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Abstract: Nowadays, digitalization and automation in both industrial and research activities are
driving forces of innovations. In recent years, machine learning (ML) techniques have been widely
applied in these areas. A paramount direction in the application of ML models is the prediction
of the material service time in heating devices. The results of ML algorithms are easy to interpret
and can significantly shorten the time required for research and decision-making, substituting the
trial-and-error approach and allowing for more sustainable processes. This work presents the state
of the art in the application of machine learning for the investigation of MgO-C refractories, which
are materials mainly consumed by the steel industry. Firstly, ML algorithms are presented, with
an emphasis on the most commonly used ones in refractories engineering. Then, we reveal the
application of ML in laboratory and industrial-scale investigations of MgO-C refractories. The first
group reveals the implementation of ML techniques in the prediction of the most critical properties
of MgO-C, including oxidation resistance, optimization of the C content, corrosion resistance, and
thermomechanical properties. For the second group, ML was shown to be mostly utilized for the
prediction of the service time of refractories. The work is summarized by indicating the opportunities
and limitations of ML in the refractories engineering field. Above all, reliable models require an
appropriate amount of high-quality data, which is the greatest current challenge and a call to the
industry for data sharing, which will be reimbursed over the longer lifetimes of devices.
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1. Introduction

Magnesia–carbon refractories (MgO-C) belong to the most significant type of refrac-
tories for steel and iron industry devices. They thermally protect basic oxygen furnaces
(BOFs), steel ladles, and electric arc furnaces (EAFs), and they are used in the production
of special products, like purging shapes and taphole sleeves [1]. The wear of MgO-C
refractories is caused mainly by the attack of metallurgical slag, the oxidation of C by
oxygen or other oxidizing compounds, and the interaction with CO/CO2, which occur at
temperatures of 1600–1750 ◦C [1]. Also, the thermomechanical impact, associated with
thermal shocks and the turbulent flow of hot metal, significantly influences the MgO-C
refractory service time [1]. The typical service time of the MgO-C lining in BOFs varies from
around 2000 up to 10,000 heats or more, depending on the maintenance conditions [2–4]. In
steel ladles, the differentiation in the service time is substantial, as the ladle campaign might
be finished after 123–183 heats [5], 70–85 heats [6], or even after only 8–20 heats [7]. The
refractory lining service time in EAFs is also highly differentiated. The typical EAF lining
service time is 500–1000 heats. But, even in one steel plant, it can vary from approximately
500 heats up to 1200 heats [8]. Refractory wear generates high maintenance costs. The
high costs derive not only from the purchase and replacement of new refractory products
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but also from work stoppage and urgent repairs. The recent significant progress in R&D
activities has influenced the extended service times of heating devices (e.g., the service
times of refractories in steel ladles increased from 128 to 157 heats via the optimization
of the lining materials and service conditions) [9]. Another example is increasing the
VOD (vacuum oxygen decarburization) ladle service time from 8.5 heats (2017) to 20 heats
(2021) via the addition of ZrSiO4, which enhanced the mechanical and thermomechanical
properties of MgO-C bricks [7].

Although MgO-C refractories have been used since 1950 in steel and refining plants [10],
their service times are still being extended owing to progressing research efforts. One of the
main research directions in MgO-C improvement is the application of various metallic and
non-metallic additions (e.g., Al, Mg, Si, SiC, Al-Mg, Fe) [11–15], as well as the development
of new ones (e.g., c-ZrN nanopowder, Ti3AlC2, Ti3SiC2, Cr3C2C, spinel micro-powder,
YAG nanopowder, and other oxide composites) [16–25]. Their addition to MgO-C im-
proves decarburization resistance as well as hot properties, like hot strength and thermal
shock resistance. The corrosion resistance of MgO-C has also been broadly investigated,
with multiple techniques used, like the induction furnace test [26–28], finger test [29,30],
sessile-drop technique [31–33], cup test [34–37], single hot thermocouple technique [38],
and observations of in situ changes using a high-stage microscope [39]. Recently, new
calcium–magnesium–aluminate raw materials have been developed, which promote the
formation of a protective layer at the hot face of MgO-C bricks during operation [40–42].
With the increased demand for widely understood decarbonization and sustainable de-
velopment, much effort is also being put into the recycling of MgO-C materials [43–46].
Ludwig et al. [43] obtained satisfactory results for 20% and even 30% additions of recycled
MgO-C aggregate in a composition of new MgO-C brick. These areas have great potential
for further improvements and research, as around 28 million tons of spent refractories are
generated annually [45], while the total worldwide production of refractories is 35–40 million
(70% for the steel industry).

However, the commonality in all these experimental studies is that both the experiment
and result interpretations are always conducted in a traditional way, with a relatively low
quantity of data taken for analysis. For MgO-C refractories, researchers are focused on very
detailed investigations of the mechanisms responsible for the particular hot-temperature
behavior of MgO-C bricks. Simultaneously, researchers have to face the high quantity of
various data types [47]. For this reason, the refractory industry should take the opportunity
of the available data and introduce techniques that allow for their better usage.

Recently, more companies have become interested in collecting data and finding
relationships with refractories’ wear rates to optimize the process and make it more efficient
as well as environmentally friendly. The implementation of Industry 4.0 [48] has created a
new reality for many companies. This strategy has blurred the difference between the work
of people and machines [48]. One of the objectives of Industry 4.0 is to achieve a higher
level of digitalization and automation of and improvement in decision-making processes
with automated data exchange [49]. An invaluable tool is machine learning (ML), the
outstanding performance of which has so far been reported in numerous materials science
studies [49]. ML algorithms refer to computational systems that can be trained to perform
specific tasks, with no need to implement any explicit programming. Moreover, the quality
of the algorithms’ performance improves with extended experience [49]. Interest in using
ML techniques is constantly growing. The Web of Science database, when searched with
the keyword “machine learning” 10 years ago (2013), showed 1908 papers, while, in 2022,
2021, and 2020, it showed 34,934, 30,053, and 22,335 papers, respectively. This 56% increase
in the number of publications over the last 2 years and the 18-fold increase over the last
10 years permit the prediction of a forthcoming boom in ML utilization. Furthermore, data
in the global datasphere are predicted to reach 175 zettabytes by 2025 (33 zettabytes in
2018) [50].

According to Pilania’s work [51], ML algorithms can be applied in various applications
in materials science. One of its applications is the development of efficient and surrogate
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models which map and find relationships between a material’s composition, structure,
morphology, and processing to select properties or performance criteria. Moreover, the
author indicates numerous other fields of machine learning applications, like material
characterization and design, designing of experiments, prioritizing of experiments, property
prediction, and molecular and atomistic simulations [51].

Taking into account the relatively newly applied ML techniques in the refractories field
and their vast innovation potential, this work aims to evaluate the most important published
works on the application of various machine learning techniques in the investigation of
MgO-C refractories. This review is divided into three main parts. Firstly, in Section 2 we
present the most commonly applied ML algorithms and their utilization in different fields.
Then, the current state of ML application in laboratory-scale examinations (Section 3) and in
industrial-scale tests (Section 4) is revealed. The laboratory-scale works focus on the most
critical properties of MgO-C refractories, including oxidation mechanisms, optimization of
carbon content, corrosion resistance, and thermomechanical properties. The industrial-scale
tests are aimed at the prediction of the service time of refractories in industrial heating
devices. Finally, we summarize by indicating the benefits and limitations of ML utilization
in research practice (Section 5). This work aims to be a reference for researchers who are
searching for new capabilities and techniques to improve R&D activities in the technology
of MgO-C refractories.

2. Machine Learning Algorithms—An Overview

Machine learning is a subset of artificial intelligence. Algorithms are dedicated to
building computational tools that make decisions without explicit coding. One of the
main aims of the application of ML algorithms is taking the historical data and training
the algorithms to further use these data in the prediction of specific features. The main
advantage of ML algorithms is their powerful performance and speed of data processing
compared to hand-coding. ML algorithms have proven their performance and utility
in a variety of fields, such as speech recognition, text mining, medicine, data analysis,
aeronautics, data analysis, stock market analysis, and many others [52,53]. This wide range
of applications is possible due to a variety of existing algorithms which are presented in
Figure 1 based on [51–55] (the graph does not exhaust all currently used algorithms).

Materials 2023, 16, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 1. Overview of commonly used ML algorithms. 

Sarker [52] has divided ML algorithms into four groups, including supervised learn-
ing (algorithms: classification and regression), unsupervised learning (clustering), semi-
supervised learning (classification and clustering, based on labelled and unlabeled data) 
and reinforcement learning (positive and negative).  

Jain and Kumar [53] described three groups of ML algorithms, indicating specific 
ones in each of the groups. The first group is supervised learning with classification (al-
gorithms: naïve Bayes, decision trees, support vector machines, random forest, K-nearest 
neighbors) and regression (linear regression, neural network regression, lasso regression, 
ridge regression). The second group is unsupervised learning (principal component anal-
ysis, K-means, mean shift clustering, DBSCAN clustering, agglomerative clustering). The 
third group is reinforcement learning (Q-learning, R- learning, TD-learning and the Monte 
Carlo method).  

According to Sarker [52], the algorithms with the highest popularity index world-
wide are assigned to the group of reinforcement learning, but their popularity decreased 
in 2020. Pugliese et al. [54] showed that, in 2021, the popularity index of reinforced learn-
ing was still the highest, while supervised and unsupervised learning popularity indexes 
were on a similar level. As Pugliese et al. explains in [54], the popularity of reinforcement 
algorithms (algorithms based on interactions with the environment) reflects their use to 
solve real-world problems in a variety of fields, such as game theory, control theory, op-
eration analysis, information theory, simulation-based optimization, manufacturing, sup-
ply chain logistics, swarm intelligence, aircraft control, robot motion control, laparoscopic 
surgery, traffic forecasting service, smart cities development, etc. [55].  

3. Machine Learning in Investigation of MgO-C Materials 
3.1. Application of ML in Laboratory-Scale Examinations 
3.1.1. Oxidation Mechanism of MgO-C Refractories 

Oxidation of carbon in MgO-C refractories, especially below 1400 °C, is one of the 
main problems in the application of these materials [56]. The decarburized part of the 
refractory is loose and porous; thus, the slag and hot metal can easily penetrate the matrix. 
The mechanism of oxidation is widely examined using traditional techniques [57–62]. The 

Figure 1. Overview of commonly used ML algorithms.



Materials 2023, 16, 7396 4 of 18

Sarker [52] has divided ML algorithms into four groups, including supervised learn-
ing (algorithms: classification and regression), unsupervised learning (clustering), semi-
supervised learning (classification and clustering, based on labelled and unlabeled data)
and reinforcement learning (positive and negative).

Jain and Kumar [53] described three groups of ML algorithms, indicating specific ones
in each of the groups. The first group is supervised learning with classification (algorithms:
naïve Bayes, decision trees, support vector machines, random forest, K-nearest neighbors)
and regression (linear regression, neural network regression, lasso regression, ridge regres-
sion). The second group is unsupervised learning (principal component analysis, K-means,
mean shift clustering, DBSCAN clustering, agglomerative clustering). The third group is
reinforcement learning (Q-learning, R- learning, TD-learning and the Monte Carlo method).

According to Sarker [52], the algorithms with the highest popularity index worldwide
are assigned to the group of reinforcement learning, but their popularity decreased in 2020.
Pugliese et al. [54] showed that, in 2021, the popularity index of reinforced learning was
still the highest, while supervised and unsupervised learning popularity indexes were on a
similar level. As Pugliese et al. explains in [54], the popularity of reinforcement algorithms
(algorithms based on interactions with the environment) reflects their use to solve real-
world problems in a variety of fields, such as game theory, control theory, operation analysis,
information theory, simulation-based optimization, manufacturing, supply chain logistics,
swarm intelligence, aircraft control, robot motion control, laparoscopic surgery, traffic
forecasting service, smart cities development, etc. [55].

3. Machine Learning in Investigation of MgO-C Materials
3.1. Application of ML in Laboratory-Scale Examinations
3.1.1. Oxidation Mechanism of MgO-C Refractories

Oxidation of carbon in MgO-C refractories, especially below 1400 ◦C, is one of the
main problems in the application of these materials [56]. The decarburized part of the
refractory is loose and porous; thus, the slag and hot metal can easily penetrate the matrix.
The mechanism of oxidation is widely examined using traditional techniques [57–62]. The
decarburization resistance of MgO-C refractories is mostly affected by graphite content and
the overall compactness of the brick.

Artificial neural networks (ANN), which represent one of the supervised ML techniques
(belonging to Supervised Learning—Regression, Figure 1), were used by Nemati et al. [63]
to predict the oxidation behavior of MgO-C materials. The authors tested several MgO-C
materials with different carbon contents. ANN was used to predict the activation energy of
oxidation, effective diffusion coefficient, and diffusion activation energy of oxidation. An
input variable was the weight loss of MgO-C materials at different temperatures depending on
graphite content from 4.5% to 17%. The model was developed using a standard feed-forward
backpropagation network with one hidden layer. Oxidation of carbon in MgO-C refractories
was found to be driven mainly by diffusion. The ANN model was also utilized to predict the
effective diffusion coefficient at different temperatures. The obtained results were of good
quality of fit, expressed by the determination coefficient R2 in the range 0.986–0.999. Finally,
the three-layer back propagation ANN model was used to predict the oxidation kinetics
of MgO-C specimens based on their weight loss at different temperatures. The authors
developed reliable models with excellent fit between experimental and calculated data. The
oxygen diffusion was reported as responsible for carbon oxidation in MgO-C refractories.

The oxygen diffusion mechanism in MgO-C composites was also investigated by
A. Nemati et al. [64] with the use of the ANN approach. The authors used a standard
feed-forward backpropagation network with one hidden layer. For training purposes,
the Bayesian regularization algorithm was used (Levenberg–Marquardt modified back-
propagation algorithm). Training was conducted with the use of different numbers of
neurons in the hidden layer to find the optimal architecture. The external dataset from
other authors’ experiments was utilized in this study. Similar to previous work [63], the
input variables were the carbon content in the materials, oxidation temperature, and weight
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loss of the MgO-C specimens. It was assumed that three mechanisms control the oxidation
rate: chemical adsorption, diffusion, and chemical reaction. Calculations were performed
for a wide range of MgO-C materials, with graphite content varying from 5% to 30%. The
authors developed models which enabled prediction of the effective diffusion coefficient
for selected materials with the R2 coefficient in the range 0.986–0.999, depending on the
carbon content and temperature of the test. If only one diffusion mechanism occurred, the
low-temperature diffusion activation energy of oxidation was predicted to be in the range
21.2–35.0 kJ·mole−1, depending on the carbon content. The high-temperature diffusion
activation energy was predicted to be in the range 42.1–109.6 kJ·mole−1 depending on the
carbon content. If three diffusion mechanisms occurred, the low-temperature diffusion
activation energy of oxidation was also predicted to be 16.5–25.7 kJ·mole−1 depending
on the carbon content. The high-temperature diffusion activation energy was predicted
to be 31.3–219.7 kJ·mole−1 depending on the carbon content. Authors also confirmed
that predicted data are comparable with experimental data obtained by other authors
in [59,60,65] The increased temperature resulted in an activation energy drop due to the
increased oxygen diffusion rate. It was also confirmed that oxygen diffusion through the
pores is the most significant factor controlling the oxidation intensity of MgO-C material.

In described works [63,64], the authors conducted advanced calculations to predict
the oxidation kinetic parameters of MgO-C samples depending on the carbon content
and test temperatures. However, it is necessary to extend this research and find if it is
possible to apply ML techniques for predicting the oxidation behavior of MgO-C bricks
including other parameters like the compactness of the bricks, as far more factors affect the
decarburization resistance of MgO-C bricks. Also, a greater number of samples should be
used to obtain more reliable ML results.

3.1.2. Optimization of Carbon Content in MgO-C Refractories

Graphite is a main source of carbon in MgO-C refractories, which, due to its low
thermal expansion coefficient and poor wettability by slag, provides high slag corrosion
resistance and good thermal shock resistance, respectively. However, too much carbon in
the MgO-C composition leads to heat loss in industrial devices during operation due to the
increased conductivity of MgO-C materials [66]. Greater amounts of carbon in the MgO-C
composition decrease the hot strength and oxidation resistance of MgO-C refractories [66].
Therefore, the optimization of graphite content in MgO-C bricks is crucial.

Mazloom et al. [67] used artificial neural networks to optimize graphite content in
MgO-C refractories. The work aimed to find the optimal ratio of graphite to resin to
provide the highest possible compressive strength and minimize the apparent porosity of
the materials. Overall, 25 formulations of MgO-C refractories were selected, which varied
in the amount of resin (1.0–3.0%) and graphite (7.5–17.5%). In total, 100 specimens were
prepared (four specimens for each of 25 formulations) for experimental testing. According
to the obtained results, it was found that replacing magnesia powder with graphite leads
to a decrease in compressive strength of up to 10% of the graphite content. If the graphite
content was 12.5%, the compressive strength increased, but further increasing the amount
of graphite to 15% and 17% caused a decrease in compressive strength. The experimental
results showed that an increase in the content of synthetic resin was always associated with
an increase in cold compressive strength. The compactness of specimens with fixed resin
content (determined by open porosity measurements) decreased with increased graphite
content to 15% in MgO-C, while, above 15% graphite, only a slight increase in apparent
porosity was observed. The larger amount of synthetic resin was considered to reinforce
the effect of increased graphite content. For ML model development, backpropagation of
training error and a three-layer network for training were used. Two variables were selected
as input data, namely, resin and graphite content, while the output variables were ultimate
compressive strength and apparent porosity of 100 specimens prepared experimentally.
Approximately 250 cycles of training were conducted with the use of different numbers
of neurons to find the best model. Applying ANN, it was reported that 13.5% graphite
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and 3.0% synthetic resin in formulation provide the highest ultimate compressive strength
with the lowest apparent porosity. The model was validated experimentally on seven
specimens, based on the ANN-proposed formulation. The ultimate cold compressive
strength predicted by ANN was 365.16 MPa, while the experimental value was 376.47 MPa,
which means a 1.3% error. ANN predicted an apparent porosity of 7.08% while the
experimental was 7.11%, which gives a 0.35% error. The obtained results are shown in
Table 1. As the authors stated, a reliable and accurate model is feasible to develop using
ANN to predict the MgO-C material’s properties.

Table 1. Experimental results for the compressive strength and apparent porosity of samples based
on the optimum formulations from the ANN model [67].

Sample Compressive Strength [MPa] Apparent Porosity [%]

F1 381.20 -
F2 375.91 -
F3 371.25 -
F4 377.54 -
F5 - 7.05
F6 - 7.18
F7 - 7.09

Average experimental value 376.47 7.11
Predicted value (ANN) 365.16 7.08

Error, % * 1.30 0.35
* difference between experimental and predicted values.

In [67], the authors determined the optimal amount of graphite and resin (13.5% graphite,
3% resin) to provide the demanded corrosion resistance with no loss in mechanical behavior.
The authors show the prediction accuracy for selected specimens together with their open
porosity and compressive strength. The accuracy of prediction is high (prediction error 1.30%),
and the results of prediction seem to almost ideally fit the data. Therefore, it is good practice to
describe the procedure applied to avoid overfitting (algorithmic learning by heart). Apparent
porosity and the compressive strength of the samples were measured only on two specimens
(out of each 25 formulations); thus, the results of measurements may not be reliable and need
to be extended. Also, it would be recommended to investigate the influence of different raw
material compositions together with different carbon and resin contents when modelling the
basic properties of specimens. After all, the developed model is a useful tool to model and
design MgO-C bricks with desirable properties.

3.1.3. Corrosion Resistance of MgO-C Refractories

The corrosion resistance of refractory materials is widely studied due to its exceptional
importance for the service life of heating devices. Corrosion of MgO-C refractories mostly
limits the duration of a campaign of devices, which increases maintenance costs for the end
users of refractories.

Optimization of MgO-C refractories’ composition for improved corrosion resistance
was studied with unsupervised learning techniques using clustering algorithms [68]. A to-
tal of 20 different variants of MgO-C materials were prepared based on four different main
raw materials. From each of the variants, eight industrially produced MgO-C bricks were
selected for further examinations. Basic physicochemical properties (apparent porosity and
bulk density, apparent porosity and bulk density after coking, decarburization resistance
at 900 ◦C and 1100 ◦C, chemical composition, and graphite content) were experimentally
measured. Principal component analysis (PCA) and the K-medoids algorithm were ap-
plied to develop a model which clusters the MgO-C materials into groups of comparable
properties. PCA analysis showed that it is possible to use two variables, instead of eight, to
characterize the prepared MgO-C materials. A new variable, PC1, was obtained, which
explained approximately 81% of the variability in the dataset and referred to the basic
properties of MgO-C materials. The second variable, PC2, explained about 12.3% of the
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data variability and referred to the values of pressure used for shaping the materials. In the
K-medoids algorithm with PAM (partitioning around medoids), PC1 and PC2 were used
as input variables. The algorithm was able to distinguish nine groups with materials of
considerably comparable properties. It was assumed that materials assigned to the same
clusters by the PAM algorithm have comparable corrosion resistance. Experimental tests
of corrosion resistance were conducted with the use of an induction furnace to verify the
obtained ML results. The algorithm indicated that a material consisting of fused magnesia
of standard quality (shaped at 120 MPa) should perform similarly to a material consisting of
65% sintered and 12% fused magnesia of the highest quality (shaped at 180 MPa). Moreover,
the algorithm suggested that materials composed of fused magnesia of standard quality and
27% sintered magnesia (shaped at 180 MPa) should perform similarly at high temperatures
to test materials containing of 65% sintered magnesia and 12% of the highest-quality fused
magnesia. With statistical tests (Wilcoxon test) applied to the measured wear rates after
corrosion tests, it was confirmed that the described material variants were located in the
same cluster indicated by the PAM algorithm and performed similarly after being exposed
to slag attack at high temperature. Therefore, the algorithms properly indicated materials
of comparable corrosion resistance. The conducted examinations, coupled with computer
calculations, show the directions and possibilities to substitute fused raw materials with
sintered ones with no loss of corrosion resistance.

The described research [68] reveals an extremely important issue in terms of sustain-
able development, as the production of fused magnesia demands 15 times more energy
than the production of sintered aggregates [69]. Even if the corrosion of MgO-C refractories
is widely described in the literature [27–32,36–39,70–72], scarce information can be found
regarding the comparison of high-temperature properties of MgO-C materials based on
different magnesia raw materials. Using ML techniques, it was possible to group MgO-C
compositions with different ratios of sintered to fused magnesia characterized by compara-
ble corrosion resistance. The results were validated at a semi-industrial scale by conducting
corrosion tests in an induction furnace at 1720 ◦C. This could contribute to extending the
corrosion test to a wider temperature range of 1600–1750 ◦C, as impurities in magnesia
raw materials affect MgO-C materials’ performance. Above all, it would be beneficial to
test the designed materials in industrial conditions to assess the MgO-C materials’ real
performance, e.g., in steel ladles which are typically characterized by the shortest service
time of refractory lining.

The slag corrosion resistance of MgO-C refractories was also examined by Akkurt [73]
with the use of artificial neural networks. The work aimed to predict the wear rate of
MgO-C refractories for steel ladles based on the results of laboratory corrosion tests. The
data were collected from a series of corrosion finger tests (without rotating the samples).
The architecture of the designed ANN was as follows: three layers of the feed-forward
type and six neurons in the input layer. The input variables were the percentage content
of CO in the atmosphere, the time of brick exposure for slag attacks, the temperature of a
test, and the CaO/SiO2 ratio of the slag. The measured surface of the lost area in the cross-
section of tested specimens was taken as the output data. In the testing stage, the average
testing error was reported at 14.2% with R2 = 0.92. A detailed comparison of predicted
and experimental data is presented in Table 2. Surface plots showing the relationship
between input variables and the percentage of lost area during corrosion were generated as
a complementation of the results. It was shown that an increase in temperature lead to an
increase in refractory wear. An insignificant interaction was observed between temperature
and the time of lining exposure for corrosive factors. Some values of prediction error
in Table 2 exceed 15%. This phenomenon is probably associated with the relatively low
number of experimental measurements done by the authors; however, the results of ANN
performance are consistent with the current state of knowledge concerning the MgO-C
corrosion mechanism.
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Table 2. Results of model testing, based on [73].

% Area Loss—
Measured

% Area Loss—
Predicted Difference % Error (Absolute)

10.57 12.43 −1.86 17.6
10.85 14.57 −3.72 34.3
14.65 14.85 −0.20 1.4
18.99 18.94 0.05 0.3
19.20 18.05 1.15 6.0
32.34 24.80 7.54 23.3
15.67 18.27 −2.60 16.6

Average - - 14.2

The conducted calculations are important to model process parameters in steel plants
(e.g., % CO, temperature, heat time, slag basicity) and to provide appropriate corrosion
resistance for refractories. It is worth noting that only seven observations (measured area
loss) were used for model testing. Probably, the low number of measurements (both in
the training procedure and testing) is the reason why the percent prediction error is high
for some observations (23.4%, 34.3%). The presented research included only a few factors
influencing the refractories’ corrosion resistance. If the model is allocated for direct use in
steel plants, more factors should be included, e.g., number of heats/day, slag chemistry,
tapping temperatures, secondary treatment temperatures, types of additives used for
refining, etc. Moreover, a greater number of samples should be tested to provide higher
accuracy of the model [74].

3.1.4. Thermomechanical Properties of MgO-C Refractories

MgO-C refractories are exposed to extreme thermal, mechanical, and chemical stresses
during operation in the steel plant. The highest thermal stresses occur during the preheating
stage of the heating device and the tapping of the hot molten steel into the ladle, where
the refractory lining suffers mostly from a high temperature gradient (from about 300 ◦C
at the shell to 1600–1700 ◦C at the lining). For some applications, MgO-C materials have
to withstand additional mechanical stresses, e.g., due to rocking of the BOF vessel during
preheating [75,76].

An advanced investigation of the thermomechanical behavior of different lining concepts
in steel ladles was conducted by Hou et al. [77]. Artificial neural networks were used, among
others, to predict the thermal and thermomechanical responses of refractory lining during
operation. Overall, 160 different configurations of lining were investigated. In this research,
the finite element (FE) method was used to obtain the input data for the ANN architecture
design. The FE calculation included preheating of the refractory bricks’ hot face in the ladle
to 1200 ◦C for 20 h and direct exposure for tapping temperatures up to 1600 ◦C. A 95 min
refining process was assumed. For the experiment and calculation, 10 different variables were
used, assuming various steel shell lining thicknesses (insulation, permanent, and working
linings), different thermal conductivities, and different Young’s modulus values for the bricks.
Three-layer backpropagation ANN was used for prediction. Hyperbolic tangent sigmoid
was selected as an activation function. Three tests were used to establish the optimal ANN
architecture. At the first test, all 160 samples were selected for the training, where gradient
descent with the adaptive learning rate backpropagation (GDX) algorithm was selected. In
the second test, the data set was divided into three groups (96, 126, and 160 samples) to find
the minimum sample size for the study. In the third test, eight different algorithms were used
to find the most favorable one for the steel ladle. Model assessment was conducted with the
use of various errors: RE_MAX (maximum relative error), MRE (mean relative error), RRMSE
(relative root-mean-squared error), and coefficient of determination B. Out of eight algorithms,
two were selected (CFG—conjugate gradient backpropagation with Fletcher–Reeves updating
and BR—Bayesian regularization backpropagation) as the most suitable for calculations. The
ANN was then built to compare the performance of the selected algorithms in the prediction
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of the end temperature (the temperature at the cold end of the steel shell), maximum tensile
stress, and maximum compressive stress. The comparison results are shown in Table 3. Low
values of RE_MAX and MRE and high values of B are desirable. For the maximum tensile
strength and maximum compressive strength, the BR model performed more efficiently than
the CFG model (for BR: higher values of the coefficient of determination B, lower values of
MRE, and a lower value of RE_MAX for tensile strength). Based on the obtained results, the
BP-ANN model with BR was utilized for final calculations.

Table 3. Thermomechanical response prediction with the use of ANN based on CGF and BR, based
on [77].

End Temperature
[◦C]

Maximum Tensile Stress
[MPa]

Maximum Compressive Stress
[MPa]

Used algorithm CFG BR CFG BR CFG BR
RE_MAX [%] 7.15 7.15 16.62 12.43 3.12 4.09

MRE [%] 1.02 1.76 2.43 2.37 0.93 0.78
B 0.9967 0.9908 0.9279 0.9348 0.9963 0.9966

RE_MAX, MRE, and B—coefficients evaluating the error between the results of the two used algorithms, CFG and BR.

The optimal ANN architecture was found for seven nodes in the hidden layer and
Bayesian regularization with 160 samples for training. Two insulation lining concepts
(linings 1 and 2 according to Table 4) were compared with the use of optimized ANN
architecture. For this lining concept, predicted (ANN) and simulated (FE modelling) values
of selected properties (steel shell temperature, maximum tensile stress, and maximum
compressive stress) were shown in Table 5.

Table 4. Refractory lining concepts selected for prediction, based on [77].

Thickness
[mm]

Thermal
Conductivity
[W·m−1K−1]

Young’s
Modulus [GPa]

Thermal
Expansion
Coefficient
[10−6K−1]

Working lining 155.0 9 40 12
Permanent lining 52.5 2.2 45 5

Insulation
(lining concept 1) 37.5 0.5 3 6

Insulation
(lining concept 2) 37.5 0.38 4 5.6

Steel shell 30 50 210 12.0

Table 5. Comparison of simulated and predicted values of two proposed optimal lining concepts
from FE modelling and as predicted by BP-ANN, based on [77].

Steel Shell Temperature
[◦C]

Maximum Tensile Stress
[MPa]

Maximum Compressive
Stress [MPa]

Modelling
(FE)

Predicted
(BP-ANN)

Modelling
(FE)

Predicted
(BP-ANN)

Modelling
(FE)

Predicted
(BP-ANN)

Lining
concept 1 280 276 1495 1433 512 517

Lining
concept 2 259 259 1539 1576 517 515

The results presented in Table 5 confirm that ANN performed outstandingly. The
predicted values of selected properties (steel shell temperature, maximum tensile stress,
maximum compressive stress) were close to the FE-simulated ones. The temperature
difference between the predicted value and the value obtained through FE modelling for
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lining concept 1 was only 4 ◦C. Furthermore, for lining concept 2, the model predicted the
same temperature of a steel shell as modelled through FE, 259 ◦C. The predicted maximum
tensile stress for lining concept 1 was 1433 MPa, while it was 1495 MPa for FE modelling,
which is a 4.1% error. For lining concept 2, the predicted maximum tensile stress was
equal to 1576 MPa, while for the FE model it was 1539 MP, which is a 2.4% error. As for
compressive stress for lining concepts 1 and 2, the differences between the predicted and
FE-modelled maxima were 5 MPa and 2 MPa, respectively. The presented model was also
reported as promising for material recipe improvements and steel production optimization.

The variation in the study [77] was analyzed in [78] to optimize the number of nodes
used in the hidden layer of ANN. The Taguchi method was used to find the minimum
numbers of input variables. Variation/response complexity was found to be crucial for
establishing well-performed ANN architecture. The developed methodology and models
were used to investigate higher numbers of lining concepts (192 linings) in the case of
thermomechanical response in steel ladles [79].

The conducted calculations [77] have significant practical meaning in the case of
assessing the thermomechanical behavior of ladle linings during operation. Based on
160 different lining concepts, two of them were selected, and their performance was ade-
quately predicted using the ANN algorithm. The tapping temperature of molten steel was
assumed to be 1600 ◦C, but it would be interesting for scientists and engineers to see the
behavior of lining concepts up to 1700 ◦C. Even though the presented model has an indis-
putable influence on reducing the time, materials, and cost-consuming labor for trial on site,
industrial verification should be done to investigate the designed lining performance under
real conditions. Then, the models could be successfully used in industrial practice to design
linings with appropriate thermal and thermomechanical properties. The presented work
may not only affect the lining design but may also indicate directions for MgO-C materials
or safety lining composition development. Furthermore, thermal and thermomechanical
linings’ response may make it possible to avoid one of the most common failures of ladles
associated with MgO-C thermal behavior (vertical cracks) [80].

4. Application of ML in Industrial-Scale Examinations

From the industrial point of view, the most important thing is to provide the longest
possible service time for refractories in heating devices, which allows for the optimization
of the cost-to-service time ratio. The service time of refractories is affected by several factors,
including metallurgical conditions, refractory brick quality, the maintenance schedule of
devices, etc. The service time is difficult to assess and predict. However, it seems to
have become more feasible with the implementation of computational technologies in the
development of refractories.

Borges et al. [81] applied self-organizing maps (SOM), which represent one of the unsu-
pervised algorithms, to identify the main factor influencing the wear rate of MgO-C materials
at the slag lines of the steel ladles. Around 6700 data points collected from the industrial
database were analyzed. The authors compared the results of the traditional statistical ap-
proach with the SOM results. SOMs consisted of seven neurons vertically and six neurons
horizontally for the selected properties. Approximately 23 metallurgical parameters were
investigated. The SOM maps showed the relations between ladle service time and hot metal
treatment with CaSi, Ar bubbling without CaSi, Ar bubbling with CaSi, steel permanence
time, steel temperature after tapping, steel weight, and type of product (thick plates, hot strips,
and boards for sale). At each step of the analysis, the results were verified with the use of
typical regression and correlation analysis. Based on the SOM results, the authors indicated
the numerous reasons responsible for the premature or intense wear of MgO-C materials
in steel ladles, including the number of chemical additions (like nepheline and CaSi), the
interaction between the desulphurization route and the intensity of ladle furnace use, and the
extended contact time of the refractories with slag. The ML algorithm results were found to
agree with traditional statistics calculations. The important fact in the described work [81] is
that the authors verified the calculation results vs. traditional statistics and post-mortem results
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for selected MgO-C bricks. SOM maps are considered a useful tool, not only to indicate the
parameters affecting ladle service time, but, thanks to the applied technique, direct recom-
mendations may be allocated for steelmakers to improve the production process and extend
the ladles’ performance. Considering industrial practice, it would be valuable to investigate
not only the metallurgical factors but also the type of ladle maintenance (e.g., using gunning
mixes or other protection techniques).

Another industrial study concerning ladle treatment was conducted by Jančar et al. [82].
The authors used selected metallurgical parameters as an input variable to build an artificial
neural network for the prediction of ladle service time depending on input values. The
output variable was the number of castings. For the calculations, data associated with the
secondary treatment of a 230 t ladle in the steel plant Liberty Ostrava was used. 106 ladle
campaigns were analyzed. At the first stage of analysis, a statistical evaluation of metal-
lurgical parameters was performed. Parameters which insignificantly influenced data set
variability were discarded from further analysis. For building the ANN, seven parameters
were selected as input variables, namely, empty ladle time, full ladle period, tapping tem-
peratures, steel temperature after tapping, electricity consumption, number of heats with
vacuum treatment, and Ar consumption. A high-quality model was obtained during the
network training, with a coefficient of determination R2 of 0.8927 for analyzing predicted vs.
actual values of model output. During testing of the model, the coefficient of determination
for actual and predicted ladle service times was R2 = 0.66. The developed model was used
to simulate the ladle service time for a wide range of values of selected properties (time of
full ladle, Ar consumption, tapping temperature, and electrical energy consumption). The
authors showed that if the tapping temperature increases the ladle service time decreases
(R2 = 0.9719), and, similarly, if electrical energy consumption increases during secondary
treatment the service time of the ladle decreases (R2 = 0.9860). According to the presented
studies, the authors show that, if the time of the full ladle (the overall time when metal is
present in the ladle) increases, the ladle service time increases (R2 = 0.9249); similarly, if
Ar consumption increases, the ladle service time increases (R2 = 0.9945). Furthermore, the
authors extracted the selected variables’ importance and their influence on ladle service
time using a developed criterion. Among the seven selected variables, the most negative
impacts on ladle service time were from the time with an empty ladle (assumed importance
coefficient of −21.08%), electrical energy consumption (−20.43%), and the number of heats
with vacuum treatment (−15.71%). The most positive influences on ladle service time were
associated with a higher amount of consumed Ar (+15.20%) and a longer time with the
ladle filled with metal (+9.71%). Based on the obtained models [82], the authors expect to
achieve increased ladle service times. Nevertheless, the authors will collect more data to
expand their research.

The authors of [82] used a large industrial dataset collected from the steel production
processes of 106 campaigns to develop a model predicting steel ladle service time. The
authors were able to successfully indicate parameters which significantly influence ladle
service time (tapping temperatures, energy consumption, time with a full ladle, Ar con-
sumption, etc.). Taking into account overall ANN model performance, the tested model
accuracy was not at a high level (R2 = 0.66). A probable reason for this is associated with
the types of MgO-C materials installed in the ladle. As the authors indicated [82], 106 ladles
were investigated, which were lined with different MgO-C grades. Information about
the material’s quality should be used in further models as another input variable. Except
for that fact, the presented work has significant practical meaning and the potential to be
implemented in direct use at steel plants. The developed model could support steelmakers
in the optimization of the process to provide safer work and higher performance for MgO-C
refractories in steel ladles.

Yemelyanov et al. [83] proposed the use of artificial neural networks to diagnose
lining conditions based on refractory lining thermograms. Work [83] showed detailed
steps in conducting image recognition using an ANN. A method of preprocessing the
thermal images was given by the authors to provide the best possible quality of data for
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input variables in the ANN. The input parameters were as follows: the mass centers of the
thermograms, distance matrixes defining the borders of specific lining zones, and colors
spotted on thermograms. The ANN was used in this work to classify the burnout zones of
the lining. The training of the network was conducted in two steps. The first step was the
typical training of the network with data sampling. In the second step, only experimental
data were utilized for training. A total of 480 images of steel ladles and torpedo cars
were applied for training. In the second stage, experimental thermograms (620 images)
obtained from Alchevsk Iron and Steel Works were examined. The authors tested 22 neural
networks to find the optimal architecture. The obtained results enabled them to implement
specialized software in the steel plant that inspects the lining conditions.

It is worth emphasizing that the authors used unprecedented real thermograms of the
lining collected at the steel plant. In total, 480 standard thermograms and 620 collected
experimentally were used, which made it possible to obtain a reliable model with low
values of classification error (0.258–0.443). The model performance was satisfactory and
was the basis for developing specialist software for lining condition diagnosis. The major
advantage of this work is that its results are positively implemented in industry. Moreover,
it seems that the model is flexible and can be used successfully in various types of devices,
e.g., steel ladles and torpedo ladles.

Zelik et al. [84] showed the application of artificial neural networks to predict the wear
rate of MgO-C refractories in the slag spout zone of a basic oxygen furnace. One campaign
of BOF was considered in the analysis. Overall, 17 variables, collected automatically at the
steel plant, were assigned as input variables, including the chemical composition of hot
metal, treatment temperature, the types of additive used in the process, and the type of
maintenance operation (gunning and slagging). The residual thickness of the MgO-C bricks
in the slag spout zone was taken as the output data. Measurement of the residual thickness
of the bricks was conducted with the use of a laser scanner directly at the steel plant. The
wear indexes were calculated based on 16 laser measurements of the lining. The values of
residual thicknesses were divided into wear classes calculated according to Equation (1):

up = t· w
10

(1)

where up is the upper boundary of the wear class, t is the class number (1. . .10), and w is
the maximum value of the wear index. ANN was used to predict the wear class depending
on selected metallurgical parameters. The quality of training was 64.56% and 66.21% with
testing performed using the R programming language. Table 6 presents the results of
classification using the ANN model. Model performance was verified with the use of
Orange 3.21 software. In this case, the classification accuracy reached 63.9%. Evaluation
of the variables’ importance was done with the use of the Boosted Trees algorithm. The
variables influencing the wear rate of MgO-C refractories most significantly were reported
accordingly: the number of gunning operations was the most important, then the MgO
content in the slag, the amount of lime added to the metal bath, and hot metal weight.

An extension of this work [84] was shown in [85]. The authors used industrial data on
the metallurgical process in BOF to predict the wear rate of MgO-C refractories. A total of
13 variables were selected, including Si and C content in the hot metal, the temperature and
weight of the hot metal, oxygen activity in the metal bath, the temperature at the end of the
refining, the amount of oxygen used during the upper blow, the amount of calcium added
to the metal bath, the amount of MgO-containing additive, and the chemical composition
of the slag. Data were inspected and prepared in detail to provide the best possible quality.
Exponential smoothing was implemented to remove noise from the data. Several ML
models were tested to select the most accurate one for prediction, including multivariate
adaptive regression splines (MARS), classification and regression trees (CART), boosted
trees, and artificial neural networks (ANN, multilayer perceptron, MLP type). Boosted
trees were reported to be the most effective in the prediction of the wear rate of MgO-
C refractories. A comparison of the model performance was expressed with the use of
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different statistical measures: SSE (error sum of squares), MSE (mean squared error),
RMSE (root-mean-square error), R2 (coefficient of determination), MAPE (mean absolute
percentage error), and MAE (mean absolute error), as shown in Table 7. This extended
analysis made it possible to indicate parameters that significantly influence the service
time of BOF. The most important factors were found to be hot metal weight, then the Si
concentration in the hot metal, scrap mass, and the oxygen activity in the hot metal.

Table 6. Classification of wear rate class conducted with the use of ANN model, based on [84].

Predicted
Wear Class

Real Wear Class

0 1 2 3 4 5 6 7 8 9 ∑

0 226 60 19 0 4 0 1 0 0 0 310
1 63 128 2 0 4 0 12 0 0 0 209
2 9 1 6 0 0 0 0 0 0 0 16
3 0 0 0 0 0 0 0 0 0 0 0
4 12 12 10 0 0 0 7 0 0 8 49
5 0 0 0 0 0 0 0 0 0 0 0
6 0 6 0 0 5 0 5 0 0 0 16
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 10 0 0 6 0 2 0 0 7 25
∑ 310 217 37 0 19 0 27 0 0 15 625

Table 7. Comparison of different measures of fit for model performance, based on [85].

Training Data Set

Algorithm SSE MSE RMSE R2 R MAPE MAE
CART 6.811 0.004 0.065 0.559 0.747 24.673% 0.057
MARS 4.195 0.002 0.051 0.716 0.846 17.987% 0.047

Boosted Trees 1.590 0.001 0.031 0.899 0.948 11.086% 0.029
ANN 3.521 0.002 0.047 0.789 0.886 16.012% 0.041

Testing Data Set

CART 5.445 0.008 0.091 0.429 0.655 27.598% 0.066
MARS 3.329 0.005 0.071 0.649 0.805 21.316% 0.054

Boosted Trees 1.458 0.002 0.047 0.849 0.921 13.439% 0.035
ANN 2.932 0.004 0.066 0.687 0.829 20.233% 0.049

Two works [84,85] describe the application of different ML techniques for prediction of
the wear rates of MgO-C materials in basic oxygen converters based on metallurgical param-
eters collected during hot metal treatment. Authors obtained models of different qualities.
Among the used techniques, ANN and the boosted trees algorithm were reported as produc-
ing the most accurate results. Even though the works carry practical meaning, the model
performance needs to be improved. The directions of model performance improvement are
associated with the quality of the data. First of all, in both works [84,85], the residual thickness
of MgO-C materials in the slag spout zone was used as an output variable. Unfortunately, due
to the specific work of the steel plant, only about 20 laser-scanned results for lining thickness
were obtained during the campaign. Such a low amount of data in the campaign, which lasts
more than 2000 heats, affects the ML model’s quality. Industrial data are often not prepared
well enough and contain missing or invalid values (e.g., the amount of hot metal exceeding
the device’s capacity). Collecting quantitative data on the gunning mixes used for sidewall
protection would also improve the quality of the models.
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5. Benefits and Limitations of the Application of ML Techniques for the Investigation
of MgO-C Refractories

Although the number of publications on the application of machine learning is rapidly
growing, with a 56% increase over the last 2 years, it is still very low when it comes to ML
application in the refractory industry. Based on reviewed works [63,64,67,68,73,77–79,81–85],
the most commonly used ML algorithm, and simultaneously the one giving the most accurate
predictions, is an artificial neural network. One exception is given in [85], which shows
boosted trees are the best-fitting algorithm. The presented articles prove that ML algorithms
are highly useful in examinations and in industrial applications of MgO-C materials. In the
research process, the most significant advantage of applying ML algorithms is the reduction of
time-consuming and expensive experimental investigations in the corrosion testing of MgO-C
refractories [63,64].

ML techniques currently have obvious limitations, as the quality of data collected
in the industry is still not satisfactory. Thus, it is necessary and highly recommended
to improve the process of data registration, especially data involving steel production
processes, to avoid missing data, unreal values, or mistake-generative hand typing. Using
data of unsatisfactory quality may lead to inaccurate conclusions.

Another important limitation is related to laboratory experiments and the fact that
ML algorithms are trained on data collected from specific, highly advanced examinations.
It might be difficult to apply external data to such models and obtain reliable results,
especially if one—allegedly insignificant—factor is changed.

Nevertheless, interest in using ML techniques in the refractory industry is growing, as
it seems that high digitalization in this area is unavoidable. The possibility of predicting
the wear rate of refractories depending on their metallurgical data will be especially
encouraging for refractory end-users. They should be conscious of the need to improve
data collection in order to develop highly predictive models that will serve in industrial
practice and help to make the steel process more sustainable.

6. Conclusions

The current state of knowledge on ML techniques—relatively newly applied in refrac-
tories investigation—was reviewed in this work for MgO-C materials, which constitute
over 70% of total refractories production. The most commonly used ML algorithm type is
currently artificial neural networks. The clustering algorithm is also effectively applied in
the optimization of MgO-C materials and the identification of factors influencing vessels’
service time in steel production.

Nevertheless, the number of papers on the application of ML techniques is still insuffi-
cient considering the rapidly growing interest in and high potential of ML techniques. The
limited accessibility of reliable data is one of the reasons, which results from the disclosure
politics of steel plants. The end users of MgO-C refractories will be conscious of the benefits
gained from building high-quality ML models, which can influence the extension of the service
time of refractories, thus making the steel production process more efficient and sustainable.

Concerning experimental research activities on MgO-C refractories, it is always cost-
intensive to prepare and analyze the great number of samples demanded for ML imple-
mentation. The experimental approach has been changing, and wide implementation of
ML in the refractory industry is unavoidable to speed up innovation in the industry in the
near future, which stands at the front of a fast-changing and challenging environment.
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