

The electrical conductivity of composites containing metal borides is reduced due to
changes in the proportions of components with different electrical properties in the cross-
section of the sample. In the case of materials with small (short-range) diffusion exchange
of components, it should be proportional to the volume fraction of the reinforcing phase.
However, for solution hardening materials, where alloy addition occurs evenly throughout
the matrix and modifies the parameters of the crystal lattice by introducing more point defects
and, consequently, conduction electron scattering centres, even a small amount of the addition
may cause a significant decrease in the electrical conductivity of the material.

A similar relationship occurs for thermal conductivity, which has a different nature in
terms of the conduction mechanism. However, both mechanisms share common macroscopic
features that can be expressed by a general transport equation. They are a generalisation of
Ohm’s law for the density of electric current (current flux—j) in a conductor:

j = σE (1)

where:

σ—electrical conductivity tensor,
E—vector of electric field intensity,
and

Fourier’s law describing the amount of thermal energy flow q:

q = −κx(dT/dx) (2)

where:

κx—thermal conductivity coefficient along the x axis,
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dT/dx—temperature gradient.

Both E and dT/dx have a gradient character, so in general we can write:

j = −β · gradA (3)

where:

j—flux density vector of the appropriate amount (size) of internal energy for thermal
conduction or charge for electrical conduction,
β—coefficient of proportionality of thermal or electrical conductivity,
A—scalar quantity whose gradient causes a given phenomenon (temperature, electric
potential) [64].

In the case of the sintered Cu–ZrB2 composite, the results indirectly indicate the partial
diffusion of boron into the copper matrix, which may explain the observed strong decrease
in the electrical conductivity of the samples with the increase in the content of the ZrB2
phase. The easy diffusion transfer to the matrix results from the large difference in the
atomic radius of copper (140 pm) and boron (85 pm). This means that boron will tend to
be located in the interstitial holes of the copper lattice and cause local contraction of the
crystal lattice, increasing the scattering potential of conduction electrons. At the same time,
as shown by [65], the limit of solubility of boron in copper does not exceed 0.06% at room
temperature. A strong initial drop in conductivity and then its stabilisation may indicate
that boron has diffused into the matrix and reached limiting solubility.

5. Conclusions

1. A change in SPS temperature from 1123–1223 K led to an increase in the density,
Young’s modulus, and hardness. The best physical and mechanical properties were
obtained for the composites that were sintered at 1223 K–35 MPa.

2. Furthermore, the influence of the ZrB2 content on the microstructure, physical, me-
chanical, and electrical properties of sintered composites was studied. The results
showed that the increase in the ZrB2 content in the copper matrix improves Young’s
modulus and hardness while reducing the density and electrical conductivity. The
addition of the reinforcing phase in an amount greater than 10 wt% negatively affects
the properties of the copper matrix composites.

3. The addition of 20 wt% ZrB2 causes the beginning of the formation of particle conglomer-
ates and, consequently, disturbs their homogeneous distribution in the copper matrix.

4. A strong decrease in the electrical conductivity of composites containing 5 and 10 wt%
ZrB2, as well as stabilization of the conductivity in larger amounts, indicates the
partial diffusion of boron into the copper matrix.
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